形状记忆聚合物研究现状与发展_姜敏

形状记忆聚合物研究现状与发展_姜敏
形状记忆聚合物研究现状与发展_姜敏

收稿日期:2004210214;修改稿收到日期:2004211228。 作者简介:姜敏,女,1972年生,湖北公安人,湖北工业大学高分子材料专业硕士研究生,主要研究领域为高分子材料、复合材料研究与开发。

综 述

形状记忆聚合物研究现状与发展

姜敏 彭少贤 郦华兴

(湖北工业大学,武汉,430068)

摘要:讨论了形状记忆聚合物的类型和特点,综述了聚氨酯、交联聚乙烯、反式1,42聚异戊二烯等形状记忆聚合物的研究进展,分析了形状记忆聚合物的形状记忆机理及其应用,并提出了存在的问题。

关键词: 形状记忆 聚合物 机理 述评

自1960年美国海军试验室Bucher 等人首次发现镍钛合金中的形状记忆效应以来,形状记忆材料在世界范围内引起了广泛的关注,且其研究取得了巨大的进展。所谓“形状记忆”是指具有初始形状的制品经形变固定之后,通过热能、光能、电能等物理因素以及酸碱度、相转变反应和螯合反应等化学因素为刺激手段的处理又可使其恢复初始形状的现象。形状记忆材料包括形状记忆合金(SMA ),形状记忆陶瓷(SMC )和形状记忆聚合物(SM P )[1]。其中形状记忆合金,目前在基础研究和应用开发研究方面取得了巨大进展,并已在航空、航天、医学、工程及人们日常生活领域中得到了广泛的应用。然而形状记忆聚合物在1984年才取得第一个专利,但由于其具有变形量大,赋形容易,形状响应温度便于调整,且还有保温、绝缘性能好、不锈蚀、易着色、可印刷、质轻价廉等特点,都是SMA 所无法比拟的,因而,SM P 以后来者居上的身份成为目前热门的功能材料之一。1 SMP 的研究进展

世界上第1种SM P 是法国的Cdf Chime 公司(即现在的Orkem 公司)于1984年开发的聚降冰片烯。日本的杰昂( )公司购买这项制造专利后,在进一步的研究中发现了它的形状记忆功能[2]。目前已工业化生产和实际应用,商品名为NORSO EX 。

近年来,SMP 在国外发展很快,尤其是日本,

目前已有多家公司拥有工业化应用的固体粉末(或颗粒)SMP 生产技术。如日本可乐丽( )公司于1988年成功地开发了结晶度为40%,用硫磺和过氧化物实施部分交联的反式聚异戊二烯形状记忆材料,该材料具有形变速度快,回复力大及回复精度高等优点[1];日本旭化成公司于1988年开发了由聚苯乙烯和结晶性聚丁二烯组成的混合型性能优异的形状记忆聚合物材料[3,4];日本纤维高分子材料研究所用γ射线照射聚乙烯基醚(PVME )的水溶液,得到交联的PVME 形状记忆聚合物;日本信州大学通过将聚乙烯醇(PVA )水溶液冻结解冻,获得高弹性的水凝胶,再用戊二醛进行交联处理,开发了形变量高达200%~300%的形状记忆水凝胶等[5]。

国内SM P 的研究也取得了一些突破。如中科院化学所严瑞芳等通过控制天然杜仲胶(TPI )交联度制备了医用功能材料、形状记忆温控开关、密封形状记忆材料等;青岛化工学院高分子材料系黄宝琛等人进行人工合成反式聚异戊二烯形状记忆材料的研究[6];北京航空航天大学材料科学系王诗任等人证明当过氧化二异丙苯(DCP )质量分数在0.5%时,乙烯2乙酸乙烯共聚物(EVA )具有优异的形状记忆功能[7];南京大学表面和界面化学系喻春红等人对形状记忆

?

35? 现代塑料加工应用 2005年第17卷第2期

MODERN

PLASTICS PROCESSIN G AND APPL ICA TIONS

聚氨酯材料展开了研究[8];还有上海交通大学应用化学系[9]等单位也相继开展了这方面的研究工作,并取得一定的进展。

根据近年发表的专利和其他文献,SM P的研究工作主要集中在以下几个方面:(1)SM P的形状记忆机理;(2)SM P的形状记忆效果及综合性能;(3)SM P的形状记忆数学模型研究;(4) SM P的应用。以下将从上述方面论述SM P的技术发展及动向。

2 SMP的形状记忆机理

SM P根据其回复原理可分为:热致型SM P、光致型SM P、化学感应型SM P[10]等。2.1 热致型SMP

日本的石田正雄先生最先发现[11],热致型SM P形状记忆功能主要来源于材料内部存在不完全相容的两相,即保持成型制品形状的固定相和随温度变化会发生软化、硬化可逆变化的可逆相。固定相的作用在于原始形状的记忆与恢复,可逆相则保证成型制品可以改变形状。根据固定相的结构特征,SM P可分为热固性和热塑性两大类,除此之外还有一种所谓的“冷变形成型”的形状记忆聚合物材料[12]。

热固性SM P是将聚合物加温到熔点(t m)以上和交联剂共混,接着在模具里进行交联反应并确定一次形状,冷却结晶后即得到初始态,其化学交联结构为固定相,结晶相为可逆相。当温度升高至t m以上时,可逆相熔融软化,在外力的作用下可做成任意的形状,保持外力并冷却固定,使分子链沿外力方向取向冻结得到变形态。当温度再升高至t m以上时,可逆相分子链在熵弹性作用下发生自然卷曲,直至达到热力学平衡状态,从而发生形状回复,记忆一次形状。

热塑性SM P实质上是高分子链以物理交联的方式形成固定相和可逆相。当温度升高至玻璃化转变温度(t g)以上时,可逆相分子链的微观布朗运动加剧,而固定相仍处于固化状态,此时以一定外力使SM P发生变形,并保持外力使之冷却,可逆相固化得到稳定的新形状即变形态。当温度再升高至t g以上时,可逆相软化,固定相保持固化,可逆相分子链运动复活,在固定相的恢复应力作用下逐步达到热力学平衡状态,即宏观表现为恢复原状。

冷变形成型的SMP在低于t g以下,通过冷加工的方法发生强迫高弹形变,然后保持外力并冷却,得到变形态。当温度再次升高到t g时,由于分子链处于高弹态,可以自由运动而发生高弹形变恢复。这种SM P是通过高分子链之间的相互缠绕实现形状记忆的。在t g以下,分子链之间不能相互滑动,外力作用只能使分子链的构象发生强制变化,保持外力条件下降温时,分子链被严格地冻结,强制形变得以保存。当加热至t g以上时,分子链构象的强制变化被解除,并逐步达到热力学平衡状态,宏观上即为恢复原状。

