电致型形状记忆聚合物复合材料的研究进展

电致型形状记忆聚合物复合材料的研究进展
电致型形状记忆聚合物复合材料的研究进展

万方数据

万方数据

万方数据

万方数据

聚合物基复合材料试题

第一章 聚合物合金的概念、合金化技术的特点? 聚合物合金:有两种以上不同的高分子链存在的多组分聚合物体系 合金化技术的特点:1、开发费用低,周期短,易于实现工业化生产。2、易于制得综合性能优良的聚合物材料。3、有利于产品的多品种化和系列化。 热力学相容性和工艺相容性的概念? 热力学相容性:达到分子程度混合的均相共混物,满足热力学相容条件的体系。 工艺相容性:使用过程中不会发生剥离现象具有一定程度相容的共混体系。 如何从热力学角度判断聚合物合金的相容性? 1、共混体系的混合自由能(ΔG M )满足ΔG M =ΔH M -TΔS M <0 2、聚合物间的相互作用参数χ 12 为负值或者小的正值。 3、聚合物分子量越小,且两种聚合物分子量相近。 4、两种聚合物的热膨胀系数相近。 5、两种聚合物的溶度参数相近。 *思考如何从改变聚合物分子链结构入手,改变聚合物间的相容性? 1、通过共聚使分子链引入极性基团。 2、对聚合物分子链化学改性。 3、通过共聚使分子链引入特殊相互作用基团。 4、形成IPN或交联结构。 5、改变分子量。 第二章 *列举影响聚合物合金相态结构连续性的因素,并说明分别是如何影响的? 组分比:含量高的组分易形成连续相; 黏度比:黏度低的组分流动性较好,容易形成连续相; 内聚能密度:内聚能密度大的聚合物,在共混物中不易分散,容易形成分散相;溶剂类型:连续相组分会随溶剂的品种而改变; 聚合工艺:首先合成的聚合物倾向于形成连续性程度大的相。 说明聚合物合金的相容性对形态结构有何影响?

共混体系中聚合物间的工艺相容性越好,它们的分子链越容易相互扩散而达到均匀的混合,两相间的过渡区越宽,相界面越模糊,分散相微区尺寸越小。完全相容的体系,相界面消失,微区也随之消失而成为均相体系。两种聚合物间完全不相容的体系,聚合物之间相互扩散的倾向很小,相界面和明显,界面黏接力很差,甚至发生宏观的分层剥离现象。 什么是嵌段共聚物的微相分离?如何控制嵌段共聚物的微相分离结构? 微相分离:由化学键相连接的不同链段间的相分离 控制溶剂、场诱导、特殊基底控制、嵌段分子量来控制 *简述聚合物合金界面层的特性及其在合金中所起的作用。 特性:1、两种分子链的分布是不均匀的,从相区到界面形成一浓度梯度;2、分子链比各自相区内排列松散,因而密度稍低于两相聚合的平均密度;3、界面层内易聚集更多的表面活性剂、其他添加剂、分子量较低的聚合物分子。 作用:力的传递效应;光学效应;诱导效应。 第三章 简述橡胶增韧塑料的形变机理及形变特点。 形变机理:银纹化和剪切带形变 特点:1、橡胶的存在有利于发生屈服形变;2、力学性能受形变机理影响 简述橡胶增韧塑料形变机理的研究方法及影响形变机理的因素。 定量研究:高精度的蠕变仪同时测定试样在张应力作用下的纵向和横向形变 影响因素:树脂基体;应力和应变速率;温度;橡胶含量;拉伸取向 简述橡胶增韧塑料的增韧机理,并列举实例加以说明。 多重银纹化增韧理论:在橡胶增韧的塑料中,由于橡胶粒子的存在,应力场不再是均匀的,橡胶粒子起着应力集中的作用。(脆性玻璃态高聚物受外力作用发生银纹形变时材料韧性很差) 银纹-剪切带增韧机理:银纹和剪切到之间存在着相互作用和协同作用。(ABS 拉伸过程中既有发白现象,又有细颈形成) 试比较橡胶增韧塑料和刚性粒子工程塑料的异同点。 1、增韧剂种类不同; 2、增韧的对象不同; 3、增韧剂含量对增韧效果的影响不同; 4、改善聚合物合金性能的效果不同; 5、增韧机理不同; 6、对两相界面黏结强度的要求是相同 第四章

