电力电容器安装工艺

电力电容器安装工艺
电力电容器安装工艺

关于大容量电力电容器极间交流耐压试验的意见

关于大容量电力电容器极间交流耐压试验的意见 摘要:根据绝缘结构分析和实践经验证明尽快执行用交流极间耐压代替直流耐压的新标准的必要性、紧迫性和可行性。 关键词:电力电容器交流极间耐压 Abstract:Based on the analysis of insulation structure and experience, it is proved that to use AC voltage withstand test is stead of DC voltage withstand test is n ecessary and possible. Key words:electric power capaciterACvoltage withstand between terminal s 0前言 长期以来交流电力电容器现场安装后的交接试验都以简单易行的极间直流耐压试验作为主绝缘性能是否良好的一种检验手段。近年来,纸膜绝缘或全膜绝缘电力电容器日益增多,单台电容器的容量越做越大并出现了大容量集合式电力电容器,而现场交接验收仍然袭用直流耐压试验,投运后电力电容器发生损坏的情况屡有所闻,且以集合型的为多。下面对有关问题提出讨论和意见。 1电力电容器极间交流耐压的必要性 ①直流面耐压试验不能反映设备实际工况下的电场分布,难以正确发现电容器的内部缺陷。 直流电压下电力电容器元件上的电压按电阻分布;而在交流电压下则是按介电常数分布的,它反映运行的实际情况。全膜或纸膜电容器的固体介质电阻率可高达1~100 EΩm,当某电容元件的绝缘薄膜绝缘不良时,其电阻率可大幅度下降至原电阻率的几分之一。直流耐压时,电阻率高的良好的电容元件上承受的

电力电容器安装施工工艺【最新版】

电力电容器安装施工工艺 1 范围本工艺标准适用于10kV以下、并联补偿电力电容器安装工程。 2 施工准备 2.1 设备及材料要求: 2.1.1 电容器应装有铭牌,注明制造厂名、额定容量、接线方式、电压等级等技术数据。备件应齐全,并有产品合格证及技术文件。 2.1.2 容量规格及型号必须符合设计要求。 2.1.3 电容器及其它电气元件外表无锈蚀及坏损现象。 2.1.4 套管芯线棒应无弯曲及滑扣现象,引出线端附件齐全,压接紧密。外壳无缺陷及渗油现象。 2.1.5 安装用的型钢应符合设计要求,并无明显锈蚀,螺栓均应采用镀锌螺栓。 2.1.6 材料均应符合设计要求,并有产品合格证。 2.2 主要机具: 2.2.1 安装机具:手推车、电钻、砂轮、电焊机、汽焊工具、压线钳子、扳手等。 2.2.2 测试工具:钢卷尺、钢板尺、塞尺、摇表、万用表、卡钳电流表。 2.3 作业条件 2.3.1 施工图纸及技术资料齐全。

2.3.2 土建工程基本施工完毕,地面、墙面全部完工,标高、尺寸、结构及预埋件均符合设计要求。 2.3.3 屋顶无漏水现象,门窗及玻璃安装完,门加锁,场地清扫干净,道路畅通。 3 操作工艺 3.1 工艺流程:设备开箱点件→基础制作安装或框架制作安装→电容器二次搬运→电容器安装→ 联线送电前的检查→送电运行验收 3.2 设备点件检查: 3.2.1 设备点件检查应由安装单位、建设单位和供货单位代表共同进行,并作好记录。 3.2.2 按照设备清单对设备及零备件逐个清点检查,应符合图纸要求、完好无损。 3.2.3 对500V以下电容器,用1000V摇表逐个进行绝缘摇测,3~10kV电容器用2500V绝缘摇表摇测,并做好记录。 3.3 基础制作安装或框架制作安装。 3.3.1 成套电容器框组安装前,应按设计要求做好型钢基础。 3.3.2 组装式电容器安装前应先按图纸要求做好框架,电容器可分层安装,一般不超过三层,层间不应加设隔板,电容器的构架应采用非可燃材料制成。构架间的水平距离不小于0.5m,下层电容器的底部距地不应小于0.3m,电容器的母线对上层构架的距离不应小于

太阳能板制作工艺

太阳能电池板(组件)生产工艺 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 流程: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库 组件高效和高寿命如何保证: 1、高转换效率、高质量的电池片; 2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 3、合理的封装工艺 4、员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 太阳电池组装工艺简介: 工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个感性的认识. 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连 3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。 4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。 5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA 时,层压循环时间约为25分钟。固化温度为150℃。 6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应

电 容 器 试 验

电容器试验 电力系统中常用的电容器有电力电容器、耦合电容器、断路器均压电容以及电容式电压互感器的电容分压器。电力电容器在系统中一般用作补偿功率因数和用于发电机的过电压保护。耦合电容器主要用于电力系统载波通信及高频保护。均压电容器并联在断路器断口,起均压及增加断路器断流容量的作用。其结构域耦合电容器基本一样。 耦合电容器与电力电容器的构造材料均为油浸纸绝缘电容器。电容元件由铝箔极板和电容器纸卷制而成,一台电容器由数个乃至数十个、数百个这样的电容元件串并联组成。电力电容器一般电容量较大(μF级),额定电压多为35kv及以下,其结构特点是将串并联电容元件密封在铁壳中,充以绝缘油,引线由瓷套管引出,供连接之用。耦合电容器一般电容量为3000~15000PF,额定电压在35kv及以上。其结构特点是将串并联电容元件密封在瓷套中,高压端接带阻波器的高压引线,另一端由底部的小套管引出,接结合滤波器。 耦合电容器和电容式电压互感器的电容分压器的试验项目及标准如表所示。 电力电容器的试验项目、周期和标准《规程》也做了规定,在交接试验时对电力电容器一般做以下项目试验: (1)测量两级对外壳的绝缘电阻; (2)测量极间电容值; (3)渗漏油检查; (4)交流耐压试验; (5)冲击合闸试验; (6)并联电阻测量。

