第七章 几何光学

第七章 几何光学
第七章 几何光学

第八章几何光学

一、填空题

1、单球面折射成像公式的适用条件单色光、近轴光线,一切凸、凹球面成像。

2、由于球面折射使远轴光线和近轴光线

不汇聚在同一点而产生的像差称为球面像差。

3、眼睛的分辨本领用_视力_表示。它被

4、单凸球面的曲率半径为50cm,其两

侧的折射率分别为n1=1.0,n2=1.5,

则单球面两焦距为f1=_100cm__、

f2=150cm,此单球面的焦度为_1D__。

5、折射率为1.5的平凸透镜在空气中的

焦距为50cm,则该凸透镜凸面的曲率半径为25cm。

6、折射率为1.5的薄透镜,在空气中的

焦距为f,则它在水中的焦距为4f。

7、共轴球面系统的三对基点是两焦点_、两主点_、两节点___。

8、薄透镜成像公式的高斯形式只适用于

薄透镜两侧介质均是空气的情况。

9、纤镜具有导光和导像的作用。

10、薄透镜的焦距与折射本领_有关,焦

距越短,它的汇聚或发散本领会越

强。

11、把焦距为20cm的凸透镜和焦距为

40cm的凹透镜贴合在一起,组合透

镜的焦度为2.5D。

12、一近视眼患者的远点为2m,则他看远处物体时应配戴-50度的眼镜。

13、检查视力时,受检者站在5m处看清

最上一行“E”字的视力为0.1,另

一人需站在4m处才能看清最上面一

行“E”字,则此人的视力为_0.08__。

14、一架显微镜的镜筒长20cm,物镜的

焦距为0.4cm,目镜的焦距为2.5cm,则该显微镜的放大率为500。

15、显微镜的u角是60°,若光源波长

为500nm,则该显微镜的干物镜和油浸物镜(油浸物镜的折射率为1.50)的数值孔径分别0.866_和_1.299_,能分辨的最小距离分别为352 nm 和

235 nm 。

16、显微镜的物镜上标有N·A值,其名称为数值孔径。

17、一远视眼患者的近点为100cm,要

使其看清眼前20cm处的物体,它应配戴400度的凸透镜。

二、单项选择题

(D)1、折射率为1.5的薄透镜空气中焦度为6D,将它浸入某种液体中,

焦度变为-3D,则该液体的折射率

为。

A. 2

B. 1.33

C. 3

D. 1.75

(B)2、一半径为R的圆球透明体,能将无穷远处射来的近轴平行光线

汇聚于第二折射面的顶点上,则此

透明体的折射率为。

A.1.5

B.2

C.1.52

D.1.33 (D)3、折射率为1.5的平凹透镜,凹面的曲率半径为100cm,则其焦距为。

A.500cm;

B.-500cm

C.200cm

D.-200cm。

(B)4、通常我们用视力表示眼睛的。

A.折光本领

B.分辨本领

C.自我调节能力

D.聚光能力。

(D)5、纤镜的导光、导像作用是利用光的什么原理?

A.反射

B.折射

C.透镜

D.全反射。(B)6、已知入射光波长为500nm,欲分辨0.4 m的细节,显微镜的数

值孔径最小应为。

A.0.85

B.0.76

C.1.25

D.1.50。(A)7、显微镜的光源波长为600nm,人眼可分辨的最小距离为0.1mm,

欲分辨0.25um的细节,经选用的显

微镜为:

A.80(N·A 1.5)×5

B.80(N·A 0.8)×5

C.40(N·A 1.0)×20

D.40(N·A 0.5)×80。

(C)8、某患者近点在眼前1.0m处,欲看清明视距离处的物体,应戴多少

度的眼镜。

A.-300度

B.-100度

C.300度

D.100度。(D)9、折射率为1.5的薄透镜在水中的焦度为4D,将它浸入另外一种

液体,焦度变为-1D,则该液体的折

射率为:

A.1.21 ;

B.2.33;

C.2.82;

D.1.54。(C)10、显微镜的物镜焦距为4mm,镜筒长16cm,放大率为333,则其目

镜焦距为多少mm。

A.20;

B.25;

C.30;

D.35。(C)11、折射率为1.5的平凸透镜,在水中的焦距为80cm,则该透镜凸

面的曲率半径为:

A.25cm;

B.15cm;

C.10cm;

D.20cm。(B)12、用镜头焦距为50mm的照相机给一身高170cm的人拍照,若人距

镜头3m,则胶片上的人高为:

A.40.2mm;

B.28.8mm;

C.20.8mm;

D.32.4m m。

(D)13、将一焦距为20cm的凹透镜和一焦距为40cm的凸透镜贴合后,

则组合透镜的焦度为。

A.5D;

B.-5D;