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

光敏形状记忆聚合物

光敏形状记忆聚合物 秦瑞丰朱光明*杜宗罡周海峰 (西北工业大学化工系西安 710072) 摘要综述了光敏形状记忆聚合物的研究进展。主要关注了结构和形状记忆效应之间的关系。 光敏形状记忆聚合物的形状记忆效应主要与聚合物的链结构、生色团的种类、生色团的含量、生色团的位置及聚合物体系所处的相态等因素有关。分别介绍了生色团位于聚合物侧链的光敏形状记忆聚合物、生色团位于主链的光敏形状记忆聚合物以及含生色团的有机小分子和聚合物经共混制得的光敏形状记忆聚合物体系。另外还介绍了一种新的光敏形状记忆聚合物体系,液晶弹性体。 关键词形状记忆聚合物生色团光敏性形状记忆聚合物光异构化反应液晶弹性体 Photosensitive Shape Memory Polymer Qin Ruifeng, Zhu Guangming, Du Zonggang, Zhou Haifeng Deptpartment of Chemical Engineering, Northwestern Polytechnical University Xi’an 710072) Abstract The advances in photosensitive polymer and its shape memory effects are reviewed. The photoisomerization reaction of the photosensitive polymer and some factors that influence the shape memory effects, such as: the type of the Chromophore Group(CG),the chain structure of the polymer, the content of the CG, the position of the CG and the phase state of the polymer, are introduced. A novel photosensitive shape memory polymer, Liquid-Crystalline Elastomer is also introduced. Key words Shape memory polymer, Photoisomerization reaction, Chromophore group, Photosensitive shape memory polymer, Liquid-crystalline elastomer 形状记忆聚合物[1](shape memory polymer)是一类新型功能高分子材料,是指能够感知环境变化的刺激,并响应这种变化,对其力学参数(如形状、位置、应变等)进行调整,从而回复到预先设定状态的高分子材料。根据其实现记忆功能的条件不同,可分为温敏型、光敏型、电磁敏感型和酸碱度敏感型等多种类型。 光敏形状记忆聚合物(photosensitive shape memory polymer)是指宏观尺寸发生变化的光响应聚合物(photo-responsive polymer)。具体表现为,在一定波长的光(通常为紫外线)照射下聚合物发生形变,停止照射后聚合物又可回复为初始形状[2]。对固体试样而言,光致形状记忆过程通常表现为聚合物试样对光的照射产生可逆的收缩-膨胀行为,一般将固体试样的光致形状记忆效应称为光力学效应(photo-mechanical effect)。光敏形状记忆聚合物的记忆效应属于双程记忆,因此,其在光开关、分子传感器、光机械执行器等方面都具有潜在的应用价值,目前已经引起了人们的广泛关注。 1 光敏形状记忆聚合物的种类 秦瑞丰男,24岁,硕士生,现从事功能高分子的研究。*联系人

形状记忆高分子材料

形状记忆高分子材料 引言 形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。 1.形状记忆高分子材料的分类 SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。 1.1 热致型SMP 热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。但是并非所有的聚氨酯都具有形状记忆效应,只有当软硬段分子量控制在一个的合适范围内时,聚氨酯才具备形状记忆效应.

聚合物基复合材料复习

1.聚合物基复合材料的组成 (1) 基体 热固性基体: i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好 ii) 交联固化后成网状结构,尺寸稳定性好耐热性好,但性脆 iii) 制备过程伴有复杂化学反应 热塑性基体: i) 熔体粘度大,浸渍与浸润困难,需较高温度和压力下成型,工艺性差 ii) 线性分子结构,抗蠕变和尺寸稳定性差,但韧性好 iii) 制备过程中伴有聚集态结构转变及取向、结晶等物理现象 (2) 增强体 主要有碳纤、玻璃纤维、芳纶纤维、硼纤维等 由于树脂基体与增强体相容性、浸润性较差,增强体多经过表面处理与表面改性,以及浸润剂、偶联剂和涂复层的使用,使其组成复杂化。 3.复合材料的界面 1)界面现象:①表面吸附作用与浸润 ②扩散与粘结(含界面互穿网络结构) ③界面上分子间相互作用力(范氏力和化学键合力) 2). 复合材料的界面形成过程 PMC、MMC、CMC等复合材料体系对界面要求各不相同,它们的成型加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为三个阶段。(1)第一阶段:增强体表面预处理或改性阶段。 i) 界面设计与控制的重要手段 ii) 改性层成为最终界面层的重要组成部分 iii) 为第二阶段作准备 (2)第二阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程 i) 接触—吸附与浸润—交互扩散—化学结合或物理结合。化学结合可看作是一种 特殊的浸润过程 ii) 界面形成与发展的关键阶段 (3)第三阶段:液态(或粘流态)组分的固化过程,即凝固或化学反应 i) 界面的固定(亚稳态、非平衡态) ii) 界面的稳定(稳态、平衡态) 在复合材料界面形成过程中涉及: i) 界面间的相互置换:如,润湿过程是一个固-液界面置换固-气表面的过程 ii) 界面间的相互转化:如,固化过程是固-液界面向固-固界面转化的过程后处理过程:固-固界面自身完善与平衡的过程 3)复合材料界面结构与性能特点 i) 非单分子层,其组成、结构形态、形貌十分复杂、形式多样。界面区至少包括: 基体表面层、增强体表面层、基体/增强体界面层三个部分 ii ) 具有一定厚度的界面相(层),其组成、结构、性能随厚度方向变化而变化,具有“梯度”材料的性能特征