测量绝缘电阻 测量绝缘电阻的目的主要是初步判断耦合电容器的两级及电力电容器两极对外壳之间的绝缘状况,测量时用2500v兆欧表。摇测耦合电容器小套管对地绝缘电阻时用1000V兆欧表。测量接线如图所示 测量结果应与历次测量值及经验值比较,进行分析判断,测量时应注意: ○1测量前后对电容器两级之间,两极与地之间,均应充分放电,尤其对电力电容器应直接从两个引出端上直接放电,而不应尽在连接板上对地放电。因为大多数电力电容器两极与连接板连接时均串有熔断器,若某电力电容器上熔断器熔断,在连接板上放电不一定能将该电力电容器上所储存电荷放完。 ○2应按大容量试品的绝缘电阻测量方法摇测电容器,在摇测过程中,应在未断开兆欧表以前,不停止摇动手柄,防止反充电损坏兆欧表。 ○3不允许长时间摇测电力电容器两极之间的绝缘电阻。因电力电容器电容量较大,储存电荷也多,长时间摇测时若操作不慎易造成人身及设备事故。有些单位在摇测电力电容器两极绝缘状况时,一般先将兆欧表轻摇几转,一般不超过5转,然后通过电容器两极放电的放电声及放电火花来判断绝缘状况。若有清脆的放电声及明显的放电火花,则认为电容器两极绝缘状况良好;若无放电声及火花,则认为电容器内部绝缘受潮老化或者两极与电容之间引线断开。用这种方法应注意,对两极放电的放电引线两端应接在短绝缘棒上,人身不要直接接触放电引线,放电引线应采用裸铜导线。

电力电容器的常见故障及其预防措施

电力电容器的常见故障及其预防措施 摘要:电力电容器分为串联电容器和并联电容器,它们都改善电力系统的电压质量和提高输电线路的输电能力,是电力系统的重要设备。本文通过分析电容器损坏的几种常见原因得出其相应的预防措施。 1、电容器损坏的原因 电容器损坏的原因可能有如下几种:电容器质量缺陷造成损坏;正常损坏;熔断器不正常开断产生重燃过电压造成损坏。 电容器质量缺陷造成其运行过程中损坏通常表现为损坏率增长较快或损坏率较高,甚至批量损坏。而损坏的现象基本一致,有特定的损坏特征,有一定的规律可循。造成电容器质量缺陷的原因,一般有不合理的设计、不恰当的材料、甚至误用以及制造过程不恰当(例如卷制、引线连接、装配、真空处理等关键工序出现问题)。 电容器损坏一般分三个不同的区段:早期损坏区,偶然损坏区,老化损坏区。上述三个区段的年损坏率符合浴盆曲线的特征。 电容器存在一个与固有缺陷有关的早期损坏区,主要由材料和制造过程的不可控因素造成的,年损坏率一般应小于1%,且随时间呈下降的趋势,早期损坏区的时间为0~2年左右。由于绝缘试验只是一种预防性试验,而且绝缘的耐受电压服从威布尔分布,不管将试验电压值提高到多少,都有刚刚能通过试验的产品,但盲目提高试验电,可能会对电容器造成损伤,也是不可取的,因此电容器早期损坏是不可避免的。 在以后的10~15年时间内,电容器的年损坏率较低且损坏方式不固定,其原因主要是电介质材料存在弱点,当材料受电场和热的作用时,缺陷在弱点处发展的缘故。由于绝缘经过早期运行的老炼处理,在这一区间,损坏率低且稳定,其年损坏率一般应小于0.5%,时间区间通常为15年左右。