C.2.5D

D.-2.5D。(A)14、两个薄凸凹透镜的焦距均为10cm,它们间的距离为5cm,其光

轴重合。现在凸透镜前20cm处放

一物体,则像的位置为:

A.凹透镜前30cm处

B.凸透镜前30cm处;

C.凹透镜前35cm处;

D.凸透镜前35cm

处。

(A)15、某人眼睛的远点为62.5cm,

他应戴多少度的眼镜。

A.-160度;

B.-260度;

C.160度;

D.260度。

(B)16、显微镜的放大率为200,若目

镜的焦距为3.5cm,则物镜的线放

大率为。

A.50

B.28

C.42

D.32

三、应用题

1、在单球面折射成像中,物距、像距、

曲率半径的正负号各是怎样规定的?

在什么情况下是实物?什么情况下是

虚物?

(1)实物的物距u取为正值,虚物的物

距u取为负值。

(2)实像的像距v取为正值,虚像的像

距v取为负值。

(3)凸球面迎着入射光线时,曲率半径r 取正值;凹球面迎着入射光线时,r 取负值。

物与入射光线同侧为实,异侧为虚。 发散的入射光束的顶点为“实物”点; 会聚的入射光束的顶点为“虚物”点。

2、玻璃棒(n =1.5)长20cm ,两端是双凸球面,球面半径均为4cm 。若一束近轴平行光线沿玻璃棒轴线方向入射,求像的位置。若将此棒放入水中(n =4/3), 则像又在何处?

解:玻璃棒在空气中时

11111r n n n u n -=+υ 将数值代入得

4

15.15.111-=+∞υ cm 121=υ cm cm cm u 812202=-=

21212r n n n u n -=+υ 将数值代入得

45.11185.12--=+υ cm 162-=υ 玻璃棒在水中时

4345.15.1341-=+∞υ cm 361=υ

cm cm u 16)2036(2-=--=

45.13

434165.12--=+-υ cm 8.92≈υ

3、某种液体(n =1.3)和玻璃(n =1.5)的分界面为球面。在液体中有一物体放在球面的轴线上,离球面40cm 处,并在球面前30cm 处成一虚像。求球面的曲率半径,并指出哪一种介质处于球面的凸侧。 解:r n n n u n 1221-=+υ 将数值代入得

r

3.15.1305.1403.1-=- cm r 43.11-= 玻璃处于球面的凸侧。

4、在空气(n =1.0)中焦距为0.1m 的双凸薄透镜(其折射率n =1.5),若令其一面与水(n =1.33)相接,则此系统的焦度改变了多少?

解:空气中薄透镜的焦度为:

)11)(1(21r r n --=Φ

即 )(101)11)(15.1(21`1D f r r ==--=Φ

)(1.021m r r ==

一面与水相接时,此系统的焦度为)(7.61

.033.15.11.015.122112D r n n r n n =-+-=---=Φ

此系统的焦度改变了

D D 3.3)7.610(=-=?Φ

5、折射率为1.5的凹透镜,一面是平面,另一面是半径为0.20m 的凹面,将此透

镜水平放置,凹面一方充满水。求整个系统的焦距。

解:设玻璃透镜的折射率n 1=1.5,玻璃透镜在空气中的焦距为f 1,水的折射率342=n ,水形成的透镜的焦距为f 2,空气的折射率n 0=1.0,透镜凹面的曲率半径r=0.20m ,平面的曲率半径r 0=∞。

玻璃透镜在空气中的焦距:

11)]2

.011)(0.15.1[(--∞-=f m 4.0)2

.015.0(1-=?-=- 水形成的透镜在空气中的焦距:

12)]12.01)(0.134[(-∞

--=f m 6.0)2

.0131(1=?=- 整个系统的焦距:

m f f f f f 2.14

.06.06.04.02121-=-?-=+=

答:整个组合系统的焦距为-1.2m 。

6、两个焦距分别为f 1=4cm ,f 2=8cm 的薄透镜在水平方向先后放置,某物体放在焦距为4cm 的透镜外侧8cm 处,求其像最后成在何处。

(1)两透镜相距20cm ;(2)两透镜相距14cm ;(3)两透镜相距1cm f u 111=+υ 411811=+υ cm 81=υ

(1)两透镜相距20cm cm cm u 12)820(2=-= 8

111212=+υ )(242cm =υ (2)两透镜像距14cm cm cm u 6)814(2=-= 811612=+υ )(242cm -=υ

(3)两透镜相距1cm

cm cm u 7)18(2-=--=

811712=+-υ )(73.32cm =υ

第三章 几何光学的基本原理1

第三章 几何光学的基本原理 1 证明反射定律符合费马原理。 证明:设平面Ⅰ为两种介质的分界面,光线从A 点射向界面经反射B 点,在分界面上的入射点为任意的C 点;折射率分别为:n 1、n 2。 (1)过A 、B 两点做界面的垂直平面Ⅱ,两平面相交为直线X 轴,过C 点做X 轴的垂线,交X 轴于C '点,连接ACC '、BCC '得到两个直角三角形,其中:AC 、BC 为直角三角形的斜边,因三角形的斜边大于直角边,根据费马原理,光线由A 点经C 点传播到B 点时,光程应取最小值,所以在分界面上的入射点必为C '点,即证明了入射光线A C '和反射光线B C '共面,并与分界面垂直。 (2)设A 点的坐标为(x 1,y 1),B 点坐标为(x 2,y 2),C 点坐标为(x ,0),入射角为θ,反射角为θ',则光线由A 传播到B 的光程: ))()((2 2222 1211y x x y x x n +-+ +-=? 若使光程取极值,则上式的一阶导数为零,即: 0)()(22 2 2221 2 11=+--- +--=? y x x x x y x x x x dx d 从图中得到:21 2 11)(sin y x x x x +--= θ 22 2 22)(sin y x x x x +--= 'θ 也即:sin θ=sin θ',说明入射角等于反射角,命题得证。 2 根据费马原理可以导出在近轴条件下,从物点这出并会聚到象点所有光线的光程都相等。由此导出薄透镜的物象公式。 解: 3 眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板,平板的厚度d

为30cm ,求PQ 的象P 'Q '与物体之间的距离d 2。 解:方法一 P 'Q '是经过两个平面折射所形成的象 (1)PQ 经玻璃板前表面折射成象: 设PQ 到前表面的距离为s 1,n=1、n '=1.5 由平面折射成象的公式:11s n n s '= ' 得到:112 3s s =' (2)PQ 经玻璃板前表面折射成象: 从图中得到:s 2=s 1+d 、n=1.5、n '=1 根据:22s n n s ' = ' 解出最后形成的象P 'Q '到玻璃板后表面的距离:d s s 3 212+=' 物PQ 到后表面的距离:s=s 1+d 物PQ 与象P 'Q '之间的距离d 2:d 2 = s 2'-s =(3 2 1- )d=10cm 方法二:参考书中例题的步骤,应用折射定律解之。 方法三:直接应用书中例题的结论:d 2 =d (1-1/n )即得。 4 玻璃棱镜的折射角A 为600,对某一波长的光其折射率为1.6,计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角。 解:(1)根据公式:2 sin 2 sin 0A A n += θ 代入数据:A=600,n=1.6 解出最小偏向角:θ0= 46016' (2)因:A i -=102θ 则入射角:53352/)(001'=+=A i θ (3)若能使光线从A 角两侧透过棱镜,则出射角i 1'=900 有:n sini 2'= 1 sin900 = 1 解出:i 2'=38.680 从图中得到:i 2 + i 2'= A 得到:i 2 =21.320

《光学教程》(姚启钧)课后习题1-5章解答

《光学教程》(姚启钧)1-5章习题解答 第一章 光的干涉 1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。 解:1500nm λ= 7011180 500100.4090.022 r y cm d λ-?= =??= 改用2700nm λ= 7022180700100.5730.022 r y cm d λ-?= =??= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ?=?-?= 2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。 解:⑴ 7050640100.080.04 r y cm d λ-?= =??= ⑵由光程差公式 210 sin y r r d d r δθ=-== 0224 y d r π π π?δλ λ ?= = ?= ⑶中央点强度:2 04I A = P 点光强为:2 21cos 4I A π?? =+ ?? ?

012 (1)0.8542I I =+= 3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。已知光波长为7610m -? 解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()76455 61061061010.5 d m cm n λ---==??=?=?- 4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。 解: 7050500100.1250.02 r y cm d λ-?= =??= 由干涉条纹可见度定义: 12min 2min 1221Max Max A A I I V I I A A ?? ? -??= =+??+ ??? 由题意,设22 122A A = ,即 1 2 A A = 0.943 V == 5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角 θ。 解:700,20,180,1nm r cm L cm y mm λ===?=

