遗传算法与蚁群算法在旅行商问题中的应用【精品毕业设计】(完整版)

遗传算法与蚁群算法在旅行商问题中的应用【精品毕业设计】(完整版)
遗传算法与蚁群算法在旅行商问题中的应用【精品毕业设计】(完整版)

申明:本文系本人本科毕业论文,本人对该文章享有著作权,如需引用,请注明来源。文中大量参考了相关文献,后有列表,如在无意中侵犯你的著作权请告知。

本文可供,数学类,计算机类本科毕业参考。

如需本中的源代码(matlab语言)请联系我,另有答辩用ppt. 邮箱:570983569@https://www.360docs.net/doc/7316390929.html,

太原理工大学

毕业设计(论文)任务书

第1页

第2页

第3页

第4页

实验六:遗传算法求解TSP问题实验分析

实验六:遗传算法求解TSP问题实验 一、实验目的 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。用遗传算法对TSP问题进行了求解,熟悉遗传算法地算法流程,证明遗传算法在求解TSP问题时具有可行性。 二、实验内容 参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。 对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 1. 最短路径问题 所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。 在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用

遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。 假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。这就是旅行商问题。旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。假设每个城市和其他任一城市之间都以欧氏距离直接相连。也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。 2. 遗传算法 遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。其假设常描述为二进制位串,位串的含义依赖于具体应用。搜索合适的假设从若干初始假设的群体集合开始。当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。每一步,根据给定的适应度评估当前群体的假设,而后使用概率方法选出适应度最高的假设作为产生下一代的种子。

遗传算法的研究及应用毕业设计

毕业设计 遗传算法的研究及应用 摘要 本文分为三部分:第一部分:遗传算法的概述。主要介绍了遗传算法的基本思想、遗传算法的构成要素、遗传算法的特点、遗传算法的基本模型、遗传算法的应用情况及今后的研究方向等等的内容。第二部分:基于Matlab 7.0下的遗传算法求解函数最值问题。遗传算法作为一种新的优化方法,广泛地用于计算科学、模式识别和智能故障诊断等方面,它适用于解决复杂的非线性和多维空间寻优问题,近年来也得到了较为广阔的应用。本人选择了函数优化这个应用领域,按照遗传算法的步骤,即编码、解码、计算适应度(函数值)、选择复制运算、交叉运算和变异运算,对函数进行求解最值。第三部分:对遗传算法求函数最值问题的改进。这部分主要针对本文第二部分进行改进,通过改变基本遗传算法运行参数值,如改变交叉概率Pc值和变异概率Pm值,从而使最优值更加接近相对标准下函数的最值。 关键词:遗传算法适应度交叉概率变异概率

目录 1 前言 (1) 2 遗传算法概述 (1) 2.1生物进化理论和遗传学的基本知识 (1) 2.2遗传算法的基本思想 (3) 2.3遗传算法的构成要素 (3) 2.3.1 染色体编码方法 (3) 2.3.2 适应度函数 (4) 2.3.3 遗传算子 (4) 2.3.4 基本遗传算法运行参数 (5) 2.4遗传算法的特点 (6) 2.5遗传算法的基本模型 (7) 2.6遗传算法的应用 (8) 2.7遗传算法今后的研究方向 (10) 3 基于MATLAB 7.0下的遗传算法求解函数最值问题 (11) 3.1遗传算法的标准函数 (11) 3.2解题步骤说明 (12) 3.2.1 编码问题 (12) 3.2.2 选择运算 (12) 3.2.3 交叉运算 (13) 3.2.4 变异运算 (13) 3.3运行参数说明 (14) 3.4对遗传算法求得的最值的分析 (14) 3.5运行程序以及对其解释 (14) 3.6从数学的角度求解函数最优值 (18) 3.6.1 自变量x以0.2为步进单位 (18) 3.6.2 自变量x以0.1为步进单位 (19) 3.6.3 自变量x以更精确的数为步进单位 (21)