形状记忆复合材料及其应用

18TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 1 General Introduction Shape-memory polymers (SMPs) are able to recover their original shape upon exposure to an external stimulus. The shape-memory phenomenon in SMPs arises from a dual segment system, in which one segment is highly elastic and the other is able to remarkably reduce its stiffness in the presence of a particular stimulus [1]. SMPs have a far higher recoverable strain (up to 400%), much lower density, more convenient processing and fabrication techniques, and properties that are more easily tailored to better accommodate the requirements of a particular application than the shape-memory alloys (SMAs). In addition to these advantages, low cost-not only for the materials themselves but also in processing and fabrication-enables the use of SMPs for a wide range of applications [2]. In this article, synthesis of two novel thermosetting SMP, fiber reinforced SMP composites (SMPCs) and their electrical activation, as well as the applications of SMPCs are discussed. 2 SMP composites (SMPCs) The main limitation of thermoplastic SMPs for the application is irreversible deformation during memory programming due to the creep. The styrene-based and epoxy-based thermosetting SMPs that, unlike traditional thermoplastic SMP, are capable of high thermomechanical properties are reported. Therefore, we introduced chemical crosslinks to improve in creep, strain recovery rate and strain fixity rate, where they are important quantities for describing shape-memory effect. Additionally, experimental results reveal that these two novel thermosetting SMPs have wider transition temperature from 37 to 150o C, higher shape recovery ratio ranged from 90 to 99%, higher elastic modulus of 2 to 3 GPa at room temperature, etc. SMPs can be activated not only by heat/magnetism (similar to SMAs), but also by light/moisture and even a change of pH value. The utilization of electricity to induce the SMPs is desirable owing to controllable and effective. conductive fillers, including carbon black [3], conductive hybrid fibers, chained Ni powder [4] and carbon-based nanopaper to the SMP, and carbon nanofibers (CNFs) were blended to transfer and improve electro-active response of the Beyond this, light-induced SMPs has been realized absorporative particles that act as heat delivery system. Upon irradiation with light of a suitable wavelength, the light is sent through the heat delivery system to trigger the SMP [6]. Recently, indirect activation by means of lowering the transition temperature of SMP has been achieved. As immersed into a special chemical solvent, solvent molecules diffuse into the polymer network and act as plasticizers, resulting in shape recovery [7]. Fig. 1. Series of photographs demonstrating the macroscopic shape memory effect of the SMP composite. The permanent shape is a flat strip, and the temporary shape is a right-angle shape. Reprinted with permission from Reference 5. ?2010, American Institute of Physics. SHAPE-MEMORY POLYMER BASED COMPOSITE MA TERIALS AND THEIR APPLICATIONS SY. Du1*, JS. Leng1 1 Centre for Composite Materials and Structures, Harbin Institute of Technology, Harbin, China * Corresponding author(sydu@https://www.360docs.net/doc/7314290660.html,) Keywords: shape-memory polymer, composites, smart materials, applications

聚合物基复合材料考试答案

1聚合物基复合材料的定义、特征、结构模式。 聚合物基复合材料:是以有机聚合物为基体,以颗粒、纤维等为增 强材料组成的复合材料 特征:1比强度和比模量高,比强度(抗拉强度与密度之比)和比模 量(弹性模量与密度之比)高,说明材料轻而且刚性大。2 良好的抗 疲劳性能疲劳是材料在循环应力作用下的性质。复合材料能有效地 阻止疲劳裂纹的扩展。3、减振性能好在工作过程中振动问题十分突出,复合材料为多相系统,大量的界面对振动有反射吸收作用。且 自振动频率高,不易产生共振4、高温性能好复合材料在高温下强度 和模量基本不变5、各项异性和可设计性。6、成型加工性好复合材 料可成型任意型面的零件7、其它优点与其它类材料相比,聚合物基 复合材料耐化学腐蚀、导电、导热率低等特点。 缺点:1耐湿热性差2.材料性能分散性差3.价格过高 复合材料的结构①无规分散(弥散)增强结构(含颗粒、晶须、短 纤维)②连续长纤单向增强结构(单向板)③层合(板)结构(二维 织布或连续纤维铺层,每层不同)④三维编织体增强结构⑤夹层结 构(蜂窝夹层等)⑥混杂结构 2、复合材料的界面效应有哪些?怎么影响材料的性能。 界面在复合材料中所起到的效应: 1、传递效应:界面可将复合材料体系中基体承受的外力传递给增强相,起到基体和增强相之间的桥梁作用。 2、阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。 3、不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现 的现象 4、散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生 散射和吸收。 5、诱导效应:一种物质(通常是增强物)的表面结构使另一种(通常 是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由 此产生一些现象 3.试说明玻璃纤维、碳纤维与芳纶纤维表面处理方法的相同点和不 同点。 相同点是都需要在高温下处理,改善纤维的微结构,使纤维与界面 和基体更加匹配。包括化学键理论,润湿理论,表面形态理论,可