第一章 几何光学基本定律与成像概念习题

一:选择题(可以有多选) 1、下面关于几何光学的几本定律陈述正确的是(BCD ) A、光是沿直线传播方向传播的,“小孔成像”即是运用这一定律的很好例子。 B、不同光源发出的光在空间某点相遇时,彼此不影响各光束独立传播。 C、在反射定律中,反射光线和入射光线位于法线两侧,且反射角与入射角绝对值相等。D:光的全反射中,光线是从光密介质向光疏介质入射。 2、下列关于单个折射面成像,说法错误的是(D ) A、垂轴放大率仅取决于共轴面的位置。 B、折射球面的轴向放大率恒为正。 C、角放大率表示折射球面将光束变宽或是变细的能力。 D、α、γ、β三者之间的关系为γβ=α。 3、一个物体经单个折射球面成像时,其垂轴放大率β>1,且已知n0。 C、像高大于物高。 D、该折射球面能把入射光束变宽。 4.、一个物体经单个反射球面成像时,其垂轴放大率β>0,则(BD ) A、物象位于系统的同侧。 B、物象虚实性质相反。 C、角放大率γ>0。 D、轴向放大率α<0。 二、填空题 1、与平面波对应的光束称为平行光束;与球面波对应的光速称为同心光束;与任意曲面波对应的光束称为像散光束。 2、光学系统成完善像应满足的三个等价条件分别是○1入射波面是球面波时,出射波面也是球面波;。;○2入射光是同心光束时,出射光也是同心光束○3物点及其像点之间任意两条光路的光程相等 3、在子午面内,光线的位置由物方截距,物方孔径角确定。 4、一束平行细光束入射到一半径r=30mm、折射率为1.5的玻璃球上,经左侧球面折射后形成像A’1,则像方截距为30 mm,成像是(填“实像”或“虚像”);经右侧球面再次成像A’2,则像方截距为90 mm,成像是(填“实像”或“虚像”)。 三、简答题 1发生全反射的条件? 1、○1光线从光密介质向光疏介质射入○2入射角大于临界角

第三章 几何光学

第三章、几何光学的基本原理 一、选择题 1.如图,直角三角形ABC 为一透明介质制成的三棱镜的截面,且30=∠A 0,在整个AC 面上有一束垂直于AC 的平行光线射入,已知这种介质的折射率n>2,则( ) A .可能有光线垂直AB 面射出 B .一定有光线垂直B C 面射出 C .一定有光线垂直AC 面射出 D .从AB 面和BC 面出射的光线能会聚一点 B 2.如图所示,AB 为一块透明的光学材料左侧的端面。建立直角坐标系如图,设该光学材料的折射率沿y 轴正方向均匀减小。现有一束单色光a 从原点O 以某一入射角θ由空气射入该材料内部,则该光线在该材料内部可能的光路是下图中的哪一个 ( ) A. B. C. D. 3.如图,横截面为等腰三角形的两个玻璃三棱镜,它们的顶角分别为α、β,且α < β。a 、b 两细束单色光分别以垂直于三棱镜的一个腰的方向射入,从另一个腰射出,射出的光线与入射光线的偏折角均为θ。则ab 两种单色光的频率υ1、υ2间的关系是( ) A 、 υ1 = υ2 B 、 υ1 > υ2 C 、 υ1 < υ2 D 、 无法确定 D 、 4、发出白光的细线光源ab ,长度为L ,竖直放置,上端a 恰好在水面以下,如图所示,现考虑线光源ab 发出的靠近水面法线(图中虚线)的细光束经水面折射后所成的像,由于水对光有色散作用,若以1L 表示红光成的像长度,2L 表示蓝光成的像的长度,则( ) A 、L L L <<21 B 、L L L >>21 C 、L L L >>12 D 、L L L <<12 5、如图所示,真空中有一个半径为R ,质量分布均匀的玻璃球,频率为0υ的细激光束在真 空中沿直线BC 传播,并于玻璃球表面C 点经折射进入玻璃球,且在玻璃球表面D 点又经折射进入真空中,0 120=∠COD ,已知玻璃对该激光的折射率为3,则下列说法中正确的是( ) A 、 一个光子在穿过玻璃球的过程中能量逐渐变小 B 、 此激光束在玻璃球中穿越的时间c R t 3= (c 为真空中光速)

第五章光度学

[考试要求] 要求考生掌握光度学的基本术语及其单位、光传播过程中的光学量的变化规律及成像系统的像面照度。 [考试内容] 所有与光度学相关的定义、公式和单位,成像系统中光照度的分析和计算,余弦辐射体,光经界面反射和折射后的亮度。 [作业]1 第五章 光度学 光能是系统设计中另一个非常重要的问题,由于任何一个接收器件,所能接收的光能都有一个最低阈值。以人眼为例,它所能感受到的最低照度为(勒克斯),相当于一支蜡在之外产生的光照度。 lx 910?km 30§5-1 光度学中的基本量及单位 一、辐射量 1、辐射能():指以电磁辐射形式发射、传输或接收的能量。单位:J (焦尔) e Q 2、 辐通量(e φ):单位时间内发射、传输、接收的辐射能叫辐通量。单位:W (瓦) 对某一辐射体而言,它发出的辐射能具有一定的光谱分布(即由各种不同的波长组成),而每种不同的波长其辐通量也不同。 总的辐通量=各个组成波长的辐通量总和。 若设在极窄的波段范围λd 内,所辐射出的辐通量为e d φ,则有: λλφφd d e )(= 式中)(λφ是辐通量随波长变化的函数; 则在整个波段内所辐射的总的能量为: λλφφd e ∫=)( 二、光学量 对于光辐射中的物理量是比较多的,其意义与辐射量的意义也基本相同,故为了区别起见,我们用符号进行区别,它们的主符号是相同的,但是下角标有区别:辐射量――下角标e ;光学量――下角标v 。 1、 接收器的光谱响应 物体经过系统进行成像,最终的像都是由接收器类进行接收的,接收器的不同,对光谱响应的范围也各不相同。 对于目视光学系统而言,人眼对不同的波长响应程度也相差非常大,在这里引入了光谱光视效率的概念加以理解。