热致型SM P回复刺激手段主要有:热能、光能、电能等。其中热能刺激手段回复方法是靠通热水或吹热风,以导热和对流的方式对材料实施加热,这种方法设备及操作简单[13],但前者存在适用环境局限性大,后者存在加热温度场受风向影响大,加热不均匀,导致制品收缩也不均匀。

利用光能作为热刺激手段的回复方法是通过远红外加热器等加热设备将光能转化为热能对材料实施加热,这种方法具有加热速度快且加热均匀等优点,但其设备昂贵,投资太大[14]。

利用电能作为热刺激手段的回复方法的SM P材料,有文献也称其为电致型SM P[15],其制备方法是在聚合物中加入导电粒子制备成复合材料,这种复合材料既有导电性能,又有形状记忆功能。对材料安装电极,然后直接通以电流产生热量使SM P温度升高,致使形状回复,这种方法操作简单,且加热速度快,但其存在电极安装问题,造成制品加工困难。

2.2 光致型SMP

光致型SMP的制备是以一定的方式引入适当的光致变色基团(Photochromic Chromophore G roup,简称PCG)的某些聚合物材料,当其受到光照时(通常为紫外光),PCG发生异构化反应,并把这种变化传递给分子链,使分子的状态发生显著性变化,材料在宏观上表现为光致形变,光照停止时, PCG发生可逆的光异构化反应,分子链的形态相应地复原,材料则恢复原状,但回复速度很慢。光照停止后,通过加热或用其他波长的光(通常为可见光)照射,可加速恢复过程[15,16]。

2.3 化学感应型SMP

化学感应型SM P是一些聚合物材料在化

?

4

5

? 现 代 塑 料 加 工 应 用 2005年4月 

学物质的作用下,能产生形变及形变恢复。通常用的化学感应方式有p H值变化、平衡离子置换、螯合反应、相转变和氧化还原反应等[17~19]手段。刺激手段不同,聚合物形状记忆机理也不一样。p H值变化刺激方式是将聚合物浸泡于盐酸溶液中,氢离子间的相互排斥使分子链段扩展,再向体系中加入等当量的NaO H溶液时,则发生酸碱中和反应,分子链收缩,直到恢复原长[19];平衡离子置换是聚合物中羧酸阴离子的平衡离子发生置换时,可使分子链产生伸缩变化而产生形状记忆;螯合反应是侧链上含有配位基的高分子同过渡金属离子形成螯合反应时可发生可逆变化;相转变和氧化还原反应是蛋白质在各种盐类物质的存在下因高次结构破坏而收缩,高次结构再生则恢复原长。

3 SMP的形状记忆效果及综合性能

3.1 热致型SMP

对于热致型SM P必须满足3个要求:1)特定条件下能发生一定形变;2)该形变在室温能大部分固定;3)在特定条件下基本能回复原状。因此,衡量SMP形状记忆效果的优劣,可用形状回复率、形状固定率、形变量、形状回复速度等指标评价[20]。就形状记忆原理可以推测,可逆相对SM P的形变特性影响较大,固定相对形状恢复特性影响较大。可逆相分子链的柔韧性增大, SM P形变量就相应提高。热固性SM P同热塑性SM P相比,形状恢复的速度快、精度高、应力大,但形变量小,不能回收再利用。

目前已开发的SM P普遍综合性能不够理想[10]。如聚降冰片烯形变回复力大、形变速度快、回复精度高,但形状回复温度不能任意高,相对分子质量太大,分子链非常长,成型加工较困难;反式聚异戊二烯形状记忆性能优良,但由于存在不饱合键,其耐老化和耐高温性能差;交联聚乙烯耐热性、力学性能和物理性能较好,由于交联分子间的键合力增大,使得形变量极低,制品赋形困难等。努力提高综合性能已成为目前理论和应用研究工作的重点。

3.2 光致型与化学感应型SMP

光致型与化学感应型SMP材料感应方式均为“外接触”式,故操作简单,但在形状记忆效果方面均低于热致型SM P。如光致感应型SM P,其PC G基团之间相互作用的变化受光照影响较小,材料形状恢复性能差;低分子光致变色基团对分子链的传递效果较差[10],形状回复速度也不高,形变量也较低,最低低至2%以下[21];化学感应型SM P存在形变量小、稳定性差、易受外界环境影响等缺点。

4 SMP的应用

4.1 热致型SMP

热致型SM P目前已在医疗、包装、建筑、玩具、汽车、文体用品、报警器材等领域应用,并将在更广泛的领域开辟其潜在用途[22~26],主要用途如下。

41111 异径管接合材料

先将SM P材料加热成管状,并趁热向内插入半径比管直径大的棒状物。扩口,待冷却抽出棒状物,得到热收缩管,使用时将直径不同的金属管插入热收缩管中,用热水或热风加热,套管即收缩紧固。此法广泛用于仪器内线路集合、线路终端的绝缘保护、通讯电缆的接头防水以及钢管线路接合处的防腐工程。

41112 包装材料

SMP材料作容器外包层时,为便于印刷,可先将其成型为筒状,加热并施加外力使其变形为容易印刷的扁平状,冷却固定后可印刷,然后扩大套在容器上,最后进行再加热,使其在无外力作用下收缩恢复成初始形状从而紧贴于容器上。SM P用于容器衬里时只需将SMP加工成衬里形状,然后加热变形为便于组装的形状,冷却固化后塞入容器内,再加热便可恢复成衬里形状,牢固地嵌在容器内。

41113 医用器材

在医疗方面,将SM P用作固定创伤部位的器材可代替传统的石膏绷扎。其方法是先将SM P加工成创伤部位形状,用热水或热风使其软化,施加外力变形为易于装配形状,冷却固化后装配到创伤部位,再加热便可恢复原状起固定作用。同样,加热后变软,取下也十分方便。此外,生物降解SMP可用于制作医用组织缝合器材、防止血管阻塞器材、止血钳等。

除了上述几种用途之外,SM P还可用作建

?

5

5

?