在老化损坏区,指电容器在温度和电场作用下,介质发生老化,电容器的各项性能逐渐劣化,从而导致电容器损坏,其年损坏率一般会大于1%且随时间在不断增大,进入老化损坏区的时间应为15年以上。 由于在实际电容器中的介质是不均匀的,介质的老化程度也是不均匀的,而寿命取决于最薄弱的部位,所以电容器寿命在时间上存在分散性,因此研究电容器的寿命要采用统计的方法。绝大多数电容器的寿命以其运行到临近失效的时间来估算,最小寿命指电容器开始出现批量损坏的时间(在此以前只发生电容器的个别击穿)。通过对以往设备运行状况的研究,并综合考虑电容器经济上和技术上各因素之间的配合关系,在工频电网中用来提高功率因数的90%的电容器最佳寿命通常应为20年,即在额定运行条件下运行20年后至少有90%的产品不发生损坏。 由于电容器的特殊性(工作场强高、极板面积大,在电网使用的量大、面广,以及要综合考虑其经济技术等方面的因素),不发生损坏是不现实的,一定的损坏率也是允许的,这种损坏一般被认为是正常损坏,但这种正常损坏的年损坏率必须在可接受的合理范围内。如果损坏率超出正常水平,说明产品存在明显的质量缺陷或者运行条件不符合要求。 正常损坏通常表现为:对于无内熔丝的电容器,元件击穿、电流增大、外熔断器正常动作使故障电容器退出运行。更换新的熔断器和电容器后,装置继续投入运行。对于内熔丝的电容器,个别元件击穿、内熔丝熔断、电容器电容量稍微下降(通常情况下,电容量减少不会超过额定电容5%),完好元件继续运行。由于电容下降流过电容器电流会减少,因此,电容器单元正常损坏情况下,外熔断器不会动作。如果发生套管表面闪烙放电、引线间短路、对壳击穿放电或者内熔丝失效电容器单元发生多串短路等故障,内熔丝对此不能发挥作用,此时外熔断器正常动作,使故障电容器退出运行。 熔断器不正常开断产生重燃过电压造成电容器损坏 出现熔断器群爆的现象,说明外熔断器动作的过程中,其开断性能不良。由于外熔断器的灭弧结构比较简单,且较容易受气候、安装、运行等状况的影响,其开断电容器故障电流的性能很难得到保证。从绍兴试验站的介绍情况表明(详见《电力电容器》2004年第2期的文章《单台并联电容器保护用熔断器试验情况及使用问题的分析》)[1],熔断器的开断可靠性是不高的。在外熔断器动作的过程中,如果其开断性能不良,就不能尽快的切除故障电流,会出现重燃[3]。熔断器重燃就相当于在电容器的剩余电压较高的情况下再次合闸,产生重燃过电压(熔断器重燃就相当于在电容器的剩余电压较高的情况下再次合闸,必定会产生过电压,这种过电压通常称为重燃过电压),多次重燃过电压的幅值可达3倍甚至5倍、7

电力电容器安装

电力电容器安装 1范围 本工艺标准适用于10kV 以下、并联补偿电力电容器安装工程。 2施工准备 2.1设备及材料要求: 2.1.1电容器应装有铭牌,注明制造厂名、额定容量、接线方式、电压等级等技术数据。备件应齐全,并有产品合格证及技术文件。 2.1.2容量规格及型号必须符合设计要求。 2.1.3电容器及其它电气元件外表无锈蚀及坏损现象。 2.1.4套管芯线棒应无弯曲及滑扣现象,引出线端附件齐全,压接紧密。外壳无缺陷及渗油现象。 2.1.5安装用的型钢应符合设计要求,并无明显锈蚀,螺栓均应采用镀锌螺栓。 2.1.6材料均应符合设计要求,并有产品合格证。 2.2主要机具: 2.2.1安装机具:手推车、电钻、砂轮、电焊机、汽焊工具、压线 钳 子、扳手等。

2.2.2测试工具:钢卷尺、钢板尺、塞尺、摇表、万用表、卡钳电 流 2.3作业条件 2.3.1施工图纸及技术资料齐全。 2.3.2土建工程基本施工完毕,地面、墙面全部完工,标高、尺 寸、结构及预埋件均符合设计要求。 2.3.3屋顶无漏水现象,门窗及玻璃安装完,门加锁,场地清扫 干净,道路畅通。 3操作工艺 3.1工艺流程: 设备开箱点件T 基础制作安装或框架制作安装T 电容器二次搬运T 电容器安装T 联线送电前的检查T 送电运行验收 3.2设备点件检查: 3.2.1设备点件检查应由安装单位、建设单位和供货单位代表共同进行,并作好记录。

3.2.2按照设备清单对设备及零备件逐个清点检查,应符合图纸要求、完好无损。 3.2.3对500V 以下电容器,用1000V 摇表逐个进行绝缘摇测, 3 ? 10kV 电容器用2500V 绝缘摇表摇测,并做好记录。 3.3基础制作安装或框架制作安装。 3.3.1成套电容器框组安装前,应按设计要求做好型钢基础。 3.3.2组装式电容器安装前应先按图纸要求做好框架,电容器可 分层安装,一般不超过三层,层间不应加设隔板,电容器的构架应 采可燃材料制成。构架间的水平距离不小于0.5m ,下层电容器的底部距地不应小于0.3m ,电容器的母线对上层构架的距离不应小于20cm ,每台电容器之间的距离按说明书和设计要求安装,如无要求时不应小于50mm 。 3.3.3基础型钢及构架必须按要求刷漆和作好接地。 3.4电容器二次搬运。电容器搬运时应轻拿轻放,要注意保护瓷瓶和壳体不受任何机械损伤。 3.5电容器安装: 3.5.1电容器通常安装在专用电容器室内,不应安装在潮湿、多尘、高温、易燃、易爆及有腐蚀气体场所。 3.5. 2 电容器的额定电压应与电网电压相符。一般应采用角形联 接。 3.5. 3 电容器组应保持三相平衡,三相不平衡电流不 大于5% 。 3.5.电容器必须有放电环节。以保证停电后迅速将储存的电 能 放用非