光电检测与应用第五章答案

直接检测系统的基本原理是什么为什么说直接检测又称为包络检测 )(t d A A i 2221 s αα+=所谓光电直接检测是将待测光信号直接入射到光检测器光敏面上,光检测器响应于光辐射强度(幅度)而输出相应的电流或电压信号。 式中:第一项为直流项。若光检测器输出端有隔直流电容,则输出光电流只包含第二项,就是包络检测的意思。 对直接检测系统来说,如果提高输入信噪比 答:对于光电检测系统来说,其噪声主要有三类:(1)光子噪声包括:A.信号辐射产生的噪声;B.背景辐射产生的噪声。(2)探测器噪声包括:热噪声;散粒噪声;产生—复合噪声;1/f 噪声;温度噪声。(3)信号放大及处理电路噪声在实际的光电探测器中,由于光电转换机理不同,各种噪声的作用大小亦各不相同。若综合上述各种噪声源,其功率谱分布可用下图表示。由图可见:在频率很低时,1/f 噪声起主导作用;当频率达到中间范围频率时,产生——复合噪声比较显着;当频率较高,甚至于截至频率时,只有白噪声占主导地位,其它噪声影响很小。很明显,探测器应当工作在1/f 噪声小、产生-复合噪声为主要噪声的频段上。因此,对于直接探测系统,提高输入信噪比的措施有:(1)利用信号调制及选频技术可抑制噪声的引入白噪声的大小与电路的频带宽度成正比,因此放大器应采用带宽尽可能窄的选频放大器或锁相放大器。(2)将器件制冷,减小热发射,降低产生-复合噪声。采用半导体制冷、杜瓦瓶液态气体制冷或专用制冷机制冷。(3)采用最佳条件下的偏置电路,使信噪比(S/N )最大。 什么是直接检测系统的量子极限说明其物理意义。 答:当入射信号光波所引起的散粒噪声为主要噪声, 其他噪声可忽略时,此时信噪比为:()f h 2P p s SNR ?=νη 该式为直接检测理论上的极限信噪比。也称为直接检测系统的量子极限。量子极限检测为检测的理想状态 试根据信噪比分析具有内增益光电检测器的直接检测系统为什么存在一个最佳倍增系数。 答:当光检测器存在内增益(如:光电倍增管)时当2M 很大时,热噪声可忽略。若光电倍增管加致冷、屏蔽等措施以减小暗电流和背景噪声,则可达到散粒噪声极限。在直接检测中,光电倍增管、雪崩管的检测能力高于光电导器件,采用有内增益的检测器是直接检测系统可能趋近检测极限的唯一途径。