大学课件--遗传算法应用的分析与研究-

遗传算法应用的分析与研究 福州八中钱自强 【摘要】 随着科技水平的不断发展,人们在生产生活中遇到的问题也日益复杂,这些问题常常需要在庞大的搜索空间内寻找最优解或近似解,应用传统算法求解已经显得相当困难。而近年来,生物学的进化论被广泛地应用于工程技术、人工智能等领域中,形成的一类有效的随机搜索算法——进化算法,有效的解决了诸多生产生活中的难题而显得越来越流行。 本文的首先将介绍进化算法的原理以及历史使大家对进化算法有一个初步的了解,其次将详细介绍应用遗传算法解题的步骤,并提出有效改进和应用建议。紧接着通过一个NP难题的优化实例让大家对遗传算法有更深刻的了解,最后通过数据分析证明其方法的有效性。 【关键词】 人工智能;进化算法;遗传算法(GA);多目标最小生成树 目录 一、进化算法理论 1.1进化算法概述- 2- 1.2遗传算法介绍- 2- 二、遗传算法 2.1遗传算法基本流程- 3- 2.2遗传算法中各重要因素分析- 3- 2.3重要参数设置- 6- 三、遗传算法在多目标最小生成树问题中的应用 3.1多目标最小生成树- 7- 3.2应用遗传算法解决多目标最小生成树- 9- 3.3测试-11- 四、结束语-15- 附录-16-

一. 进化算法理论 1.1进化算法概述 从远古时代单细胞开始,历经环境变迁的磨难,生命经历从低级到高级,从简单到复杂的演化历程。生命不断地繁衍生息,产生出具有思维和智能的高级生命体。人类得到生命的最佳结构与形式,它不仅可以被动地适应环境,更重要的是它能够通过学习,模仿与创造,不断提高自己适应环境的能力。 进化算法就是借鉴生物自然选择和遗传机制的随机搜索算法。进化算法通过模拟“优胜劣汰,适者生存”的规律激励好的结构,通过模拟孟德尔的遗传变异理论在迭代过程中保持已有的结构,同时寻找更好的结构。作为随机优化与搜索算法,进化算法具有如下特点:进化算法不是盲目式的乱搜索,也不是穷举式的全面搜索,它根据个体生存环境即目标函数来进行有指导的搜索。进化算法只需利用目标的取值信息而不需要其他信息,因而适用于大规模、高度非线性的不连续、多峰函数的优化,具有很强的通用性;算法的操作对象是一组个体,而非单个个体,具有多条搜索轨迹。 1.2遗传算法 遗传算法(Genetic Algorithm)是进化算法的一个重要分支。它由John Holland提出,最初用于研究自然系统的适应过程和设计具有自适应性能的软件。近来,遗传算法作为问题求解和最优化的有效工具,已被非常成功地应用与解决许多最优化问题并越来越流行。 遗传算法的主要特点是群体搜索策略和群体中个体之间的信息互换,它实际上是模拟由个体组成的群体的整体学习过程,其中每个个体表示问题搜索空间中的一个解点.遗传算法从任一初始的群体出发,通过随机选择,交叉和变异等遗传操作,使群体一代代地进化到搜索空间中越来越好的区域,直至抵达最优解点. 遗传算法和其它的搜索方法相比,其优越性主要表现在以下几个方面:首先,遗传算法在搜索过程中不易陷入局部最优,即使在所定义的适应度函数非连续.不规则也能以极大的概率找到全局最优解,其次,由于遗传算法固有的并行性,使得它非常适合于大规模并行分布处理,此外,遗传算法易于和别的技术(如神经网络.模糊推理.混沌行为和人工生命等)相结合,形成性能更优的问题求解方法.