姜敏等.形状记忆聚合物研究现状与发展

筑用紧固销钉、汽车保险杠、火灾报警器等。

4.2 光致型与化学感应型SMP

光致型与化学感应型SMP 的应用正处于研究阶段,可望用作印刷材料,光记录材料,药物缓释剂等等。化学感应型SM P 还未能得到正式应用,目前国外已有人提出用于蛋白质和酶的膜“化学发动机”等特殊领域。5 存在的问题

形状记忆聚合物以其独特的优点具有广泛的应用前景,但在开发应用上仍存在以下问题:(1)目前已开发的SM P 综合性能不够理想,有待利用分子设计技术和材料的改性技术,提高其综合性能;(2)热致型SM P 回复方式有待改进;(3)光致和化学感应型SM P 材料开发不够;(4)形状记忆机理理论研究还有待完善;(5)形状记忆树脂的加工性能比原树脂差;(6)同普通塑料相比,价格偏高。

参 考 文 献

1 Wel Z G ,Sandstrom R ,Mlyazaki S.Review shape 2memory

materials and hybrid lomposities for smart systems.J Mater Sci ,1998,33:3743~3762

2 杜仕国.形状记忆高分子材料的研究进展.功能材料,1995,

26(2):107~112

3 石田正雄.形状记忆树脂.配管技术,1989,31(8):1124 武井澄夫.形状记忆树脂とその应用.化学技术杂志,1989,

27(6):42~46

5 唐牛正夫. 一 共重合树脂.? ?

一 ,1989,35(6):173~183

6 杨俊华.形状记忆树脂.化工新型材料,1991,19(8):19~257 姚薇,宋景社,贺爱平等.合成反式1,42聚异戊乙烯的硫化

与性能.弹性体,1995,5(4):7

8 王诗任,徐修成,梅丽等.EVA 的形状记忆功能探讨.北京

航空航天大学学报,2000:26(1):1~4

9 喻春红,陈强,候向辉等.化学交联型形状记忆聚氨酯材料研

究.机械科学与技术,2001,(1):69~70

10 潘道成,张和康,张隐西.形状记忆聚合物的原理和应用.化

学世界,1990,31(12):534~537

11 张福强.形状记忆高分子材料.高分子通报,1995,16(1):

34~42

12 王玲,成国祥.热致感应型形状记忆高分子材料及其研究进

展.中国塑料,2000,14(8):18~24

13 牧野内昭武.非晶性高分子の形状记忆现象.? ?

一 ,1979,20(7):618

14 詹茂盛,方义,王瑛.形状记忆功能高分子材料的研究现状.

合成橡胶工业,2000,23(1):53~57

15 邱关源.电机工程手册.北京:机械工业出版社,1999.916 松木富仁,桑田净伸.自己发热性を有する形状记忆性树

脂.J P ,J P 02242847.1990

17 Trie M.Properties and applications of photoresponsive pol 2

ymers.Pure Appl Chem ,1990,62(8):1495~150218 清水谦一,入江正浩,唯木次男.记忆と材料.东京:共立出

版株式会社,1986.121~158

19 入江正浩.光诱起形状记忆高分子材料.日本床学会会报,

1989,28(10):777~784

20 Ishihara K.Cont rol of insulin permeation t hrough a poly 2

mer membrane wit h responsive function for glucose.Mak 2romol Chem Rapid Commum ,1983,4(5):327~33121 中山和郎.开关记忆 一の特性と应用.日本 协会

志,1990,63(9):43

22 杜仕国,李文钊.形状记忆树脂的开发与应用.塑料科技,

1995,(4):54~57

23 入江正浩.光答应性高分子.高分子,1986,35(3):224 新海征治.光答应性高分子の机能制御.高分子,1981,30

(12):895

25 傅玉成,连香姣.杜仲胶记忆材料的性质与应用.高分子材

料与工程,1992,8(4):123~125

26 喻红春,陈强,沈健.热致型形状记忆聚合物,2000,(4):

33~38

PRESENT SITUATION AN D FUTURE OF

SHAPE MEMOR Y POLYMER MATERIAL

Jiang Min Pen Shaoxan Li Huaxing (Hubei University of Technology ,Wuhan ,430068)

ABSTRACT

The classification and characteristic of shape memory polymer were discussed.The research de 2velop ment of shape memory polymers ,for example ,polyuret hane ,crosslinked polyet hylene ,as well as t rans 1,42polyisop rene ,were reviewed.The shape memory mechanism of polymer and it s application were analyzed.Then ,t he existent question was given.

K eyw ords :shape memory ;polymer ;mechanism ;review

?65? 现 代 塑 料 加 工 应 用 2005年4月 

浅谈记忆材料

浅谈形状记忆合金 引言:时代的发展与材料的发展是相辅相成的。随着科学技术的进步,材料研究变得尤为重要。现如今材料的研究越来越专业化,并且逐渐倾向于功能化、多样性。例如形状记忆材料就是一种典型的新型功能材料。形状记忆材料是指具有形状记忆效应的金属、陶瓷和高分子等材料,在高温下材料形成一种形状,在冷却到低温时会塑性变形成为另外一种形状,如果对材料进行加热,通过马氏体的逆相变,又可以恢复到高温时的形状,这就是形状记忆效应。 一、形状记忆合金及形状记忆效应 形状记忆材料是集感知和驱动于一体的特殊功能材料,其中形状记忆合金是形状记 忆材料中较为重要的材料之一。形状记忆合金(Shape Memory Alloy简称SMA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界 温度以上又可恢复成初始形状的一类合金。 1、形状记忆合金分类 到目前为止,被开发出来的形状记忆合金主要是Ti-Ni基、Cu基与Fe基三种。在这三大类中,根据不同的要求和工作环境,分别在基体中加入和调整一些合金元素的量,使得每一个大类中都有一系列合金被开发出来,应用在各行各业,以满足各种不同的特殊需求。 (a)Ti-Ni形状记忆合金开发的最早,形状记忆效应最稳定,相对比较成熟,已在航天工业、汽车工业、电子工业、医学及人类生活领域获得应用。但由于其原材料Ni?、Ti价格昂贵,且加工成本高等因素,其应用受到限制。 (b)Cu基形状记忆合金因价格便宜、原材料来源广泛、易于加工和制造等原因而得到迅速发展。铜基形状记忆合金是这三类合金中种类最多的一类,但有实际应用价值的目前只有Cu-Zn-Al和Cu-Al-Ni两种。 (c)Fe基形状记忆合金发展较晚,成本较Ti-Ni系和铜系合金低得多,易于加工,在应用方面具有明显的竞争优势,被认为是一种具有广泛应用前景的功能材料,受到广泛的关注。 2、呈现形状记忆效应的合金的必备条件 (a)马氏体相变只限于驱动力极小的热弹性型,即马氏体与母相之间的界面的移动是完全可逆的 (b)合金中的异类原子在母相与马氏体中必须为有序结构