形状记忆聚合物研究现状与发展_姜敏

收稿日期:2004210214;修改稿收到日期:2004211228。 作者简介:姜敏,女,1972年生,湖北公安人,湖北工业大学高分子材料专业硕士研究生,主要研究领域为高分子材料、复合材料研究与开发。 综 述 形状记忆聚合物研究现状与发展 姜敏 彭少贤 郦华兴 (湖北工业大学,武汉,430068) 摘要:讨论了形状记忆聚合物的类型和特点,综述了聚氨酯、交联聚乙烯、反式1,42聚异戊二烯等形状记忆聚合物的研究进展,分析了形状记忆聚合物的形状记忆机理及其应用,并提出了存在的问题。 关键词: 形状记忆 聚合物 机理 述评 自1960年美国海军试验室Bucher 等人首次发现镍钛合金中的形状记忆效应以来,形状记忆材料在世界范围内引起了广泛的关注,且其研究取得了巨大的进展。所谓“形状记忆”是指具有初始形状的制品经形变固定之后,通过热能、光能、电能等物理因素以及酸碱度、相转变反应和螯合反应等化学因素为刺激手段的处理又可使其恢复初始形状的现象。形状记忆材料包括形状记忆合金(SMA ),形状记忆陶瓷(SMC )和形状记忆聚合物(SM P )[1]。其中形状记忆合金,目前在基础研究和应用开发研究方面取得了巨大进展,并已在航空、航天、医学、工程及人们日常生活领域中得到了广泛的应用。然而形状记忆聚合物在1984年才取得第一个专利,但由于其具有变形量大,赋形容易,形状响应温度便于调整,且还有保温、绝缘性能好、不锈蚀、易着色、可印刷、质轻价廉等特点,都是SMA 所无法比拟的,因而,SM P 以后来者居上的身份成为目前热门的功能材料之一。1 SMP 的研究进展 世界上第1种SM P 是法国的Cdf Chime 公司(即现在的Orkem 公司)于1984年开发的聚降冰片烯。日本的杰昂( )公司购买这项制造专利后,在进一步的研究中发现了它的形状记忆功能[2]。目前已工业化生产和实际应用,商品名为NORSO EX 。 近年来,SMP 在国外发展很快,尤其是日本, 目前已有多家公司拥有工业化应用的固体粉末(或颗粒)SMP 生产技术。如日本可乐丽( )公司于1988年成功地开发了结晶度为40%,用硫磺和过氧化物实施部分交联的反式聚异戊二烯形状记忆材料,该材料具有形变速度快,回复力大及回复精度高等优点[1];日本旭化成公司于1988年开发了由聚苯乙烯和结晶性聚丁二烯组成的混合型性能优异的形状记忆聚合物材料[3,4];日本纤维高分子材料研究所用γ射线照射聚乙烯基醚(PVME )的水溶液,得到交联的PVME 形状记忆聚合物;日本信州大学通过将聚乙烯醇(PVA )水溶液冻结解冻,获得高弹性的水凝胶,再用戊二醛进行交联处理,开发了形变量高达200%~300%的形状记忆水凝胶等[5]。 国内SM P 的研究也取得了一些突破。如中科院化学所严瑞芳等通过控制天然杜仲胶(TPI )交联度制备了医用功能材料、形状记忆温控开关、密封形状记忆材料等;青岛化工学院高分子材料系黄宝琛等人进行人工合成反式聚异戊二烯形状记忆材料的研究[6];北京航空航天大学材料科学系王诗任等人证明当过氧化二异丙苯(DCP )质量分数在0.5%时,乙烯2乙酸乙烯共聚物(EVA )具有优异的形状记忆功能[7];南京大学表面和界面化学系喻春红等人对形状记忆 ? 35? 现代塑料加工应用 2005年第17卷第2期 MODERN PLASTICS PROCESSIN G AND APPL ICA TIONS