一种基于遗传算法的Kmeans聚类算法

一种基于遗传算法的K-means聚类算法 一种基于遗传算法的K-means聚类算法 摘要:传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means 算法的局部性和对初始聚类中心的敏感性。关键词:遗传算法;K-means;聚类 聚类分析是一个无监督的学习过程,是指按照事物的某些属性将其聚集成类,使得簇间相似性尽量小,簇内相似性尽量大,实现对数据的分类[1]。聚类分析是数据挖掘 技术的重要组成部分,它既可以作为独立的数据挖掘工具来获取数据库中数据的分布情况,也可以作为其他数据挖掘算法的预处理步骤。聚类分析已成为数据挖掘主要的研究领域,目前已被广泛应用于模式识别、图像处理、数据分析和客户关系管理等领域中。K-means算法是聚类分析中一种基本的划分方法,因其算法简单、理论可靠、收敛速 度快、能有效处理较大数据而被广泛应用,但传统的K-means算法对初始聚类中心敏 感,容易受初始选定的聚类中心的影响而过早地收敛于局部最优解,因此亟需一种能克服上述缺点的全局优化算法。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化搜索算法。在进化过程中进行的遗传操作包括编码、选择、交叉、变异和适者生存选择。它以适应度函数为依据,通过对种群个体不断进行遗传操作实现种群个体一代代地优化并逐渐逼近最优解。鉴于遗传算法的全局优化性,本文针 对应用最为广泛的K-means方法的缺点,提出了一种基于遗传算法的K-means聚类算法GKA(Genetic K-means Algorithm),以克服传统K-means算法的局部性和对初始聚类中心的敏感性。用遗传算法求解聚类问题,首先要解决三个问题:(1)如何将聚类问题的解编码到个体中;(2)如何构造适应度函数来度量每个个体对聚 类问题的适应程度,即如果某个个体的编码代表良好的聚类结果,则其适应度就高;反之,其适应度就低。适应度函数类似于有机体进化过程中环境的作用,适应度高的个体 在一代又一代的繁殖过程中产生出较多的后代,而适应度低的个体则逐渐消亡;(3) 如何选择各个遗传操作以及如何确定各控制参数的取值。解决了这些问题就可以利

实验报告:遗传算法在解决旅行商问题的应用

实验报告:用遗传算法解决旅行商问题的简单实现 实验目的:编写程序实现用遗传算法解决旅行商问题,研究遗传算法的工作原理和收敛性质。 实验者: 问题描述:TSP是一个具有广泛应用背景和重要理论价值的组合优化难题,TSP问题可以简单的描述为:已知N个城市之间的相互距离.现有一个旅行商必须遍历这N个城市,并且每个城市只能访一次,最后必须返回出发城市。如何安排他对这些城市的访问次序,可使旅行路线的总长度最短? 本次实验的目标问题中国大陆31个大城市的公路旅行商问题,数据来源是《中国大城市公路里程表》(后附)。 需求分析:TSP已经被证明是一个NP—Hard问题,即找不到一种算法能在多项式时间内求得问题的最优解。利用遗传算法,在一定时间内求得近似最优解的可能性比较大。实验目标是: 1)设计用遗传算法解决TSP问题的程序; 2)求出该TSP问题的(近似)最短路程; 3)求得相应的城市遍历序列; 4)检查算法收敛性,求解决该问题的(近似)最优遗传参数。 算法分析: 1.算法基本流程

2.编码策略与初始群体设定 TSP的一般编码策略主要有二进制表示、次序表示、路径表示、矩阵表示和边表示等。而路径编码是最直观的方式,以城市序号作为遗传基因。在本实验中,我们用一个N维向量来表示一个个体,N是城市总数,元素表示城市遍历顺序,以最后一个到达的城市为结束。则群体用一个N * POP的矩阵表示,POP为群体中的人口(个体数)。初始群体在空间中自动生成。 3.适应度函数及结束条件 适应度函数采用题目的目标函数——路径的总路程(包括回到出发点)。适应度越低,个体越优秀。由于暂时无法先验估计收敛性和目标结果,所以以一个参数,最大遗传代数MAXGEN作为程序结束控制。 4.遗传算子设计 遗传算子的设计方法主要有两大类:自然算法和贪心算法。自然算法是以大自然的进化规律为依据,大体采用“优胜劣汰”的机制来进行遗传;贪心算法则是以迅速收敛为目标,对个体进行更严格的选择和遗传处理。

遗传算法解决TSP问题

遗传算法解决TSP问题 姓名: 学号: 专业:

问题描叙 TSP问题即路径最短路径问题,从任意起点出发(或者固定起点),依次经过所有城市,一个城市只能进入和出去一次,所有城市必须经过一次,经过终点再到起点,从中寻找距离最短的通路。 通过距离矩阵可以得到城市之间的相互距离,从距离矩阵中的到距离最短路径,解决TSP问题的算法很多,如模拟退火算法,禁忌搜索算法,遗传算法等等,每个算法都有自己的优缺点,遗传算法收敛性好,计算时间少,但是得到的是次优解,得不到最有解。 算法设计 遗传算法属于进化算法的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异。 数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法。算法中称遗传的生物体为个体,个体对环境的适应程度用适应值(fitness)表示。适应值取决于个体的染色体,在算法中染色体常用一串数字表示,数字串中的一位对应一个基因。一定数量的个体组成一个群体。对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代遗传算法计算程序的流程可以表示如下: 第一步准备工作 (1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。通常用二进制编码。 (2)选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm。 (3)确定适应值函数f(x)。f(x)应为正值。 第二步形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。 第三步对每一染色体(串)计算其适应值fi,同时计算群体的总适应值。 第四步选择

遗传算法的研究及应用

龙源期刊网 https://www.360docs.net/doc/7316390929.html, 遗传算法的研究及应用 作者:彭志勇邓世权 来源:《计算机光盘软件与应用》2013年第07期 摘要:遗传算法是一种典型的优化搜索算法,它的构造是使用人工的方式,并对生物遗传学和自然选择机理来进行模仿,是一种典型的数学仿真,而这种数学仿真是通过生物进化的过程来进行的,它是进化计算的一种非常重要的形式,它可以应用与生活中的很多领域。 关键词:遗传算法;函数优化;生产调度;自动控制 中图分类号:TP183文献标识码:A文章编号:1007-9599 (2013) 07-0000-02 遗传算法是一种典型的优化搜索算法,它的构造是使用人工的方式,并对生物遗传学和自然选择机理来进行模仿,是一种典型的数学仿真,而这种数学仿真是通过生物进化的过程来进行的,它是进化计算的一种非常重要的形式。与传统的数学模型进行比较,遗传算法有很多的不同的地方,因为它能够解决很多复杂的问题,而传统的数学模型却没办法做到。 1遗传算法的理论研究 1.1遗传算法的由来。美国密西根大学的霍兰德(Holland)将该算法应用于自然和人工系统的自适应行为的研究之中,并且在二十世纪七十年代中期,出版他的第一部著作《自然与人工系统中的适应》。随后,Holland与他的学生们将该算法进行了大力的推广,并把它应用到优化及机器学习等问题之中,而且正式定名为遗传算法。 1.2遗传算法的发展。遗传算法的兴起于20世纪70年代,而到了20世纪80年代的时 候,它正好属于一个发展中的过程,到了20世纪90年代时,它已经发展到了颠疯时刻。为一种实用性较强而又很有效率的优化技术,遗传算法的发展还是非常迅速,在国内外已经造成了非常大的影响力。 1.3遗传算法的基本思想。遗传算法是从一个种群(population)开始的,而这个种群代表问题可能潜在解集的,一个种群是由经过基因(gene)编码(coding)的一定数目的个体(individual)所组成。染色体是遗传物质的主要载体,它是由多个基因的集合,其内部表现是某种基因组合决定的。自从初始种群产生以后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度(fitness)大小来挑选(selection)个体,遗传算法是采纳了选择、交叉、变异、迁移、局域 与邻域等自然进化模型,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),从而产生出代表新的解集的种群。 遗传算法和传统搜索算法有很大的不同,它是通过一组随机产生的初始解开始搜索过程。染色体是类似于二进制串的一串符号,对于染色体的测量,我们通常是用适应度来它的好坏