形状记忆合金的制备方法作用及发展前景

形状记忆合金的制备方法,作用及发展前景摘要:本论文主要论述形状记忆合金的相关内容,扼要地叙述了形状记忆合金的制备方法,作用,介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金制备方法应用发展前景 引言 形状记忆合金(Shape Memory Alloys,SMA)是一种在加热升温后能完全消除其在较低温度下发生的形变,恢复其形变前原始形状的合金材料。除上述形状记忆效应外,这种合金的。另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。研究表明,很多合金材料都具有SME,但只有在形状变化过程中产生较大回复应变和较大形状恢复力的才具有利用价值。到目前为止,应用最多的是Ni2Ti合金和铜基合金(CuZnAl 和CuAlNi)。 形状记忆合金作为一种特殊的新型功能材料,集感知与驱动于一体的智能材料,因其功能独特,可制作小巧玲珑,高度自动化,性能可靠的元器件而备受瞩目,并获得广泛应用。 正文 一.形状记忆合金的制备方法

形状记忆合金及其制备方法,该合金含有主要合金元素Ti、Zr、Nb及添加元素包括Mo、V、Cr、Sn,并加入元素Al;各组分重量百分比分别为:Ti:46-60,Zr:15-25,Nb:15-25;添加元素选取Mo、V、Cr、Sn其中一种或两种,其重量百分比<2.0;Al:0.5-2.5。本发明选用的主要合金元素均为对人体无毒性反应且生体适应性良好的物质;经溶解合金化后,该合金具有出色的形状记忆性能及超弹性特点,并可以进行超过50%乃至99%的冷加工变形性。经过固溶、时效处理的合金可在更广的范围内具有较高的形状记忆回复功能、较高的冷加工塑性及对人体无毒性等优良性能。? 二.形状记忆合金的应用 迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类: (1)自由回复 SMA在马氏体相对产生塑性变形,温度升高自由回复到记忆的形状。自由回复的典型例子是人造卫星的天线和血栓过滤器。美国航空航天局将Ti2Ni合金板或棒卷成竹笋状或旋涡状发条,收缩后安装在卫星内。发射卫星并进入轨道后,利用加热器或者太阳能加热天线,使之向宇宙空间撑开。血栓过滤器把Ni2Ti合金记忆成网状,低温下拉直,通过导管插入静腔,经体温加热后,形状变成网状,可以阻止凝血块流动。有人设想,利用形状记忆合金制作宇宙空间站的可展机构,即以小体积发射,于空间展开成所需的形状,这是很有吸引力的机构。

形状记忆合金在医学领域的应用

形状记忆合金在医学领域的应用 1.形状记忆合金的特性 1.1形状记忆合金的结构特性 形状记忆效应(Shape memory effec,t SME)是由于马氏体相变而产生的。具有热弹性(半热弹性)或应力诱发马氏体相变(Stress inducedMartensitic trans-formation, SIM)的形状记忆合金(Shape memory al-loys, SMAs),在马氏体状态下进行一定限度的塑性变形,则在随后的加热过程中,当温度超过马氏体逆相变温度时,材料就能恢复到变形前的体积和形状。 1.2形状记忆合金的分类 形状记忆合金主要分为Ti-Ni基、Cu基及Fe基形状记忆合金。前两种合金主要为热弹性形状记忆合金,Fe基形状记忆合金为半热弹性形状记忆合金,其中用于医学领域的 TiNi 形状记忆合金,除了利用其形状记忆效应或超弹性外,还应满足化学和生物学等方面的要求,即良好的生物相容性。TiNi 可与生物体形成稳定的钝化膜。 形状记忆效应主要分为:单程记忆效应,双程记忆效应和全程记忆效应。 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 2.形状记忆合金的发展 首次被发现并公开报道某些合金中具有形状记忆效应这一现象的发现,可以追溯至1938年,美国哈佛大学的A.B.Greningerh和Mooradian在Cu-Zn合金中发现了马氏体的热弹性转变,即在加热与冷却过程中,马氏体会随之收缩与长大。1918年前苏联学者Kerdjumov曾预测到有一部分具有马氏体相变的合金会出现热弹性马氏体相变。1951年张禄经和T.A.Read报道了原子比为1∶1的CsCl 型AuCd合金在热循环中会反复出现可逆相变。数年后.T.A.Read又和M.W.Burkard在InTi合金中发现了同样纳可逆相变。一直到20世纪60年代初,这种观察到的形状记忆效应只看作是个别材料的特殊现象。甚至在1958年布鲁塞尔国际博览会上展出过用AuCd合金制作的重物升降机,都未引起足够的注意。 1963年,美国海军武器实验室W.J.Buchler等人在等原子比NiTi合金中发现了形状记忆效应后,才引起人们的重视,从此形状记忆合金进入了研究和应用的新阶段。到1975年左右,全世界相继开发出具有形状记忆效应的合金达20

形状记忆高分子材料研究进展(综述)

形状记忆的高分子材料的研究进展 Research Progress of Shape Memory Polymer Material 1 综述 摘要:形状记忆高分子(SMP)是一类新型的功能高分子材料,是高分子材料研究、开发、应用的一个新的分支点,它同时兼具有塑料和橡胶的特性。形状记忆高分子材料是一种可以响应外界刺激,并调整自身状态参数,从而回复到预先设定状态的一种智能高分子材料。本文简单介绍了形状记忆高分子材料的性能、种类和应用。 关键词:形状记忆;高分子材料;聚合物;研究进展 1形状记忆高分子材料简介. 形状记忆的高分子材料是一种能够感知外部环境如光、热、、电、磁等,并且能够根据外部环境的变化而自发的对自身的参数进行调整还原到预先设定状态的一种智能高分子材料。形状记忆高分子( Shape Memory Polymer,简称 SMP) 材料具有可恢复形变量大、质轻价廉、易成型加工、电绝缘效果好等优点,从20世纪80年代以来赢得广泛关注和研究,并得到了快速发展,因其独特的性能和特点,使其这些年来在材料领域中扮演着重要的角色。近40年来,科研工作者们相继开发出了多种形状记忆高分子材料,如聚乙烯、聚异戊二烯、聚酯、共聚酯、聚酰胺、共聚酰胺、聚氨酯等,它们被广泛应用于航空航天、生物医用、智能纺织、信息载体、自我修复等多个材料领域。显示出了形状记忆高分子材料广泛的应用前景的地位。 2.形状记忆高分子材料的分类及应用 根据响应方式的不同可以将形状记忆高分子分材料大致分为热致型、光致型、化学感应型、电致型等类型。其中,热致感应型和光致感应型应用最为广泛。 2.1热致感应型 热致SMP是一种通过施加电场或红外光照射等刺激促使其在室温以上变形,并能在室温固定形变且可长期存放,当再次升温至某一固定温度时,材料能够恢复到初始形状。热致型SMP被广泛用于医疗卫生、体育运动、建筑、包装、汽车及科学实验等领域,如医用器械、泡沫塑料、坐垫、光信息记录介质及报警器等。 2.2光致感应型 光致SMP可以将光能转化为机械能,根据记忆机理的不同,可分为光化学反应型和光热效应型两种。光化学反应型是经光照后发生化学反应,它是将具有光