形状记忆型高分子原理和制备方法总结

1、形状记忆高分子定义 形状记忆高分子(Shape Memory Polymer)SMP材料是指具有初始形状的制品,在一定的条件下改变其初始形状并固定后,通过外界条件(如热、光、电、化学感应)等的刺激,又可恢复其初始形状的高分子材料。 2、记忆的过程 SMP记忆过程主要描述如下的循环过程: 2.1引发形状记忆效应的外部环境因素: 物理因素:热能,光能,电能和声能等。 化学因素:酸碱度,螯合反应和相转变反应等。 2.2 状记忆高分子分类 故根据记忆响应机理,形状记忆高分子可以分为以下几类: 1)热致感应型SMP 2)光致感应型SMP 3)电致感应型SMP 4)化学感应型SMP 3、高分子的形状记忆过程和原理 3.1形状记忆聚合物的相结构 3.2产生记忆效应的内在原因 需要从结构上进行分析。由于柔性高分子材料的长链结构,分子链的长度与直径相差十分悬殊,柔软而易于互相缠结,而且每个分子链的长短不一,要形成规整的完全晶体结构是很困难的。

这些结构特点就决定了大多数高聚物的宏观结构均是结晶和无定形两种状态的共存体系。如PE,PVC等。高聚物未经交联时,一旦加热温度超过其结晶熔点,就表现为暂时的流动性质,观察不出记忆特性;高聚物经交联后,原来的线性结构变成三维网状结构,加热到其熔点以上是,不再熔化,而是在很宽的温度范围内表现出弹性体的性质,如下图所示。 3.3 形状记忆过程

4、热致感应型形状记忆高分子 定义:在室温以上一定温度变形并能在室温固定形变且长期存放,当再升温至某一特定响应温度时,能很快恢复初始形状的聚合物。 这类SMP一般都是由防止树脂流动并记忆起始态的固定相与随温度变化的能可逆地固化和软化的可逆相组成。 固定相:聚合物交联结构或部分结晶结构,在工作温度范围内保持稳定,用以保持成型制品形状即记忆起始态。 可逆相:能够随温度变化在结晶与结晶熔融态(Tm)或玻璃态与橡胶态间可逆转变(Tg),相应结构发生软化、硬化可逆变化—保证成型制品可以改变形状。 4.1热致SMP形状记忆过程 以热塑性SMP为例: (1)热成形加工:将粉末状或颗粒状树脂加热融化使固定相和软化相都处于软化状态,将其注入模具中成型、冷却,固定相硬化,可逆相结晶,得到希望的形状A,即起始态。(一次成型) (2)变形:将材料加热至适当温度(如玻璃化转变温度Tg),可逆相分子链的微观布朗运