遗传算法解决TSP问题的matlab程序

1.遗传算法解决TSP 问题(附matlab源程序) 2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市 3.只能访问一次,最后又必须返回出发城市。如何安排他对这些城市的访问次序,可使其 4.旅行路线的总长度最短? 5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij) 6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶 7.点且每个顶点只通过一次的具有最短距离的回路。 8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商 9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。 10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中 11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为: 12.min l=σd(t(i),t(i+1)) (i=1,…,n) 13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目 14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法 15.求其近似解。 16.遗传算法: 17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。定义整数pop-size作为染色体的个数 18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。 19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)). 20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中 21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被 22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al 23.pha*(1-alpha).^(i-1) 。[随机规划与模糊规划] 24.选择过程:选择过程是以旋转赌轮pop-size次为基础,每次旋转都为新的种群选择一个 25.染色体。赌轮是按每个染色体的适应度进行选择染色体的。 26.step1 、对每个染色体vi,计算累计概率qi,q0=0;qi=σeval(vj) j=1,…,i;i=1, 27.…pop-size. 28.step2、从区间(0,pop-size)中产生一个随机数r; 29.step3、若qi-1 step4、重复step2和step3共pop-size次,这样可以得到pop-size个复制的染色体。 30.grefenstette编码:由于常规的交叉运算和变异运算会使种群中产生一些无实际意义的 31.染色体,本文采用grefenstette编码《遗传算法原理及应用》可以避免这种情况的出现 32.。所谓的grefenstette编码就是用所选队员在未选(不含淘汰)队员中的位置,如: 33.8 15 2 16 10 7 4 3 11 14 6 12 9 5 18 13 17 1 34.对应: 35.8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1。 36.交叉过程:本文采用常规单点交叉。为确定交叉操作的父代,从到pop-size重复以下过 37.程:从[0,1]中产生一个随机数r,如果r 将所选的父代两两组队,随机产生一个位置进行交叉,如: 38.8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1 39. 6 12 3 5 6 8 5 6 3 1 8 5 6 3 3 2 1 1 40.交叉后为: 41.8 14 2 13 8 6 3 2 5 1 8 5 6 3 3 2 1 1 42. 6 12 3 5 6 8 5 6 3 7 3 4 3 2 4 2 2 1 43.变异过程:本文采用均匀多点变异。类似交叉操作中选择父代的过程,在r 选择多个染色体vi作为父代。对每一个 选择的父代,随机选择多个位置,使其在每位置

遗传算法理论及其研究进展

遗传算法理论及其应用研究进展 摘要:本文阐述了遗传算法的基本原理以及求解问题的一般过程,讨论了遗传算 法存在的不足和针对其不足采取的弥补措施,概述了遗传算法常见的应用领域。最后,讨论了遗传算法的未来研究方向。 关键词:遗传算法;算子;优化 Development on Genetic Algorithm Theory And Its Application Liu Jun (201320620181) (College of Mecha ni cal Engin eeri ng of Un iversity of South Chi na Hen gya ng Hunan 421001) Abstract: This paper stated the basic theory of Genetic Algorithm (GA) and the process of sol ving the problem, discussed the weak ness of gen etic algorithm and the impro ving measures about gen etic algorithm. Then summarized the com mon applicati on fields of gen etic algorithm. Fin ally, poin ted out the gen etic algorithm ' research direct ions in the future. Keywords: gen etic algorithm (GA); operator; optimizati on 遗传算法是一种借鉴生物界自然选择和进化机制发展起来的高度并行、随机、自适应搜索算法。它来源于达尔文的进化论、魏茨曼的物种选择学说和孟德尔的群体遗传学说。遗传算法是模拟自然界生物进化过程与机制求解极值问题的一类自组织、自适应人工智能技术,其基本思想是模拟自然界遗传机制和生物进化论而形成的一种过程搜索最优解的算法,具有坚实的生物学基础;它提供从智 能生成过程观点对生物智能的模拟,具有鲜明的认知学意义;它适合于无表达或有表达的任何类函数,具有可实现的并行计算行为;它能解决任何种类实际问题,具有广泛的应用价值。因此,遗传算法广泛应用于自动控制、计算科学、模式识别、工程设计、智能故障诊断、管理科学和社会科学等领域,适用于解决复杂的非线性和多维