形状记忆合金的应用现状与发展趋势

形状记忆合金的应用现状与发展趋势 摘要:综述了形状记忆合金的发展概况,简要介绍了形状记忆合金在不同领域的应用现状,分析了当前形状记忆合金研究中存在的问题,指出了今后的发展前景与研究方向。 关键词:形状记忆合金、形状记忆合金效应、应用 一、引言 形状记忆合金(Shape Memory Alloy ,SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect ,SME) 。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 二、形状记忆合金的发展史与现状 在金属中发现现状记忆效应最早追溯到20世纪30年代。1938年。当时美国的 Greningerh和Mooradian在Cu-Zn合金小发现了马氏体的热弹件转变。随后,前苏联的Kurdiumov对这种行为进行了研究。1951年美国的Chang相Read 在Au47·5Cd(%原子)合金中用光学显微镜观察到马氏体界面随温度的变化发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart 在In-Ti 合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直至1963年,美国海军武器实验室的Buehler等人发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断[1]。

形状记忆合金论文

形状记忆合金 摘要:扼要地叙述了形状记忆合金及其机理, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 引言:有一种特殊的金属材料,经适当的热处理后即具有回复形状的能力,这种材料被称为形状记忆合金( Shape Memory Alloy ,简称为SMA) ,这种能力亦称为形状记忆效应(Shape Memory Effect , 简称为SME) 。通常,SMA 低温时因外加应力产生塑性变形,温度升高后,克服塑性变形回复到所记忆的形状。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 形状记忆合金(Shape Memory Alloys, SMA)是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。除上述形状记忆效应外,这种合金的另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文 pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。 一、形状记忆合金的发展史 最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,

光敏形状记忆聚合物

光敏形状记忆聚合物 秦瑞丰朱光明*杜宗罡周海峰 (西北工业大学化工系西安 710072) 摘要综述了光敏形状记忆聚合物的研究进展。主要关注了结构和形状记忆效应之间的关系。 光敏形状记忆聚合物的形状记忆效应主要与聚合物的链结构、生色团的种类、生色团的含量、生色团的位置及聚合物体系所处的相态等因素有关。分别介绍了生色团位于聚合物侧链的光敏形状记忆聚合物、生色团位于主链的光敏形状记忆聚合物以及含生色团的有机小分子和聚合物经共混制得的光敏形状记忆聚合物体系。另外还介绍了一种新的光敏形状记忆聚合物体系,液晶弹性体。 关键词形状记忆聚合物生色团光敏性形状记忆聚合物光异构化反应液晶弹性体 Photosensitive Shape Memory Polymer Qin Ruifeng, Zhu Guangming, Du Zonggang, Zhou Haifeng Deptpartment of Chemical Engineering, Northwestern Polytechnical University Xi’an 710072) Abstract The advances in photosensitive polymer and its shape memory effects are reviewed. The photoisomerization reaction of the photosensitive polymer and some factors that influence the shape memory effects, such as: the type of the Chromophore Group(CG),the chain structure of the polymer, the content of the CG, the position of the CG and the phase state of the polymer, are introduced. A novel photosensitive shape memory polymer, Liquid-Crystalline Elastomer is also introduced. Key words Shape memory polymer, Photoisomerization reaction, Chromophore group, Photosensitive shape memory polymer, Liquid-crystalline elastomer 形状记忆聚合物[1](shape memory polymer)是一类新型功能高分子材料,是指能够感知环境变化的刺激,并响应这种变化,对其力学参数(如形状、位置、应变等)进行调整,从而回复到预先设定状态的高分子材料。根据其实现记忆功能的条件不同,可分为温敏型、光敏型、电磁敏感型和酸碱度敏感型等多种类型。 光敏形状记忆聚合物(photosensitive shape memory polymer)是指宏观尺寸发生变化的光响应聚合物(photo-responsive polymer)。具体表现为,在一定波长的光(通常为紫外线)照射下聚合物发生形变,停止照射后聚合物又可回复为初始形状[2]。对固体试样而言,光致形状记忆过程通常表现为聚合物试样对光的照射产生可逆的收缩-膨胀行为,一般将固体试样的光致形状记忆效应称为光力学效应(photo-mechanical effect)。光敏形状记忆聚合物的记忆效应属于双程记忆,因此,其在光开关、分子传感器、光机械执行器等方面都具有潜在的应用价值,目前已经引起了人们的广泛关注。 1 光敏形状记忆聚合物的种类 秦瑞丰男,24岁,硕士生,现从事功能高分子的研究。*联系人

形状记忆高分子材料

形状记忆高分子材料 引言 形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。 1.形状记忆高分子材料的分类 SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。 1.1 热致型SMP 热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。但是并非所有的聚氨酯都具有形状记忆效应,只有当软硬段分子量控制在一个的合适范围内时,聚氨酯才具备形状记忆效应.