光电检测与应用第五章答案

直接检测系统的基本原理是什么?为什么说直接检测又称为包络检测? )(t d A A i 2221 s αα+=所谓光电直接检测是将待测光信号直接入射到光检测器光敏面上,光检测器响应于光辐射强度(幅度)而输出相应的电流或电压信号。 式中:第一项为直流项。若光检测器输出端有隔直流电容,则输出光电流只包含第二项,就是包络检测的意思。 对直接检测系统来说,如果提高输入信噪比? 答:对于光电检测系统来说,其噪声主要有三类:(1)光子噪声包括:A.信号辐射产生的噪声;B.背景辐射产生的噪声。(2)探测器噪声包括:热噪声;散粒噪声;产生—复合噪声;1/f 噪声;温度噪声。(3)信号放大及处理电路噪声在实际的光电探测器中,由于光电转换机理不同,各种噪声的作用大小亦各不相同。若综合上述各种噪声源,其功率谱分布可用下图表示。由图可见:在频率很低时,1/f 噪声起主导作用;当频率达到中间范围频率时,产生——复合噪声比较显著;当频率较高,甚至于截至频率时,只有白噪声占主导地位,其它噪声影响很小。很明显,探测器应当工作在1/f 噪声小、产生-复合噪声为主要噪声的频段上。因此,对于直接探测系统,提高输入信噪比的措施有:(1)利用信号调制及选频技术可抑制噪声的引入白噪声的大小与电路的频带宽度成正比,因此放大器应采用带宽尽可能窄的选频放大器或锁相放大器。(2)将器件制冷,减小热发射,降低产生-复合噪声。采用半导体制冷、杜瓦瓶液态气体制冷或专用制冷机制冷。(3)采用最佳条件下的偏置电路,使信噪比(S/N )最大。 什么是直接检测系统的量子极限?说明其物理意义。 答:当入射信号光波所引起的散粒噪声为主要噪声, 其他噪声可忽略时,此时信噪比为:()f h 2P p s SNR ?=νη 该式为直接检测理论上的极限信噪比。也称为直接检测系统的量子极限。量子极限检测为检测的理想状态 试根据信噪比分析具有内增益光电检测器的直接检测系统为什么存在一个最佳倍增系数。 答:当光检测器存在内增益(如:光电倍增管)时当2M 很大时,热噪声可忽略。若光电倍增管加致冷、屏蔽等措施以减小暗电流和背景噪声,则可达到散粒噪声极限。在直接检测中,光电倍增管、雪崩管的检测能力高于光电导器件,采用有内增益的检测器是直接检测系统可能趋近检测极限的唯一途径。

第三章 几何光学

第三章 几何光学 1.证明反射定律符合费马原理 证明:设界面两边分布着两种均匀介质,折射率为1n 和2n (如图所示)。光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。 (1)反正法:如果反射点为'C ,位于ox 轴与A 和B 点所著称的平面之外,那么在ox 轴线上找到它的垂足点"C 点,.由于'''''',AC AC BC BC >>,故光线'AC B 所对应的光程总是大于光线''AC B 所对应的光程而非极小值,这就违背了费马原理。故入射面和反射面在同一平面内。 (2)在图中建立坐xoy 标系,则指定点A,B 的坐标分别为11(,)x y 和22(,)x y ,反射点 C 的坐标为(,0)x 所以ACB 光线所对应的光程为: 1n ?= 根据费马原理,它应取极小值,所以有 112(sin sin )0d n i i dx ?==-= 即: 12i i = 2.根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光

线的光程都相等。 证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个明亮的实象点'S 。设光线SC 为电光源S 发出的任意一条光线,其中球面AC 是由点光源S 所发出光波的一个波面,而球面DB 是会聚于象点'S 的球面波的一个波面,所以有关系式SC SA =,''S D S B =.因为光程 ''' ' SCEFDS SABS SC CE nEF FD DS SA nAB BS ??=++++???=++?? 根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程相等。 3.睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板,平板的厚度d 为30cm 。求物体PQ 的像''P Q 与物体PQ 之间的距离2d 为多少? 解:根据例题3.1的结果 '1(1)PP h n =- '1 30(1)101.5 PP cm =?- = 题2图 ' 1.5n =

第一章几何光学的基本原理试题库

一、 选择题 思考题作业3:选择:光由光疏介质进 )波长变长 (D )频率变大 思考题作业4:选择:光学系统的虚物定入光密介质时,有 (A )光速变大 (B )波长变短 (C 义为 (A )发散的入射同心光束的顶点 (B )会聚的入射同心光束的顶点 (C )发散的出射同心光束的顶点 (D )会聚的出射同心光束的顶点。 二、 作图题: 1.MN 为薄透镜的主轴, AB 和BC 是一对共扼光线.用作图的方法找出透镜的两个主焦点F 、F '的 位置,图示出透镜的性质。 三、 计算题: 1、某玻璃棱镜的折射棱角A 为45o,对某一波长的光,其折射率n=1.6,请计算:(1)此时的最小偏向角;(2)此时的入射角;(3)使光线从A 角两侧透过棱镜的最小入射角。 解:(1)∵2 sin 2 sin α δαm n += , ∴m δ=2arcsin αα-)2sin (n =2arcsin 45)2 45sin 6.1(-?= 4576.372-?=30.5o (2))(21min 1αδ+=i =)455.30(2 1 +=37.75o (3) 1 1sin sin i i n '==22 sin sin i i ' ∴2sin i =n i 2sin '=6 .190sin =6.11,6.11 arcsin 2=i =38.68o=38o41′ 而21 i i -='α=45o-38o41′=6o19′ )sin arcsin(11i n i '==)916sin 6.1arcsin('? ≈10.3o 2、光从水中射入到不与空气的界面,取水的折射率1n =4/3,空气的折射率2n =1,求此时的临界角。 解:c i =arcsin 1 2n n =arcsin 3/41=arcsin 43 ≈49o (光从玻璃棱镜与空气的界面上,玻璃棱镜的折射率为 1n =1.5,空气的折射率2 n =1,则 c i =arcsin 1 2n n =arcsin 13/2=arcsin 2 3≈42o) 3、水面下20cm 处有一点光源,试求出能折射出水面的光束的最大圆半径。 解:由题意可知,当水面下点光源S 射向水面的光线入射角i ≥c i 时,光线不能折射出水面,否则就可以折射出水面。 则折射出水面的光束最大圆半径为AB=AS ×tg c i n 空