用遗传算法解决旅行商问题

用遗传算法解决旅行商问题 姓名:王晓梅 学号:1301281 班级:系统工程6班

一、问题背景 有一个销售员,要到n 个城市推销商品,他要找出一个包含所有n 个城市的具有最短路程的环路。 现在假设有10个城市,他们之间的距离如下。 { 0, 107, 241, 190, 124, 80, 316, 76, 152, 157}, { 107, 0, 148, 137, 88, 127, 336, 183, 134, 95}, { 241, 148, 0, 374, 171, 259, 509, 317, 217, 232}, { 190, 137, 374, 0, 202, 234, 222, 192, 248, 42}, { 124, 88, 171, 202, 0, 61, 392, 202, 46, 160}, { 80, 127, 259, 234, 61, 0, 386, 141, 72, 167}, { 316, 336, 509, 222, 392, 386, 0, 233, 438, 254}, { 76, 183, 317, 192, 202, 141, 233, 0, 213, 188}, { 152, 134, 217, 248, 46, 72, 438, 213, 0, 206}, { 157, 95, 232, 42, 160, 167, 254, 188, 206, 0} 将这10个城市分别编码为0,1,2,3,4,5,6,7,8,9。要求走完这10个城市,目标是使走的距离最短。 二、建立模型 ),...,1,(1) ,...,1,(1. .)(min 11 11n j j i n i j i t s j i n j ij n i ij ij n i n j ij x x d x =≠==≠=≠∑∑∑∑==== 三、设计算法 1、种群初始化 (1)一条染色体的初始化 10个城市分别对应0~9这十个数,每个染色体代表一个解决方法,即0~9这十个数的一种排序方式,可随机产生一个数,用取余的方法得到一个0~9的数,依次得到与前面不重复的十个数,构成一个染色体。 (2)种群的初始化 这里假设种群有100个染色体,也就是循环100次染色体的初始化可得到一个种群。