形状记忆材料-形状记忆效应

第七章形状记忆材料 形状记亿材料是一种特殊功能材料,这种集感知和驱动于一体的新型材料可以成为智能材料结构,而备受世界瞩目。1951年美国Read等人在Au—Cd合金中首先发现形状记忆效应(Shape Memory Effect,简称SME)。1953年在In—T1合金中也发现了同样的现象,但当时未能引起人们的注意!直到1964年布赫列等人发现Ti—Ni合金具有优良的形状记忆性能,并研制成功实用的形状记忆合金“Nitinol”,引起了人们的极大关注,世界各国科学工作者和工程技术人员进行了广泛的理论研究和应用开发。形状记忆合金已广泛用于人造卫星天线、机器人和自动控制系统、仪器仪表、医疗设备和能量转换材料。近年来,又在高分子聚合物、陶瓷材料、超导材料中发现形状记忆效应,而且在性能上各具特色,更加促进了形状记忆材料的发展相应用。 第一节形状记忆效应 一、形状记忆效应 具有一定形状的固体材料,在某一低温状态下经过塑性变形后,通过加热到这种材料固有的某一临界温度以上时,材料又恢复到初始形状的现象,称为形状记忆效应。具有形状记忆效应的材料称为形状记忆材料。例如,在高温时将处理成一定形状的金属急冷下来,在低温相状态下经塑性变形成另一种形状,然后加热到高温相成为稳定状态的温度时通过马氏体逆相变会恢复到低温塑性变形前的形状。具有这种形状记忆效应的金属,通常是由2种以上的金属元素构成的合金,故称为形状记忆合金(Shape Memory Alloys ,简称SMA)。 形状记忆效应可分为3种类型:单程形状记忆效应、双程形状记忆效应和全程形状记忆效应。图4—l表示3种不同类型形状记忆效应的对照。所谓单程形状记忆效应就是材料在高温下制成某种形状,在低温时将其任意变形,再加热时恢复为高温相形状,而重新冷却时却不能恢复低温相时的形状。若加热时恢复高温相时的形状,冷却时恢复低温相形状,即通过温度升降自发可逆的反复恢复高低温相形状的现象称为双程形状记忆效应。当加热时恢复高温相形状,冷却时变为形状相同而取向相反的高温相形状的现象称为全程形状记忆效应。它是一种特殊的双程形状记忆效应,只能在富Ti-Ni合金中出现。 1

形状记忆合金未来展望

形状记忆合金未来展望 一、引言 形状记忆合金是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 二、形状记忆合金的发展史与现状 在金属中发现现状记忆效应最早追溯到20世纪30年代。1938年。当时美国的 Greningerh和Mooradian在Cu-Zn合金小发现了马氏体的热弹件转变。随后,前苏联的Kurdiumov对这种行为进行了研究。1951年美国的Chang相Read在Au47·5Cd合金中用光学显微镜观察到马氏体界面随温度的变化发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart 在In-Ti 合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直至1963年,美国海军武器实验室的Buehler等人发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断。 1969年,Rsychem公司首次将Ni-Ti合金制成管接头应用于美国

F14 战斗机上;1970年,美国将Ti-Ni记忆合金丝制成宇宙飞船用天线。这些应用大大激励了国际上对形状记忆合金的研究与开发。20世纪7 年代,相继开发出了Ni-Ti 基、Cu-Al2-Ni 基和Cu-Zn-Al 基形状记忆合金;80 年代开发出了Fe-Mn-Si 基、不锈钢基等铁基形状记忆合金,由于其成本低廉、加工简便而引起材料工作者的极大兴趣。从20世纪90 年代至今,高温形状记忆合金、宽滞后记忆合金以及记忆合金薄膜等已成为研究热点。 从SMA 的发现至今已有四十余年历史,美国、日本等国家对SMA 的研究和应用开发已较为成熟,同时也较早地实现了SMA 的产业化。我国从上世纪70 年代末才开始对SMA 的研究工作,起步较晚,但起点较高。在材料冶金学方面,特别是实用形状记忆合金的炼制水平已得到国际学术界的公认,在应用开发上也有一些独到的成果。但是,由于研究条件的限制,在SMA 的基础理论和材料科学方面的研究我国与国际先进水平尚有一定差距,尤其是在SMA 产业化和工程应用方面与国外差距较大。近十年来,我国在SMA的应用和开发方面更是取得了长足进步。现在,我国的SMA产业化进程方兴未艾,国内涌现了一大批以SMA原料及产品为主要生产、经营项目的高科技公司。可以预见,未来几年我国SMA的研究和应用开发将会有令人瞩目的发展,甚至可能出现较大突破。 SMA的形状记忆效应源于热弹性马氏体相变,这种马氏体一旦形成,就会随着温度下降而继续生长,如果温度上升它又会减少,以完全相反的过程消失。两项自由能之差作为相变驱动力。两项自由能相

高分子形状记忆合金的发展及趋势

高分子形状记忆合金的发展及趋势 摘要:本论文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史和分类, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 1.形状记忆分子材料的特性 形状记忆合金是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 1.1单程记忆效应: 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 1.2双程记忆效应: 某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 1.3全程记忆效应: 加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 2.形状记忆效应的应用 迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类: 2.1.自由回复 SMA 在马氏体相时产生塑性形变,温度升高自由回复到记忆的形状。自由回复的典型例子是人造卫星的天线和血栓过滤器。美国航空航天局(NASA) 将Ti2Ni

形状记忆材料

形状记忆材料 摘要:材料是现代社会发展的三大支柱产业之一,本文介绍了形状记忆材料的概念,发展历史,记忆效应产生的原理和分类应用。形状记忆材料主要分为三种:形状记忆合金、形状记忆陶瓷、形状记忆聚合物。由于形状记忆效应的独特记忆效应的性质,广泛的应用于工业领域和医学领域。 关键词:形状记忆材料、记忆效应、形状记忆合金、形状记忆陶瓷、形状记忆聚合物一.引言 材料、信息、能源被称为现代社会发展的三大支柱产业,材料对当代社会的进步和发展起着十分重要的作用。科技的不断进步对材料各个方面的性能的要求越来越高,智能化的材料已经成为一种趋势,而形状记忆材料的更是引起了国内外的研究热潮。 自上个世纪以来,形状记忆材料独特的性能引起了人们的极大的兴趣。由于形状记忆材料具有形状记忆效应、高温复形变、良好的抗震性和适应性等优异性能,有着传统驱动器不可比拟的性能优点,形状记忆合金由于具有许多优异的性能,而广泛应用于航空航天、机械电子、生物医疗、桥梁建筑、汽车工业及日常生活等多个领域。 二.形状记忆材料的概念 形状记忆材料[1](shape memory materials ,简称SMM)是指具有一定初始形状的材料经过形变并固定成另一种形状后,通过热、光、电等物理或化学刺激处理又恢复成初始形状的材料。 三.形状记忆材料的发展史 1932年,瑞典人奥兰德在金镉合金中首次观察到了“记忆”效应,即合金形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般的回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。 1938,当时的美国在Cu-Zn合金里发现了马氏体的热弹件转变,随后前诉苏联对这种行为进行了研究。 1951年美国的里德等人在金镉合金中也发现了形状记忆效应,然而在当时,