高压并联电容使用说明

产品名称:高电压并联电容器出品单位:西安华超电力电容器有限公司 1 产品用途 本产品适用于频率50Hz电力系统,提高功率因数用的并联电容器。主要用于改善交流电力系统的功率因数,降低线路损耗,提高网路末端电压质量,增大变压器的有功输出。 2 特点 2.1该产品以粗化聚丙烯薄膜及苄基甲苯做介质,电子、电力电容器专用铝箔 为电极,采用无感卷制方式,为扁形元件,元件内部场强分布均匀,容量无衰减、比特性小、寿命长以及优良的电气性能等特点。 2.2采用高真空干燥浸渍技术除去电容器中全部残余水分和空气,填注苄基甲 苯浸渍剂(法国C101)。具有不易导磁、过流大、损耗小等特点,有良 好的耐低温特性。 2.3采用不锈钢外壳封装。两侧带有固定架,陶瓷绝缘子。以及科学合理的引出方式。 3 产品型号及含义

4 技术参数 4.1主要参数 4.1.1额定频率:50Hz 4.1.2端子间试验电压:交流试验电压2.15Un或直流试验电压4.3Un。 4.1.3损耗角正切值:小于0.0009。 4.1.4相数:单相。 4.1.5绝缘水平: 电容器的高压端子与地之间应能承受表1规定的耐受电压。工频耐受电压施加的时间为1min。 表1 绝缘水平(kV) 4.1.6放电电阻:电容器内部装有内放电电阻,从电网断开后,端子上的电压在10分钟内可降至75V以下。 4.1.7电容偏差:±5% 4.1.8电容器组三相最大电容量与最小电容量之比不大于1.01。 4.1.9执行标准:GB/11024-2001《标称电压1kV以上交流电力系统用并联电容器》 4.2过负载 4.2.1电容器可在表2的电压水平下运行。 表2

第5章 电力电容器局部放电测试方法

第5章电力电容器局部放电测试方法 5.1 电力电容器局部放电的产生和危害 电力电容器采用浸渍纸、浸渍薄膜以及浸渍纸和薄膜组合的绝缘结构。与其它绝缘结构相 比,电力电容器的重要特点是介质的工作场强特别高,由于局部放电使电容膨胀,早期损坏以及发生爆炸的现象早已引起制造部门和运行部门的重视。例如,在全膜电容器中,介质损耗大大降低,热击穿可能性下降了,更加突出了电击穿的可能性。因此,在设计制造全膜电容器时,首先应考虑的就是局部放电问题。 电容器是由几种介质串联的组合绝缘,在交流电压下,电压分配与各层的电容量成反比, 在直流电压下,电压分配与各层的绝缘电阻成正比,因此组合绝缘的耐电强度与各成分的耐电强度和搭配情况有关。局部放电包括绝缘结构内气隙中的放电和浸渍剂中的局部放电。局部放电可以发生在电容器极下面的绝缘层中,即均匀电场部分所包含的气隙中,也可以发生在极板边缘电场集中处。 绝缘中气泡发生放电后,除了产生热,破坏介质的热稳定性之外,还产生离子或电子对介 质的撞击破坏,以及形成臭氧和氮的氧化物,对介质产生化学腐蚀作用。 当气隙厚度增加、介质厚度增加或介质的介电常数增加时,均使局部放电场强下降。在理 想情况下 E可以很高,但如果浸渍剂干燥不够,去气不彻底或液体中含有杂质,则会使电场i 发生畸变,产生电场集中,使 E下降很多。因此,电容器必须采取严格的真空浸渍。 i 另外,产生放电的原因是过电压的作用使介质内部某处场强过高而产生局部放电。在交流 电压作用下,电容器绝缘中局部放电首先在场强较高的电极边缘产生。用显微镜观察油浸纸局部放电的破坏过程,当电场足够高时、首先在电极边缘上的纸纤维发生断裂,于是电极边缘下的纸发生突起并出现小洞,此后小洞不断扩大延伸到下一层纸,这时部分纤维断裂完全脱离了纸,扩散到油中或沉积在损伤部位,但纸没有炭化,最后多层纸均被损伤,在最薄弱点产生击穿,在击穿通道上生成整齐的炭化边缘。当遇到纸层中弱点时也会贯穿纸层,最后发生击穿。 对绝缘材料研究表明,在局部放电作用下寿命是随电场的增加而呈指数式下降的。大量的 事实证明,电力电容器内部局部放电是造成电容器膨胀和早期损坏的一个重要原因。 5.2 电力电容器局部放电测量参数及技术规定 5.2.1 评定电力电容器局部放电的参数 目前,在电力电容器局部放电试验中主要有放电量、起始放电电压以及放电熄灭电压等。 一、放电量q 有的产品(如耦合电容器)规定,在测量电压下放电量不超过某一数值为合格;在另一些 产品中(如移相、串联等电容器)只规定在测量电压下一定时间内放电量不变大就为合格。 放电量q随电压作用时间的变化趋势分析是判断试品质量的重要手段,如图5.1中曲线a 中放电量随电压作用时间变化而增加不多,而曲线b却增加很多,显然试品a的质量好于b。