聚合物基复合材料复习

聚合物基复合材料复习要点 常州大学高分子系整理 第一章、概论 复合材料的定义:复合材料是由两种或者两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。 复合材料的分类 按增强材料形态:①连续纤维复合材料②短纤维复合材料③粒状填料复合材料④编织复合材料 按聚合物基体材料:环氧树脂基、酚醛树脂基、聚氨酯基、聚酰亚胺基、不饱和聚酯基以及其他树脂基复合材料 按增强纤维种类:玻璃纤维复合材料、碳纤维复合材料、玄武岩纤维有机纤维复合材料、金属纤维复合材料和陶瓷纤维复合材料 按材料作用:结构复合材料,用于制造受力构性的复合材料 和功能复合材料,具有各种特殊性能(如阻尼、导电、导磁、耐摩擦、屏蔽)的复合材料 复合材料的基本性能:①综合发挥各组分材料优点,使一种材料具有多种性能,具有天然材料所没有的性能 ②按对材料性能的需要进行材料的设计和制造 ③可制成所需的任意形状的产品,避免多次加工工序 聚合物基复合材料的主要性能:①轻质高强②可设计性好③具有多种功能性④过载时安全性好⑤耐疲劳性能好⑥减震性好 复合材料设计可分为三个层次: ①单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能 ②铺层设计:包括对铺层材料的铺层方案做出合理安排,该层次决定层合板的性能 ③结构设计:最后确定产品结构的形状和尺寸 这三个设计层次互为前提、互相影响、互相依赖。材料设计和结构设计必须同时进行,并在一个设计方案中同时考虑。 第二章、增强材料 增强材料按物理形态:①纤维状增强材料,如玻璃纤维、碳纤维、芳纶纤维、玄武岩纤维等②片状增强材料③颗粒状增强材料 玻璃结构比较靠谱的两种假说:①微晶结构假说②网络结构假说 ①微晶结构假说认为,玻璃是由硅酸盐或二氧化硅的“微晶子”所组成,这种“微晶子”在结构上是高度变形的晶体,在“微晶子”之间由无定形中间层隔离,即由硅酸盐过冷溶液所填充 ②网络结构假说认为,玻璃是由二氧化硅四面体、铝氧四面体或硼氧三面体相互连成不规则的三维网络,网络间的空隙由Na+、K+、Ca2+、Mg2+等阳离子所填充。二氧化硅四面体的三维网状结构是决定玻璃性能的基础,填充的Na+、K+等阳离子为网络改性物。 为什么玻璃纤维强度远大于块状玻璃? 答:微裂纹假说认为,玻璃的理论强度取决于分子或原子间的引力,其理论强度很高,但实测强度很低,这是由于玻璃或玻璃纤维中存在数量不等、尺寸不同的微裂纹,这些微裂纹使玻璃或玻璃纤维在外力作用下受力不均,在危害最大的微裂纹处产生应力集中,从而它们强度下降。但玻璃纤维强度仍比块状玻璃高很多,这是因为玻璃纤维高温成型时减少了玻璃溶液的不均匀性,不仅使得自身结晶度比块状玻璃高,而且使其微裂纹产生的机会减少。此外,玻璃纤维的断面较小,使微裂纹存在的概率也减少,从而减少应力集中,使纤维强度增高。 高强玻璃纤维的特点:直径细、长度短、含碱量低、未老化、未疲劳、玻璃硬化快。玻璃纤维耐热性好,但其耐磨性、耐折性、透光性、耐腐蚀性差(比表面积大)。二氧化硅或三氧化二铝含量越高、碱金属氧化物含量越低,玻璃纤维化学稳定性越好。 玻璃纤维最广泛的两种生产工艺:①坩埚法拉丝工艺②池窑漏板法拉丝工艺 玻璃纤维纱的规格①定量法:用质量为1g的原纱的长度表示②定长法(TEX):1000m 长的原纱的质量(g);捻度:指单位长度内纤维与纤维之间所加的转数 玻璃纤维的表面处理:表面处理是在玻璃纤维表面覆一种表面处理剂,使玻璃纤维与合成树脂牢固地黏结在一起,以达到提高玻璃纤维性能的目的。 玻璃纤维表面处理方法:①后处理法②前处理法③迁移法 ①后处理法:首先除去玻璃纤维表面的纺织型浸润剂,然后经处理剂溶液浸渍、水洗、烘干等工艺,使玻璃纤维表面被覆上一层处理剂。其主要特点是:处理的各道工序都需要专门的设备,投资大,玻璃纤维强度损失大,但处理效果好,比较稳定,是目前国内外最常用的处理方法。 ②前处理法:这种方法是适当改变浸润剂的配方,使之既能满足拉丝、退并、纺织各道工序的要求,又不妨碍树脂对玻璃纤维的浸润和黏结。将化学处理剂加入到浸润剂中,即为增强型浸润剂,这样,在拉丝的过程中处理剂就被覆到玻璃纤维表面上。前处理与后处理法比较,省去了复杂的处理工艺及设备,使用简便,避免了因热处理造成的玻璃纤维强度损失,是很适用的方法。 ③迁移法:是将化学处理剂直接加入到树脂胶囊中整体掺合,在浸胶同时将处理剂施于玻璃纤维上,借处理剂从树脂胶液至玻璃纤维表面的迁移作用而与表面发生作用,从而在树脂固化过程中产生偶联作用 碳纤维轻质、高强、高模量、耐热、化学稳定性好、低电阻、高热传导系数、低热膨胀系数、耐辐射、X射线透过性好,还具有阻止中子透过性。 碳纤维的制造方法:①气相法②有机纤维碳化法 1.气相法:在惰性气氛中小分子有机物(如烃、芳烃等)在高温下沉积成纤维。此方法只能制造晶须或短纤维,不能制造连续长丝。 ②有机纤维碳化法:先将有机纤维经过稳定化处理变成耐焰纤维,然后再在惰性气氛中, 于高温下进行焙烧碳化,使有机纤维失去部分碳和其他非碳原子,形成以碳为主要成分的纤维状物。此法可制造连续长纤维。 