形状记忆合金材料的应用

形状记忆合金材料的性质与应用综述 【摘要】形状记忆合金是一种新型功能材料,在各个领域有着广泛的应用。本文简要介绍了形状记忆合金的特性、应用以及发展前景。 【关键词】形状记忆合金应用发展现状 【引言】形状记忆合金(Shape Memory Alloys, SMA),是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。最早关于形状记忆效应的报道是由Chang及Read等人在1952年做出的。他们观察到Au-Cd合金中相变的可逆性。[3]后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的 Ti-Ni合金中观察到具有宏观形状变化的记忆效应,才引起了科学界与工业界的重视。这种新型功能材料目前已广泛用于电子仪器、汽车工业、医疗器械、空间技术和能源开发等领域。 一、形状记忆合金的分类 1、单程记忆效应:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 2、双程记忆效应:某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 3、全程记忆效应:加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 二、形状记忆合金的特性 1、形状记忆效应:合金在某一温度下受外力而变形,当外力去除后,仍保持其变形后的形状,但当温度上升到某一温度,材料会自动回复到变形前原有的形状,似乎对以前的形状保持记忆,这种效应称为形状记忆效应。 2、超弹性:在高于A f点、低于M d点的温度下施加外应力时产生应力诱发马氏体相变,卸载就产生逆相变,应变完全消失,回到母相状态,表观上呈现非线性拟弹性应变,这种现象称为超弹性。 3、高阻尼特性:形状记忆合金在低于Ms点的温度下进行热弹性马氏体相变,生成大量马氏体变体(结构相同、取向不同),变体间界面能和马氏体内部孪晶界面能都很低,易于迁移,能有效地衰减振动、冲击等外来的机械能,因此阻尼特性特别好。 4、耐磨性:在形状记忆合金中,Ti-Ni合金在高温(CsCl型体心立方结构)状态下同时具有很好的耐腐蚀性和耐磨性。可用作在化工介质中接触滑动部位的机械密封材料,原子能反应堆中用做冷却水泵机械密封件。 5、逆形状记忆特性:将Cu-Zn-Al记忆合金在Ms点上下的很小温度范围内进行大应变量变形,然后加热到高于Af点的温度时形状不完全恢复,但再加热到高于200oC时却逆向地恢复到变形后的形状,称为逆形状记忆特性。 三、形状记忆合金在各领域的应用 1、医疗方面: Ni-Ti合金是医用生物材料的佼佼者,在临床医学和医疗器械等方面广泛应用。 [1]如介入疗法,将各类人体腔内支架、经过预压缩变形后,能够经过很小的腔隙安放到人体血管、消化道、呼吸道、以及尿道等各种狭窄部位,支架扩展后,在人体腔内支撑起狭小的腔道。具有疗效可靠、使用方便、可大大缩短治疗时间和减

形状记忆纤维

形状记忆纤维 进入二十一世纪,高科技材料的发展日新月异,具有记忆功能的智能纤维,将我们的生活带入了梦幻般的奇妙世界。你能想象一下吗,当你一人孤独的旅行时,身上的衣服能够发出动听的音乐,伴你愉悦前行不再寂寞;当你不慎遭遇险情时,身上的衣服会发出救援信号,帮你尽快逃离危险;当你驾驶汽车时,驾驶位上的坐垫会根据你的坐姿,自动调节成贴合身体的曲线形状,使你舒适行驶减轻疲劳。还有许多……,这些都是具有记忆功能的“聪明衣服”,为我们的生活带来乐趣和便利。 其实具有形状记忆功能的纤维,它是智能材料的一个重要分支。用智能材料制成的纺织品具有对外界刺激感知和反应的能力。从广义讲,能够被“记忆”的特性很多,如形状、热能、光、电、磁、化学特性等。 迄今为止,具有形状记忆的材料有记忆合金、陶瓷、高聚物、凝胶等。形状记忆材料具有记忆、响应、回复、抗震及适应性等优良特性。形状记忆效应,则是指通过热、化学、机械、光、磁、电等外界刺激,触发材料响应,从而改变材料的形状、位置、应变、硬度、频率、抗震、摩擦等动态或静态技术参数。这些形状记忆材料可以制成薄膜、纤维、丝线、颗粒等品种形式,也可以与其他材料结合制成复合材料。因而其发展也越来越受到重视。 目前国内外纺织企业推出的各种形状记忆纤维:有高分子材料纤维、镍钛合金纤维等。高分子材料形状记忆纤维,其原理就是运用现代高分子物理学和高分子合成改性技术,对通用高分子材料进行分子组合和改性。如对聚乙烯、聚酯、聚异戊二烯、聚氨酯等高分子材料进行分子组合及分子结构调整,使它们同时具备塑料和橡胶的共性,在常温范围内具有塑料的性质,即硬性、形状稳定恢复性,同时在一定温度(所谓记忆温度)下具有橡胶的特性,主要表现为材料的可变形性和形状恢复

形状记忆合金的应用现状与发展趋势

11 Santhanam A T,G odse R V,G rab G P et al.U.S.Patent. 1993(5):250,367 12 Nemeth B J,Santhanam A T,G rab G P.Proceed.10th Plansee Seminar,Plansee A.G.,Reutte/T yrol,1981:613~627 13 Santhanam A T,G rab G P,R olka G A et al.Proceed.con f. on High Productivity Machining-Materials and Processes. New Orleans,La,American S ociety for Metals,1985:113~121 14 Nemeth B J,G rab G P.U.S.Reissue Patent.1993,N o.34, 180 15 D oi H.Proceed.2nd Int.C on f.on the Science of Hard Mate2 rials,Adam Hilger Ltd.Ser.1986(75):489~523 16 Claussen N.Mater.Sci.Eng.1985(71):23~38 17 Wei G C,Becher P F.Am.Ceram.S oc.Bull.1985,64 (2):298~30418 Faber K T,Evans A G.Acta Metall.1983,31(4):565~576 19 N orth B,Baker R D.Int.J.of Refractory Hard Metals. 1984,3(1):46~51 20 Beeghly C W,Shuster A F.Proceed.S oc.of Carbide and T ool Engineers C on f.on Advances in T ool Materials for use in High S peed Machining,Scottsdale,AZ,AS M International, 1987,91~99 21 K ennametal Lathe T ooling Catalog4010.2004 22 Oles E J,Reiner K L,G ates et al.U.S.Patent.2003.6, 599,062 23 Inspektor A,Oles E J,Bauer C E.Int.J.of Refractory Met2 als and Hard Materials.1997(15):49~56 第一作者:M.S.G reen field,博士,美国肯纳金属公司材料总监 (胡红兵译) 收稿日期:2005年4月形状记忆合金的应用现状与发展趋势 肖恩忠 潍坊学院 摘 要:综述了形状记忆合金的发展概况,简要介绍了形状记忆合金在不同领域的应用现状,分析了当前形状记忆合金研究中存在的问题,指出了今后的发展前景与研究方向。 关键词:形状记忆合金, 形状记忆效应, 机理, 应用 Application Actuality and Development T rend of Shape Memory Alloy X iao Enzhong Abstract:The general development of the shape mem ory alloy(S M A)is summarized,and its applications in different fields are briefly introduced.Als o,problems in the study of S M A at present are analyzed.Finally,The development foreground and re2 search directions of S M A in the future are pointed out. K eyw ords:shape mem ory alloy, shape mem ory effect, mechanism, application 1 引言 形状记忆合金(Shape Mem ory Alloy,S MA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Mem ory E ffect,S ME)。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 2 形状记忆合金的发展历史与现状 在金属中发现形状记忆效应最早可追溯到20世纪30年代。1938年,美国的G reningerh和M oora2 dian在Cu2Zn合金中发现了马氏体的热弹性转变。随后,前苏联的K urdium ov对这种现象进行了研究。1951年,Chang和Read在Au24715at%Cd合金中用光学显微镜观察到马氏体界面随温度的变化而发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart在In2T i合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直到1963年,美国海军武器实验室的Buehler等人发现等原子比的T i2Ni合金具有优良的形状记忆功能,