电力电容器安装施工工艺标准

电力电容器安装施工工 艺标准 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

SGBZ-0616 电力电容器安装施工工艺标准依据标准: 《建筑工程施工质量验收统一标准》GB50300-2001 《建筑电气工程施工质量验收规范》GB50303-2002 1、范围 本工艺标准适用于16kV以下、并联补偿电力电容器安装工程。 2、施工准备 设备及材料要求: 电容器应装有铭牌,注明制造厂名、额定容量、接线方式、电压等级等技术数据。备件应齐全,并有产品合格证及技术文件。 容量规格及型号必须符合设计要求。 电容器及其它电气元件外表无锈蚀及坏损现象。 套管芯线棒应无弯曲及滑扣现象,引出线端附件齐全,压接紧密。外壳无缺陷及渗油现象。 安装用的型钢应符合设计要求,并无明显锈蚀,螺栓均应采用镀锌螺栓。 材料均应符合设计要求,并有产品合格证。 主要机具: 安装机具:手推车、电钻、砂轮、电焊机、汽焊工具、压线钳子、扳手等。 测试工具:钢卷尺、钢板尺、塞尺、摇表、万用表、卡钳电流表。 作业条件: 施工图纸及技术资料齐全。 土建工程基本施工完毕,地面、墙面全部完工,标高、尺寸、结构及预埋件均符合设计要求。 屋顶无漏水现象,门窗及玻璃安装完,门加锁,场地清扫干净,道路畅道。 3、操作工艺 工艺流程: 设备开箱点件→基础制作安装或框架制作安装→电容器二次搬运→电容器安装→联线送电前的检查→送电运行验 设备点件检查:

设备点件检查应由安装单位、建设单位和供货单位代表共同进行,并作好记录。 按照设备清单对设备及零备件逐个清点检查,应符合图纸要求、完好无损。 对500V以下电容器,用1000V摇表逐个进行绝缘摇测,3~10kV电容器用2500V绝缘摇表摇测,并做好记录。 基础制作安装或框架制作安装。 成套电容器框组安装前,应按设计要求做好型钢基础。 组装式电容器安装前应先按图纸要求做好框架,电容器可分层安装,一般不超过三层,层间不应加设隔板,电容器的构架应采用非可燃材料制成。构架间的水平距离不小于,下层电容器的底部距地不应小于,电容器的母线对上层构架的距离不应小于20cm,每台电容器之间的距离按说明书和设计要求安装,如无要求时不应小于50mm。 基础型钢及构架必须按要求刷漆和作好接地。 电容器二次搬运。电容器搬运时应轻拿轻放,要注意保护瓷瓶和壳体不受任何机械损伤。 电容器安装: 电容器通常安装在专用电容器室内,不应安装在潮湿、多尘、高温、易燃、易爆及有腐蚀气体场所。 电容器的额定电压应与电网压相符。一般应采用角形联接。 电容器组应保持三相平衡,三相不平衡电流不大于5%。 电容器必须有放电环节。以保证停电后迅速将储存的电能放掉。 电容器安装时铭牌应向通道一侧。 电容器的金属外壳必须有可靠接地。 联线: 电容器联接线应采用软导线,接线应对称一致,整齐美观,线端应加线鼻子,并压接牢固可靠。 电容器组控制导线的联接应符合盘柜配线,二次回路配线的要求。 送电前的检查:

并联电容器通用使用说明书西安西电电力电容器新样本

目录 内容 1、电容器名称和型号…………………………………………….…. 2、主要技术参数及主要技术性能指标…………………………….. 3、主要结构………………………………………………………….. 4、吊运、验收、保存及安装……………………………………….. 5、使用前的试验…………………………………………………….. 6、保护……………………………………………………………….. 7、接通和断开……………………………………………………….. 8、电容器的放电…………………………………………………….. 9、使用中的维护保养及故障排除………………………………… 10、电容器安装容量的确定…………………………………………..

本说明书适用于频率50Hz或60Hz、额定电压1kV以上交流电力系统用并联电容器, 该种电容器主要为工频交流电力系统提供无功功率, 用来提高电网功率因数, 降低损耗, 改进电压质量, 充分发挥发电、供电设备的效率。 西安西电电力电容器有限责任公司( 以下简称西容公司) 高压并联电容器产品性能优良, 质量可靠。电容器开发、设计、制造及试验严格执行IEC60871-1.1997国际电工委员会标准、 GB/T11024- 国家标准和DL/T840- 电力行业标准要求, 某些参数高于标准要求。 1电容器的名称和型号 1.1电容器的名称—高压并联电容器 1.2电容器型号表示方法 其中—以大写的汉语拼音字母表示 —以阿拉伯数字表示 1.2.1系列代号: B—并联电容器 1.2.2介质代号 FM—二芳基乙烷(S油)或苯基乙苯基乙烷( PEPE油) 浸全膜介质 AM—苄基甲苯( C101油) 浸全膜介质 1.2.3第一特征号: 表示额定电压, 以kV为单位。 1.2.4第二特征号: 表示额定容量, 以kvar为单位。 1.2.5第三特征号: 表示相数: 1为单相, 3为三相( 内部星接) , 1×3W为单相连接, 三相独立。