第三章__几何光学的基本原理复习课程

第三章__几何光学的 基本原理

第三章几何光学的基本原理 3.眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚度d为30cm。求物体PQ的像Q P' '与物体PQ之间的距离2d为多少? 已知:1 = n,5 1. = 'n,cm d30 = 求:? = 2 d 解: 由图可知 1 2i QN Q Q d sin = ' =, 设x QN=,即光线横向的偏移,则 1 2i x d sin =(1) 在入射点A处,有 2 1 i n i n sin sin' = 在出射点B处,有 1 2 i n i n' = 'sin sin,因此可得1 1 i i' = 即出射线与入射线平行,但横向偏移了x。 由图中几何关系可得:()()2 1 2 2 1 i i i d i i AB x- = - =sin cos sin 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 又因为 1i 和2i 很小,所以 12≈i cos , ()2121i i i i -≈-sin 而 21i n ni '= ,所以 1121 i n i n n i '='= 则 ()??? ??'-=-=11211i n i d i i d x ,即 ??? ??'-'=n n di x 11 (2) (2)式代入(1)式得 cm d d n n i i d d 103 1 511511112==??? ??-=??? ??'-'≈ .. 6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图。 已知:cm y 5=, cm s 12-=,cm f 10-=' 求:?='s ?='y 作光路图 解:根据 f s s '='+1 11 得601 121101111-=+-=-'='s f s , cm s 60-='∴ 又据 n n s s y y '?'=' ,而 n n -=' 所以得 cm y s s y 25512 60-=?---='-=' 光路图(cm r cm r f 20102 -=∴-== ',Θ )C 为圆心。 7. 一个5cm 高的物体放在球面镜前10cm 处,成1cm 高的虚像。求:(1)此镜的曲率半径;(2)此镜是凸面镜还是凹面镜?

几何光学-第五章-光源

第五章光源 §1 概述 任何把其它形式能量转化为光能并发射出来的物体叫做光源,可分为被动和主动发光的光源,因此,光源这个题目太大,如图5-1示,现只介绍在光学实验室里经常使用的光源,例如,热辐射类型和非热辐射类型。 图5-1 光源的分类 热辐射类型光源就是将热能转化为光能的器件,从热辐射的量子理论,温度处于绝对零度的物体都可能辐射,即为温度辐射,已知黑体是完全的温度辐射体,其它的辐射体发射的能量在同一温度时少于黑体,理论和实验研究得出不同绝对温度下黑体的辐射亮度与光波长的关系曲线如图5-2示,绝对温度决定辐射的最大波长值,它们成反比关系,叫做维恩定律:λm=A/T,其中A是常数(A=2.896×10-3m.K),可见随着温度增高光波长的峰值移向短波方向。非热辐射类型可能是电致发光,光致发光,化学发光或生物发光等等光源,使用者可视具体需求和可能选用某种光源。我们只介绍常用的光源,如钨灯,钠灯,汞灯和激光器等。图5-3和5-4分别给出卤素灯和氙气灯的发射谱线,它们来自产品广告资料。

图5-2黑体辐射 图5-3 卤素灯光谱 图5-4 氙灯光谱

§2 连续光谱灯 根据上述热辐射理论,光波长与温度满足一定的规律。加热铁、碳或钨等物体,可以发射出连续光谱而成为光源。常见的为钨制成的灯,因为钨具有蒸发速率较小、发光效率较高,灯的寿命较长等特点,钨可制成丝或带状,叫做钨丝灯或钨带灯。钨的辐射本领见图5-5示,可见它发射的是连续谱线。在灯泡内充氩或氮等惰性气体时,它们发射可见光波和近红外光波,构成连续谱线,图5-6中的a 表示光栅光谱仪测绘的白炽灯谱线,看起来颜色白里含黄红色。钨灯工作电压用交流或直流电压,电压大小或功率大小可视需要选择。灯泡里充有溴、碘、或其它卤元素时,是溴钨灯、碘钨灯、或卤钨灯。溴钨灯也发射连续光谱(图5-6的c ),但更近白色,因为里边短波长成份比白炽灯发射的多。图5-6的b 是钨带灯发射的谱线。溴钨灯工作电压一般在几十伏以内,交流或直流电均可,由于工作电压不同,加热钨丝产生的温度也不 同,对应的的光波长也不同,图5-7表示 钨带灯在不同电流加热时,测量其温度变化 的情况。实验室使用它们时要保持恒流或恒 压,同时还加有风冷,目的在于保持稳定的 工作温度,以保证在长时间点燃它们时,其 发射谱线形状和强度不发生变化或相对变 化较小。顺便提一下,钨的熔点高达3665 Κ,采用熔化拉丝成型很难,因此,一般是 将钨粉与粘合剂混合,挤压成带状或细丝, 高温烧结固化,去掉粘合剂,得到钨丝或钨 带,钨丝很脆,易断。最后,还要进入玻璃 工艺流程,才能制成钨灯。 2003004005006007008000200400600 800I (a .u .) λ (nm )a b c 1.4 1.6 1.8 2.0 2.2 2.4 22002300240025002600270028002900 3000 T (K ) I (A) 图5-6 三种钨灯谱线 图5-7钨带灯温度与电流关系 图5-5 钨灯 图5-5 钨灯