浅谈形状记忆合金材料

浅谈形状记忆合金材料 引言:时代的发展与材料的发展是相辅相成的。随着科学技术的进步,材料研究变得尤为重要。现如今材料的研究越来越专业化,并且逐渐倾向于功能化、多样性。例如形状记忆材料就是一种典型的新型功能材料。形状记忆材料是指具有形状记忆效应的金属、陶瓷和高分子等材料,在高温下材料形成一种形状,在冷却到低温时会塑性变形成为另外一种形状,如果对材料进行加热,通过马氏体的逆相变,又可以恢复到高温时的形状,这就是形状记忆效应。 一、形状记忆合金及形状记忆效应 形状记忆材料是集感知和驱动于一体的特殊功能材料,其中形状记忆合金是形状记忆材料中较为重要的材料之一。形状记忆合金(Shape Memory Alloy简称SMA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。 1、形状记忆合金分类 到目前为止,被开发出来的形状记忆合金主要是Ti-Ni基、Cu 基与Fe基三种。在这三大类中,根据不同的要求和工作环境,分别在基体中加入和调整一些合金元素的量,使得每一个大类中都有一系列合金被开发出来,应用在各行各业,以满足各种不同的特殊需求。

(a)Ti-Ni形状记忆合金开发的最早,形状记忆效应最稳定, 相对比较成熟,已在航天工业、汽车工业、电子工业、医学及人类生活领域获得应用。但由于其原材料Ni 、Ti价格昂贵,且加工成本 高等因素,其应用受到限制。 (b)Cu基形状记忆合金因价格便宜、原材料来源广泛、易于加工和制造等原因而得到迅速发展。铜基形状记忆合金是这三类合金中种类最多的一类,但有实际应用价值的目前只有Cu-Zn-Al和 Cu-Al-Ni两种。 (c)Fe基形状记忆合金发展较晚,成本较Ti-Ni系和铜系合金低得多,易于加工,在应用方面具有明显的竞争优势,被认为是一种具有广泛应用前景的功能材料,受到广泛的关注。 2、呈现形状记忆效应的合金的必备条件 (a)马氏体相变只限于驱动力极小的热弹性型,即马氏体与母 相之间的界面的移动是完全可逆的 (b)合金中的异类原子在母相与马氏体中必须为有序结构 (c)马氏体相变在晶体学上是完全可逆的 3、状记忆效应的分类 (a)单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 (b)双程记忆效应

形状记忆合金在医学上的应用

论文名: 形状忆合金在医学上的应用 学院:材料与化工学院 专业:金属材料工程 班级: 学号: 姓名:

内容摘要形状记忆合金的研究是近几年工程技术界颇为关注的一项 高新尖技术,其在航空航天、机械电子、工程建筑、医学医疗等相关领域已取得了一些应用性研究成果.本文介绍了形状记忆合金特点、功能、以及在现代医学中的研究与应用的现状与发展趋势. 关键词形状记忆合金医学领域 1.前言 在人类文明发展史上,材料是科学技术进步的重要支柱,也是社会进步的物质基础。在科技日新月异的今天,新材料更是高科技发展的先导。形状记忆合金正是新科技领域的一朵奇葩,正在灿烂的绽放。 1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。记忆合金的开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料"。 1963年,美国海军军械研究所的比勒在研究工作中发现,在高于室温较多的某温度范围内,把一种镍-钛合金丝烧成弹簧,然后在冷水中把它拉直或铸成正方形、三角形等形状,再放在40 ℃以上的热水中,该合金丝就恢复成原来的弹簧形状。后来陆续发现,某些其他合金也有类似的功能。这一类合金被称为形状记忆合金。每种以一定元素按一定重量比组成的形状记忆合金都有一个转变温度;在这一温度以上将该合金加工成一定的形状,然后将其冷却到转变温度以下,人为地改变其形状后再加热到转变温度以上,该合金便会自动地恢复到原先在转变温度以上加工成的形状。 1969年,镍--钛合金的“形状记忆效应”首次在工业上应用。人们采用了一种与众不同的管道接头装置。为了将两根需要对接的金属管连接,选用转变温度低于使用温度的某种形状记忆合金,在高于其转变温度的条件下,做成内径比待对接管子外径略微小一点的短管(作接头用),然后在低于其转变温度下将其内径稍加扩到该接头的转变温度时,接头就自动收缩而扣紧被接管道,形成牢固紧密的连接。美国在某种喷气式战斗机的油压系统中便使用了一种镍-钦合金接头,从未发生过漏油、脱落或破损事故。 1969年7月20日,美国宇航员乘坐“阿波罗”11号登月舱在月球上首次留下了人类的脚印,并通过一个直径数米的半球形天线传输月球和地球之间的信息。这个庞然大物般的天线是怎么被带到月球上的呢?就是用一种形状记忆合金材料,先在其转变温度以上按预定要求做好,然后降低温度把它压成一团,装进登月舱带上天去。放置于月球后,在阳光照射下,达到该合金的转变温度,天线“记”起了自己的本来面貌,变成一个巨大的半球。科学家在镍-钛合金中添加其他元素,进一步研究开发了钦镍铜、钛镍铁、钛镍铬等新的镍钛系形状记忆合金;除此以外还有其他种类的形状记忆合金,如:铜镍系合金、铜铝系合金、铜锌系合金、铁系合金(Fe-Mn-Si, Fe-Pd)等。 而今形状记忆合金以应用到我们生活的各个领域,正在改变着我们的生活。

相关文档
最新文档