电力电容器常见故障问题及解决方法

电力电容器常见故障问题及解决方法 发表时间:2018-11-13T19:22:50.247Z 来源:《电力设备》2018年第20期作者:明永占 [导读] 摘要:电力系统运行过程中,电压的高低随着无功的变化而变化。 (国网山西省电力公司晋城供电公司山西晋城 048000) 摘要:电力系统运行过程中,电压的高低随着无功的变化而变化。为了控制无功,保证电压稳定,提高电能质量,需要在系统中通过串联或是并联的方式接入电容器。随着输变电技术的发展,电力电容已经成为了电力系统中的重要设备。本文就针对电力电容器常见故障进行分析,然后提出相应的预防措施。 关键词:电力电容器;故障;问题;解决方法 电力电容器是电力系统中重要的设备之一,在系统运行中,通过对电容器的投切来控制系统的无功功率,从而减少运行中损耗的电能,达到提高功率因数的目的。长期的运行经验表明,电容器在运行过程中会因本身缺陷或者系统工况运行等原因出现漏油、膨胀变形、甚至“群爆”等故障,若无查出电容器故障原因,对系统的安全运行将造成严重威胁。因此,对电容器运行故障进行分析处理显得至关重要。 1、电力电容器的常见故障现象 1.1电力电容器的渗油现象 电容器的渗漏油现象主要由电容器密封不严造成,具有很大的危害,要坚决避免渗漏油现象的出现。但在实际的运行中,由于加工工艺、结构设计和认为因素等多方面的影响,套管的根部法兰、螺栓和帽盖等焊口漏油的现象经常出现。这些问题,采取措施加强对厂家和运行维修人员的管理,对机器的运行进行严密的管理,都可以使漏油现象得到缓解。 1.2鼓肚现象 在所有电容器的故障中,鼓肚现象是比较常见的故障。发生鼓肚的电容器不能修复,只能拆下更换新电容器。因此,鼓肚造成的损失很大,而造成鼓肚的原因主要是产品的质量,保证产品的质量,加强对电容器质量的管理,是避免鼓肚的根本措施。 1.3熔丝熔断 电容器外观检测后没有明显的故障时,可以进行实验检测,看是否存在熔丝熔断的现象。一般情况下,外观没有明显的故障而电容器出现故障时,熔丝熔断就可能是其发生故障的原因。 1.4爆炸现象 爆炸发生的根本原因是极间游离放电造成的电容器极间击穿短路。爆炸时的能量来自电力系统和与相关电力电容器的放电电流,爆炸现象会对电容器本身及其周围的设施造成极大的破坏,是一种破坏力很大的严重故障现象,但由于科技的发展和人们的重视,爆炸现象在近年来很少出现,但我们在电容器的维修检查中,也要对引起爆炸的因素进行严格的控制,极力的避免爆炸现象的出现。 2、影响电力电容器运行的因素 2.1运行的电压 电容器的无功功率、发热和损耗正比于其运行电压的平方。长期过电压运行会使电容器温度过高,加速绝缘介质的老化而缩短电容器的使用寿命甚至损坏。在运行过程中,由于电压调整、负荷变化或者倒闸操作等一系列因素引起系统的波动产生的过电压,如果作用时间较短,对电容器的影响不大,但是不能超过允许过电压的时间限度。 2.2运行的温度 电容器的运行温度过高,会加速介质的老化影响其使用寿命,甚至会引起电容介质的击穿,造成电容器的损坏。可见,温度是保证电容器安全稳定运行和正常使用寿命的重要条件之一。因此,运行中必须始终确保电容器工作在允许温度内。 2.3运行的电流 电容器运行中的过电流,除了由过电压引起的工频过电流外,还有由电网高次谐波电压引起的过电流。所以,通常在电容器的设计中,允许长期运行的过电流倍数是1.3,即可超出额定电流的30%长期运行。其中10%是允许工频过电流,另外的20%则是给高次谐波电压引起的过电流所留的。 2.4绝缘不良故障影响 基本上有两种情况:(1)电容值过高。长期加热电压的寿命试验中,电容值的变化是很小的。电容值的突然增高,只能认为是部分电容元件击穿短路,因为电容器是由多段元件串联组成的,串联段数减少,电容才会增高。如果部分元件发生断线,电容值将会减少。(2)另一部分绝缘不良的电容器是介质损失角过大所致。长期运行的电容器介质损失角会略有增加,但是成倍增长却是不正常现象。由于只有发生局部放电和局部过热才会发生介质损失角过大的问题,因此我们对这些产品只能进行更换。 2.5附属设备的故障 电容器装置的附属设备有避雷器、中性点CT、中性点避雷器、放电线圈、接地刀闸、串联电抗器、熔断器等,其中熔断器及串联电抗器是相对重要的附属设备。由熔断器和串联电抗器故障所引起的电容器组停运比例较高,尤其是熔断器的发热、误动;其他各种附件设备引起停运的比例比较接近。 3、电力电容器故障的预防措施 3.1合理选择电容器的接线方式 电容器组的接线方式大体可分为单星形接线、双星形接线和角形接线等几种。电容器组尽可能地采用中性点不接地的双星形接线,并采用双星形零流平衡保护。接线方式选择得正确简单,保护配置得合理可靠可使电容器的故障大大减小。对比角形接线和星形接线,可知在故障情况下,角形接线的电容器组直接承受线电压,任何一相电容器被击穿时,将形成相间短路,故障电流很大,易造成电容器油箱爆炸;而在星形接线情况下,当电容器组的一相被击穿时,由于两非故障相的阻抗限制,故障电流不会太大,故电容器内部故障的保护采用星形接线且中性点不接地的方式,这种方式接线简单,灵敏度高,不受系统接地故障、电压波动和高次谐波的影响,是一种较为理想的保护方式。 3.2保证合适的运行温度 在电容器运行过程中,应随时监视和控制其环境温度,加强通风,改善电容器的散热条件。电容器安装运行环境温度范围为-50~+55℃。在特殊情况下,如果环境温度不能满足要求,可以用人工方法来降低空气温度或根据负荷情况短时退出电容器。