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

遗传算法的应用研究_赵夫群

2016年第17期 科技创新科技创新与应用 遗传算法的应用研究 赵夫群 (咸阳师范学院,陕西咸阳712000) 1概述 遗传算法(Genetic Algorithms,GA)一词源于人们对自然进化系统所进行的计算机仿生模拟研究,是以达尔文的“进化论”和孟德尔的“遗传学原理”为基础的,是最早开发出来的模拟遗传系统的算法模型。遗传算法最早是由Fraser提出来的,后来Holland对其进行了推广,故认为遗传算法的奠基人是Holland。 随着遗传算法的不断完善和成熟,其应用范围也在不断扩大,应用领域非常广泛,主要包括工业控制、网络通讯、故障诊断、路径规划、最优控制等。近几年,出现了很多改进的遗传算法,改进方法主要包括:应用不同的交叉和变异算子;引入特殊算子;改进选择和复制方法等。但是,万变不离其宗,都是基于自然界生物进化,提出的这些改进方法。 2遗传算法的原理 遗传算法是从某一个初始种群开始,首先计算个体的适应度,然后通过选择、交叉、变异等基本操作,产生新一代的种群,重复这个过程,直到得到满足条件的种群或达到迭代次数后终止。通过这个过程,后代种群会更加适应环境,而末代种群中的最优个体,在经过解码之后,就可以作为问题的近似最优解了。 2.1遗传算法的四个组成部分 遗传算法主要由四个部分组成[1]:参数编码和初始群体、适应度函数、遗传操作和控制参数。编码方法中,最常用的是二进制编码,该方法操作简单、便于用模式定理分析。适应度函数是由目标函数变换而成的,主要用于评价个体适应环境的能力,是选择操作的依据。遗传操作主要包括了选择、交叉、变异等三种基本操作。控制参数主要有:串长Z,群体大小size,交叉概率Pc,变异概率Pm等。目前对遗传算法的研究主要集中在参数的调整中,很多文献建议的参数取值范围一般是:size取20~200之间,Pc取0.5~1.0之间,Pm取0~0.05之间。 2.2遗传算法的基本操作步骤 遗传算法的基本操作步骤为: (1)首先,对种群进行初始化;(2)对种群里的每个个体计算其适应度值;(3)根据(2)计算的适应度,按照规则,选择进入下一代的个体;(4)根据交叉概率Pc,进行交叉操作;(5)以Pm为概率,进行变异操作;(6)判断是否满足停止条件,若没有,则转第(2)步,否则进入(7);(7)得到适应度值最优的染色体,并将其作为问题的满意解或最优解输出。 3遗传算法的应用 遗传算法的应用领域非常广泛,下面主要就遗传算法在优化问题、生产调度、自动控制、机器学习、图像处理、人工生命和数据挖掘等方面的应用进行介绍。 3.1优化问题 优化问题包括函数优化和组合优化两种。很多情况下,组合优化的搜索空间受问题规模的制约,因此很难寻找满意解。但是,遗传算法对于组合优化中的NP完全问题非常有效。朱莹等[2]提出了一种结合启发式算法和遗传算法的混合遗传算法来解决杂货船装载的优化问题中。潘欣等[3]在化工多目标优化问题中应用了并行遗传算法,实验结果表明该方法效果良好。王大东等[4]将遗传算法应用到了清运车辆路径的优化问题求解中,而且仿真结果表明算法可行有效。 3.2生产调度 在复杂生产调度方面,遗传算法也发挥了很大的作用。韦勇福等[5]将遗传算法应用到了车间生产调度系统的开发中,并建立了最小化完工时间目标模型,成功开发了车间生产调度系统模块,并用实例和仿真验证了该方法的可行性。张美凤等[6]将遗传算法和模拟退火算法相结合,提出了解决车间调度问题的混合遗传算法,并给出了一种编码方法以及建立了相应的解码规则。 3.3自动控制 在自动控制领域中,遗传算法主要用于求解的大多也是与优化相关的问题。其应用主要分为为两类,即离线设计分析和在线自适应调节。GA可为传统的综合设计方法提供优化参数。 3.4机器学习 目前,遗传算法已经在机器学习领域得到了较为广泛的应用。邢晓敏等[7]提出了将遗传算子与Michigan方法和基于Pitt法的两个机器学习方法相结合的机器学习方法。蒋培等[8]提出了一种基于共同进化遗传算法的机器学习方法,该方法克服了学习系统过分依赖于问题的背景知识的缺陷,使得学习者逐步探索新的知识。 3.5图像处理 图像处理是一个重要的研究领域。在图像处理过程中产生的误差会影响图像的效果,因此我们要尽可能地减小误差。目前,遗传算法已经在图像增强、图像恢复、图像重建、图像分形压缩、图像分割、图像匹配等方面应用广泛,详见参考文献[9]。 4结束语 遗传算法作为一种模拟自然演化的学习过程,原理简单,应用广泛,已经在许多领域解决了很多问题。但是,它在数学基础方面相对不够完善,还有待进一步研究和探讨。目前,针对遗传算法的众多缺点,也相继出现了许多改进的算法,并取得了一定的成果。可以预期,未来伴随着生物技术和计算机技术的进一步发展,遗传算法会在操作技术等方面更加有效,其发展前景一片光明。 参考文献 [1]周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,1999,6. [2]朱莹,向先波,杨运桃.基于混合遗传算法的杂货船装载优化问题[J].中国船舰研究,2015:10(6):126-132. [3]潘欣,等.种群分布式并行遗传算法解化工多目标优化问题[J].化工进展,2015:34(5):1236-1240. [4]王大东,刘竞遥,王洪军.遗传算法求解清运车辆路径优化问题[J].吉林师范大学学报(自然科学版),2015(3):132-134. [5]韦勇福,曾盛绰.基于遗传算法的车间生产调度系统研究[J].装备制造技术,2014(11):205-207. [6]黄巍,张美凤.基于混合遗传算法的车间生产调度问题研究[J].计算机仿真,2009,26(10):307-310. [7]邢晓敏.基于遗传算法的机器学习方法赋值理论研究[J].软件导刊[J].2009,8(11):80-81. [8]蒋培.基于共同进化遗传算法的机器学习[J].湖南师范大学自然科学学报,2004,27(3):33-38. [9]田莹,苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,12(3):389-396. [10]周剑利,马壮,陈贵清.基于遗传算法的人工生命演示系统的研究与实现[J].制造业自动化,2009,31(9):38-40. [11]刘晓莉,戎海武.基于遗传算法与神经网络混合算法的数据挖掘技术综述[J].软件导刊,2013,12(12):129-130. 作者简介:赵夫群(1982,8-),女,汉族,籍贯:山东临沂,咸阳师范学院讲师,西北大学在读博士,工作单位:咸阳师范学院教育科学学院,研究方向:三维模型安全技术。 摘要:遗传算法是一种非常重要的搜索算法,特别是在解决优化问题上,效果非常好。文章首先介绍了遗传算法的四个组成部分,以及算法的基本操作步骤,接着探讨了遗传算法的几个主要应用领域,包括优化、生产调度、机器学习、图像处理、人工生命和数据挖掘等。目前遗传算法以及在很多方面的应用中取得了较大的成功,但是它在数学基础方面相对还不够完善,因而需要进一步研究和完善。 关键词:遗传算法;优化问题;数据挖掘 67 --