碳纤维的主要制造方法是热解有机纤维,其流程如下:纤维化稳定(氧化或热固化)碳化石墨化 聚丙烯腈(PAN)基碳纤维的制造工艺流程:复合材料的定义:复合材料是由两种或者两种以上物理和化学性质不同的物质组 合而成的一种多相固体材料。 复合材料的分类 按增强材料形态:①连续纤维复合材料②短纤维复合材料③粒状填料复合材料④编织复合材料 按聚合物基体材料:环氧树脂基、酚醛树脂基、聚氨酯基、聚酰亚胺基、不饱和聚酯基以及其他树脂基复合材料 按增强纤维种类:玻璃纤维复合材料、碳纤维复合材料、玄武岩纤维有机纤维复合材料、金属纤维复合材料和陶瓷纤维复合材料 按材料作用:结构复合材料,用于制造受力构性的复合材料 和功能复合材料,具有各种特殊性能(如阻尼、导电、导磁、耐摩擦、屏蔽)的复合材料 复合材料的基本性能:①综合发挥各组分材料优点,使一种材料具有多种性能,具有天然材料所没有的性能 ②按对材料性能的需要进行材料的设计和制造 ③可制成所需的任意形状的产品,避免多次加工工序 聚合物基复合材料的主要性能:①轻质高强②可设计性好③具有多种功能性④过载时安全性好⑤耐疲劳性能好⑥减震性好 复合材料设计可分为三个层次: ①单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能 ②铺层设计:包括对铺层材料的铺层方案做出合理安排,该层次决定层合板的性能 ③结构设计:最后确定产品结构的形状和尺寸 这三个设计层次互为前提、互相影响、互相依赖。材料设计和结构设计必须同时进行,并在一个设计方案中同时考虑。 第二章、增强材料增强材料按物理形态:①纤维状增强材料,如玻璃纤维、碳纤维、芳纶纤维、玄武岩纤维等②片状增强材料③颗粒状增强材料 玻璃结构比较靠谱的两种假说:①微晶结构假说②网络结构假说 ①微晶结构假说认为,玻璃是由硅酸盐或二氧化硅的“微晶子”所组成,这种“微晶子”在结构上是高度变形的晶体,在“微晶子”之间由无定形中间层隔离,即由硅酸盐过冷溶液所填充 ②网络结构假说认为,玻璃是由二氧化硅四面体、铝氧四面体或硼氧三面体相互连成不规则的三维网络,网络间的空隙由Na+、K+、Ca2+、Mg2+等阳离子所填充。二氧化硅四面体的三维网状结构是决定玻璃性能的基础,填充的Na+、K+等阳离子为网络改性物。 为什么玻璃纤维强度远大于块状玻璃? 答:微裂纹假说认为,玻璃的理论强度取决于分子或原子间的引力,其理论强度很高,但实测强度很低,这是由于玻璃或玻璃纤维中存在数量不等、尺寸不同的微裂纹,这些微裂纹使玻璃或玻璃纤维在外力作用下受力不均,在危害最大的微裂纹处产生应力集中,从而它们强度下降。但玻璃纤维强度仍比块状玻璃高很多,这是因为玻璃纤维高温成型时减少了玻璃溶液的不均匀性,不仅使得自身结晶度比块状玻璃高,而且使其微裂纹产生的机会减少。此外,玻璃纤维的断面较小,使微裂纹存在的概率也减少,从而减少应力集中,使纤维强度增高。 高强玻璃纤维的特点:直径细、长度短、含碱量低、未老化、未疲劳、玻璃硬化快。玻璃纤维耐热性好,但其耐磨性、耐折性、透光性、耐腐蚀性差(比表面积大)。二氧化硅或三氧化二铝含量越高、碱金属氧化物含量越低,玻璃纤维化学稳定性越好。 玻璃纤维最广泛的两种生产工艺:①坩埚法拉丝工艺②池窑漏板法拉丝工艺 玻璃纤维纱的规格①定量法:用质量为1g的原纱的长度表示②定长法(TEX):1000m 长的原纱的质量(g);捻度:指单位长度内纤维与纤维之间所加的转数 玻璃纤维的表面处理:表面处理是在玻璃纤维表面覆一种表面处理剂,使玻璃纤维与合成树脂牢固地黏结在一起,以达到提高玻璃纤维性能的目的。 玻璃纤维表面处理方法:①后处理法②前处理法③迁移法 ①后处理法:首先除去玻璃纤维表面的纺织型浸润剂,然后经处理剂溶液浸渍、水洗、烘干等工艺,使玻璃纤维表面被覆上一层处理剂。其主要特点是:处理的各道工序都需要专门的设备,投资大,玻璃纤维强度损失大,但处理效果好,比较稳定,是目前国内外最常用的处理方法。 ②前处理法:这种方法是适当改变浸润剂的配方,使之既能满足拉丝、退并、纺织各道工序的要求,又不妨碍树脂对玻璃纤维的浸润和黏结。将化学处理剂加入到浸润剂中,即为增强型浸润剂,这样,在拉丝的过程中处理剂就被覆到玻璃纤维表面上。前处理与后处理法比较,省去了复杂的处理工艺及设备,使用简便,避免了因热处理造成的玻璃纤维强度损失,是很适用的方法。 ③迁移法:是将化学处理剂直接加入到树脂胶囊中整体掺合,在浸胶同时将处理剂施于玻璃纤维上,借处理剂从树脂胶液至玻璃纤维表面的迁移作用而与表面发生作用,从而在树脂固化过程中产生偶联作用 碳纤维轻质、高强、高模量、耐热、化学稳定性好、低电阻、高热传导系数、低热膨胀系数、耐辐射、X射线透过性好,还具有阻止中子透过性。 碳纤维的制造方法:①气相法②有机纤维碳化法 1.气相法:在惰性气氛中小分子有机物(如烃、芳烃等)在高温下沉积成纤维。此方法只能制造晶须或短纤维,不能制造连续长丝。 ②有机纤维碳化法:先将有机纤维经过稳定化处理变成耐焰纤维,然后再在惰性气氛中, 于高温下进行焙烧碳化,使有机纤维失去部分碳和其他非碳原子,形成以碳为主要成分的纤维状物。此法可制造连续长纤维。 碳纤维的主要制造方法是热解有机纤维,其流程如下:纤维化稳定(氧化或热固化)碳化石墨化 聚丙烯腈(PAN)基碳纤维的制造工艺流程:

聚合物基复合材料

聚合物基复合材料 第二节聚合物基复合材料(PMC) 1.1聚合物基体 1.2PMC界面 1.3PMC制备工艺 1.4PMC性能与应用 聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、

短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。 通常意义上的聚合物基复合材料一般就是指纤维增强塑料(FRP),而为各种目的加入各种填料的高分子材料不在这里论及。 1.1聚合物基体 聚合物基体是纤维增强塑料的一个必需组分,在复合材料成型过程中,基体经过复杂的物理、化学变化过程,与增强纤维复合成具有一定形状的整体。因而基体性能直接影响复合材料性能。基体的主要作用包括将纤维粘合成整体并使纤维位置固定,在纤维间传递载荷,并使载荷均匀;决定复合材料的一些性能。如复合材料的高温使用性能(耐热性)、横向性能、剪切性能、耐介质性能(如耐水、耐化学品性能)等;决定复合材料成型工艺方法及工艺参数选择;保护纤维免受各种损伤。此外对复合材料一些性能有重要影响,如纵向位伸、尤其是压缩性能,疲劳性能,断裂韧性等。 1、分类 用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加

聚合物基复合材料知识点

复合材料知识点 一、绪论 1、复合材料定义:①ISO:有两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。②GB:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 2、复合材料组成:复合材料由基体和增强材料组成。增强材料是复合材料的主要承力部分,特别是拉伸强度、弯曲强度和冲击强度等力学性能主要由增强材料承担,基体的作用是将增强材料粘合成一个整体,起到均衡应力和传递应力的作用,使增强材料的性能得到充分的发挥,从而产生一种复合效应,使复合材料的性能大大优于单一材料的性能。 3、复合材料的分类:⑴按基体类型分类树脂基复合材料、金属基复合材料、无机非金属基复合材料。⑵按增强材料类型分类玻璃纤维复合材料、碳纤维复合材料、有机纤维复合材料、陶瓷纤维复合材料。⑶按用途不同分类结构复合材料、功能复合材料 二、增强材料 1、增强材料作用:增强材料是复合材料的主要组成部分,它起着提高树脂基的强度、模量、耐热和耐磨等性能的作用,增强材料还有减小复合材料成型过程中的收缩率,提高制品硬度等作用。 2、作为树脂基复合材料的增强材料应具有的基本特征:⑴应具有能明显提高树脂基体某种所需特性的性能,如高的比强度、比模量、高导热性、耐热性、低热膨胀性等,以便赋予树脂基体某种所需的特性和综合性能。⑵应具有良好的化学稳定性。⑶与树脂有良好的浸润性和适当的界面反应,使增强材料与基体树脂有良好的界面结合。⑷价廉。 3、微裂纹假说:玻璃的理论强度取决于分子或原子间的吸引力,其理论强度很高,可以达到2000――12000MPa。但强度的实际测试结果却低很多,这是因为玻璃或玻璃纤维中存在着数量不等,尺寸不同的微裂纹,因而大大降低了其强度。微裂纹分布在玻璃或玻璃纤维的整个体积内,但以表面的微裂纹危害最大。由于微裂纹的存在,玻璃或玻璃纤维在外力的作用下,微裂纹处首先发生应力集中,首先发生破坏。玻璃纤维比玻璃的强度高很多,是因为玻璃纤维经高温成型时减少了玻璃溶液的不均一性,使微裂纹产生的机会减少;另外,玻璃纤维的断面尺寸小,微裂纹存在的概率也小,故使纤维强度增高。 4、玻璃纤维的生产方法有坩埚法和池窑法两种,其中池窑拉丝的优点是省去了制球工艺。 5、浸润剂在玻璃纤维拉丝和纺织过程中的作用是:使纤维粘合集束,润滑耐磨,消除静电等,保证拉丝和纺织工序的顺利进行。浸润剂有两类,一类是纺织型浸润剂,主要满足纺织加工的需要,其主要成分有石蜡、凡士林、硬脂酸、变压器油、固色剂、表面活性剂和水。但不利于树脂和玻璃纤维的粘合,须经脱蜡处理。另一类是增强型浸润剂,是专门为增强用玻璃纤维发展起来的,除满足纤维生产工艺要求外,还要满足纤维制品加工以及玻璃纤维复合材料成型中的多方面要求,更主要是改善树脂对纤维浸润性,提高树脂与纤维的黏结力。主要成分有成膜剂、偶联剂、润滑剂、润湿剂、抗静电剂等。

相关文档
最新文档