电力电容器安装注意事项

仅供参考[整理] 安全管理文书 电力电容器安装注意事项 日期:__________________ 单位:__________________ 第1 页共3 页

仅供参考[整理] 电力电容器安装注意事项 1安装电容器时,每台电容器的接线最好采用单独的软线与母线相连,不要采用硬母线连接,以防止装配应力造成电容器套管损坏,破坏密封而引起的漏油。 2电容器回路中的任何不良接触,均可能引起高频振荡电弧,使电容器的工作电场强度增大和发热而早期损坏。因此,安装时必须保持电气回路和接地部分的接触良好。 3较低电压等级的电容器经串联后运行于较高电压等级网络中时,其各台的外壳对地之间,应通过加装相当于运行电压等级的绝缘子等措施,使之可靠绝缘。 4电容器经星形连接后,用于高一级额定电压,且系中性点不接地时,电容器的外壳应对地绝缘。 5电容器安装之前,要分配一次电容量,使其相间平衡,偏差不超过总容量的5%。当装有继电保护装置时还应满足运行时平衡电流误差不超过继电保护动作电流的要求。 6对个别补偿电容器的接线应做到:对直接启动或经变阻器启动的感应电动机,其提高功率因数的电容可以直接与电动机的出线端子相连接,两者之间不要装设开关设备或熔断器;对采用星三角启动器启动的感应式电动机,最好采用三台单相电容器,每台电容器直接并联在每相绕组的两个端子上,使电容器的接线总是和绕组的接法相一致。 7对分组补偿低压电容器,应该连接在低压分组母线电源开关的外侧,以防止分组母线开关断开时产生的自激磁现象。 8集中补偿的低压电容器组,应专设开关并装在线路总开关的外侧,而不要装在低压母线上。 第 2 页共 3 页

10KV电容器资料

10kV无功补偿装置 技术规范书 2008年7月 1总则 1.1本技术协议适用于山西地电股份公司110kV变电站新建工程。它提出了对该无功补偿

设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2需方在本技术协议中提出的是最低限度的技术要求,并未对一切技术细节作出规定, 也未充分引述有关标准和规范的条文,供方应提供符合本协议和工业标准并经鉴定合格的优质产品。 1.3如果供方没有以书面形式对本技术协议的条文提出异议,则表示供方提供的设备完全 符合本技术协议的要求。如有异议,不管是多么微小,都应以书面形式在投标文件中提交需方。 2技术要求 2.1设备制造应满足下列规范和标准,但并不仅限于此: GB311《高压输变电设备的绝缘配合》 GB270《交流高压电器动热稳定试验方法》 GB763《交流高压电器在长期工作时的发热》 GB5582《高压电力设备外绝缘污秽等级》 GB273《变压器、高压电器和套管的接线端子》 高压并联电容器装置技术标准----国家电网公司 DL/T604—1996高压并联电容器装置订货技术条件》 GB3983 2 —89《交流高压并联电容器》 DL462-91《高压并联电容器用串联电抗器订货技术条件》以上标准均执行最新版本。2.2使用环境条件: 2.2.1 户外/户内:户外 最高温度:37 C 最低温度:-23.3 C 最大风速:23m/s 环境湿度:月平均相对湿度不大于90%日平均相对湿度不大于95% 污秽等级:川级 海拔高度:< 1000m 地震烈度:7度 2.系统运行条件 2.1系统标称电压10 kV 2.2最高运行电压11 kV

高压并联电容器装置说明书

高压并联电容器装置说明书 一.概述 1.1产品适用范围与用途 TBB型高压并联电容器装置(以下简称装置),主要用于3~ 110kV,频率为50Hz的三相交流电力系统中,用以提高功率因数,调整网络电压,降低线路损耗,改善供电质量,提高供配电设备的使用效率的容性无功补偿装置。 1.2型号、规格 及外形尺寸

1.2.1型号说明 装置的保护方式通常与电容器组的接线方式有关系,一般的有AK、AC、AQ和BC、BL之分。 1.2.2执行标准 GB 50227 标称电压1kV以上交流电力系统用并联电容器 GB 10229 电抗器 GB 311.1 高压输变电设备的绝缘配合 GB 50060 3~110kV高压配电装置设计规范 JB/T 5346 串联电抗器 JB/T 7111 高压并联电容器装置 DL/T 840 高压并联电容器使用技术条件 其它现行国家标准。 DL/T 604 高压并联电容器装置订货技术条件

1.2.3产品规格与外形尺寸 常用的产品规格与柜体外形尺寸如表1~5所示。装置的外形和基础的示意图分如图1、图2所示。 产品规格与外形尺寸 注:以下尺寸仅供参考,实际尺寸根据用户情况而定。以单台电容额定电压11/3kV 表格 1 卧式-阻尼电抗后置 单位:mm 序 号型号规格额定容量L1 L2 H 额定电 流 (A) 1 TBB10-600/100A K 600 1200 2800 2600 94.5 2 TBB10-900/100A K 900 1200 3100 2600 141.7 3 TBB10-1000/334A K 1000 1200 2100 2600 157.5 4 TBB10-2000/334A K 2000 1200 2800 2600 315 5 TBB10-2400/200A K 2400 1200 3400 2600 378