基于聚类的遗传算法解决旅行商问题

基于聚类的遗传算法解决旅行商问题 摘要:遗传算法(GA)是解决旅行商问题(TSPs)的有效方法,然而,传统的遗传算法(CGA)对大规模旅行商问题的求解效果较差。为了克服这个问题,本文提出了两种基于聚类的改进的遗传算法,以寻找TSPs的最佳结果。它的主要过程是聚类、组内演进和组间连接操作。聚类包括两种方法来将大规模TSP划分为若干子问题,一种方法是k-均值(k-means)聚类算法,另一种是近邻传播(AP)聚类算法。每个子问题对应于一个组。然后我们使用GA找出每个子问题的最短路径长度。最后,我们设计一个有效的连接方法将所有这些组合成为一个,以得到问题的结果。我们尝试在基准实例上运行一组实验,用来测试基于k-means 聚类(KGA)和基于AP聚类(APGA)遗传算法的性能。实验结果表明了它们有效性和高效的性能。将结果与其他聚类遗传算法进行比较,表明KGA和APGA具有更强的竞争力和有效性。 关键词:大规模旅行商问题;遗传算法;聚类;k-means聚类;AP聚类

一、引言 旅行商问题(TSP )是在所有城市搜索最短哈密尔顿路线的问题。TSP 是众所周知的NP-hard 问题。它有许多现实世界的应用[1,2],如规划调度、物流配送、计算机网络和VLSI 路由。近年来研究人员已经研究了不同类型的TSP [3-6]。 TSP 问题可以用如下方式描述:有N 座城市,给出城市之间的距离矩阵为 () d ij N N D ?=。TSP 问题的要求是从所有路径中找到最短路径。如果()i π被定义 为在步骤 ( 1,,)i i N = 中访问的城市,则路线可以被看作城市从1到N 的循环排列。路线的表达式如下: 1 ()(1)()(1)1 minimize N i i N i f d d πππππ-+== +∑ (1) 如果对于1i j N ≤≤、,距离满足d d ij ji = ,则这种情况是对称TSP 。 TSP 可以模型化为加权图。每个顶点代表一个城市,每个边缘连接两个城市。 边的权重表示两个相连的城市之间的距离。现在一个TSP 问题实际上是一个哈密尔顿回路,最优的TSP 路径是最短的哈密顿回路。 用于求解TSP 的算法可以概括为两类,精确算法和启发式算法。精确的算法确保最终解决方案是最优的。分支切割算法是这一类中的典型示例[7,8]。这些算法的关键问题是它们相当复杂,并且在计算机性能方面非常苛刻[9]。自引入模拟退火[10]和禁忌搜索[11]以来,启发式算法有可能突破局限,从而找到路径的局部最优解。在过去的二十年中,提出了大量的自然启发或群体智能方法,例如蚁群算法[12,13],粒子群算法[14]和遗传算法[15,16]来解决TSP 问题 。 遗传算法(GA )是一种通过模拟自然演化过程来搜索最优解解决大规模搜索问题(例如TSP 问题)的有效方法,GA 的目的是通过几个遗传操作,如选择、交叉和突变获得大规模搜索问题的近似解。与其他精确搜索算法相比,其优点主要是通过使用群体的信息而不是仅仅一个个体来实现搜索[5]。除了上述内容之外,GA 通过适应度函数的数值来评估个体的质量,减少当使用启发式算法时被浸入在局部最优解中的风险。 虽然GA 是解决TSPs 的有效方法,但是,随着旅行城市的数量增长,经典遗传算法效果较差。为了使TSP 问题变得更容易并且可以有效地解决大规模TSP ,

相关文档
最新文档