集合式电力电容器

BAMH集合式电力电容器 1 概述 1.1集合式并联电容器主要用于10KV、35KV工频电力系统进行无功补偿。以提高电网功率因数,减少线损,改善电压质量,充分发挥发电、供电设备的效率。由于该产品采用集合式结构,因而占地面积小,安装维护方便,可靠性高,运行费用省,特别是适用于大型变电站户外集中补偿及城市电网改造。 1.2该产品目前有BFMH、BAMH等2个系列。 1.2.1该产品型号的代表意义如下: 户外式 相数 额定容量(千乏) 额定电压(千伏) 集合式 介质代号(M表示全膜介质) 浸渍剂代号(F表示苯基二甲苯基乙烷, A表示苄基甲苯) 并联电容器 1.2.2示例:BAMH11/√3-8000-3W 表示:浸渍苄基甲苯,全膜介质的集合式并联电容器,额定电压为11/√3KV,额定容量为8000Kvar,三相,户外式。 1.3使用环境条件 1.3.1安装地点海拔高度不超过1000米。 注:用于海拔高于1000米地区的电容器,订货时请特别注明。 1.3.2使用环境温度

a.用苯基及二甲苯基乙烷浸渍的产品:-25℃~+45℃; b.用苄基甲苯浸渍的产品:-40℃~+45℃。 1.3.3抗震强度:水平方向0.25g,垂直方向0.125g。 1.3.4周围不含有对金属有严重腐蚀气体或蒸汽,无导电尘埃,无剧烈的机械振动。 2主要性能指标 2.1集合式并联电容器的主要参数和外形尺寸见附表1(10KV),图1-4;附表2(35),图9-12.电容器的成套布置方式灵活多样,故仅提供部分典型布置形式以供参考,见图5-8和图13-15.图中场地尺寸均有裕度,在保证安全距离的情况下,用户可以做适当的调整,也可根据自己的情况选择其他布置方式。 2.2稳态过电压 电容器的连接运行电压为1.00Un,且能在如表1所规定的稳定过电压下运行相应的时间。能为电容器所耐受而不受到显著损伤的过电压值取决于持续时间,总的次数和电容器的温度,表1中高于1.15Un过电压是以在电容器的寿命期间发生总共不超过200次为前提确定的。 表1 2.3操作过电压和过电流 用不重击穿和无弹跳的开关投切电容器时可能发生第一个峰值不大于2√2倍施加电压(方均根值),持续时间不大于1/2周波的过渡过电压,相应过渡过电流峰值可能达到100In,在这种情况下,允许每年操作1000次。 2.4稳态过电流

电力电容器安装注意事项通用版

管理制度编号:YTO-FS-PD908 电力电容器安装注意事项通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

电力电容器安装注意事项通用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 安装电容器时,每台电容器的接线最好采用单独的软线与母线相连,不要采用硬母线连接,以防止装配应力造成电容器套管损坏,破坏密封而引起的漏油。 2 电容器回路中的任何不良接触,均可能引起高频振荡电弧,使电容器的工作电场强度增大和发热而早期损坏。因此,安装时必须保持电气回路和接地部分的接触良好。 3 较低电压等级的电容器经串联后运行于较高电压等级网络中时,其各台的外壳对地之间,应通过加装相当于运行电压等级的绝缘子等措施,使之可靠绝缘。 4 电容器经星形连接后,用于高一级额定电压,且系中性点不接地时,电容器的外壳应对地绝缘。 5 电容器安装之前,要分配一次电容量,使其相间平衡,偏差不超过总容量的5%。当装有继电保护装置时还应满足运行时平衡电流误差不超过继电保护动作电流的要求。 6 对个别补偿电容器的接线应做到:对直接启动或经

太阳能电池板的生产工艺流程

太阳能电池板的生产工艺流程 太阳能电池板的生产工艺流程 封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的太阳能电池板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装质量非常重要。 (1)流程 电池检测——正面焊接——检验——背面串接——检验——敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试——外观检验——包装入库。 (2)组件高效和高寿命的保证措施高转换效率、高质量的电池片;高质量的 原材料,例如,高的交联度的 EVA高黏结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 合理的封装工艺,严谨的工作作风, 由于太阳电池属于高科技产品,生产过程中一些细节问题,如应该戴手套而不戴、应该均匀地涂刷试剂却潦草完事等都会严重地影响产品质量,所以除了制定合理的工艺外,员工的认真和严谨是非常重要的。 (3)太阳能电池组装工艺简介 ①电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效地将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的太阳能电池组件。如果把一片或者几片低功率的电池片装在太阳电池单体中,将会使整个组件的输出功率降低。因此,为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。 ②焊接:一般将6?12个太阳能电池串联起来形成太阳能电池串。传统 上,一般采用银扁线构成电池的接头,然后利用点焊或焊接(用红外灯,利用红外线的热效应)等方法连接起来。现在一般使用60%的Sn、38%的Pb、2%的Ag 电镀后的铜扁丝(厚度约为100?200卩m)。接头需要经过火烧、红外、热风、激光处理。由于铅有毒,因此现在越来越多地采用 96.5 %的铜和 3.5 %的银合金。但是

相关文档
最新文档