第13章 典型光学系统

1. 一双200度的近视眼,其远点在什么位置?矫正时应佩戴何种眼镜?焦距多大? 若镜片的折射率为1.5,第一面的半径是第二面半径的4倍,求眼镜片二个表面的半径。 解: 2. 一个5倍伽利略望远镜,物镜的焦距为120mm ,当具有 1000 度深度近视眼的人和具有500度远视眼的人观察用它观察时,目镜分别应向何方向移动多少距离? 解:由望远镜放大率公式'2 ' 1f f -=Γ,而物镜的焦距120'1=f mm 可求得目镜焦距 24'2 -=f mm,有公式1000 ' 2Nf l ± =?,式中'2f 为目镜的焦距。 当10-=N 时,可求得76.5-=?l mm; 当5=N 时,可求得88.2=?l mm. 4.有一16D 的放大镜,人眼在其后50mm 处观察,像位于眼前400mm 处,问物面应在什么位置?若放大镜的直径为15mm ,通过它能看到物面上多大的范围? 解:

5.有一显微镜系统,物镜的放大率,目镜的倍率为(设均为薄 透镜) ,物镜的共轭距为195mm,求物镜和目镜的焦距、物体的位置、光学筒长、物镜与目镜的间隔、系统的等效焦距和总倍率。 解: 6.一个显微镜系统,物镜的焦距为15mm,目镜的焦距为25mm,设均为薄透镜,二者相距190mm,求显微镜的放大率、物体的位置以及系统的等效焦距和倍率。如果用来作显微摄影,底片位于离目镜500mm的位置,问整个显微镜系统应向何方向相对于物面移动多少距离?整个系统的横向放大率为多少? 解: 7.一显微镜物镜由相距20mm的二薄透镜组成,物镜的共轭距为195mm,放大率为-10×,且第一透镜承担总偏角的60%,求二透镜的焦距。

几何光学

第一章几何光学基本定律与成像概念(4学时) 【教学目标及基本要求】 理解和掌握几何光学中研究光传播的方法;理解和掌握几何光学的四个基本定律及其满足的前提条件;理解和掌握发生全反射的条件、能解决工程中相关的 计算问题;理解费马原理的意义;建立起物象的概念,会正确判断物和象的虚实; 建立起完善象的概念;会用单个折射球面的物象关系式和共轴球面系统成象计算 的换面(过渡)公式计算物体经共轴球面系统成象时象的位置;会用单个折射球 面的放大率公式和共轴球面系统的放大率公式计算象的大小;会根据垂轴放大率 β的正负和大小判断象的正倒、虚实、放大还是缩小;会计算物体经单个反射 球面反射后,象的位置和大小。 前言:几何光学的发展(我国古代光学方面的成就);光学理论体系(光学的研究内容)本课程的性质、任务、内容、地位和与其它课程的关系;学习的基 本要求、学习方法。 第一章几何光学基本定律与成像概念 一、几何光学的基本概念(光波、光源、光线、波面) 二、几何光学基本定律 1、四个基本定律; 2、全反射及其应用; 3、光路的可逆性; 4、费马原理 三、成像的基本概念与完善成像条件 1、光学系统与成像概念; 2、完善成像条件; 3、物、象的虚实 四、光路计算与近轴光学系统(光线经过单个球面的折射) 1、基本概念与符号规则 2、实际光线的光路计算(大L公式): 3、近轴光线的光路计算(小l公式) 五、球面光学成像系统 1、单个折射球面成像的放大率、拉赫不变量 2、球面反射镜成像 3、共轴球面系统 六、全章小结及要点提示 【重点】 1、几何光学的四个基本定律及其满足的前提条件。

2、成象的概念及完善成象的条件;物、象空间的虚实和物、象虚实的概念。 3、光线的位置参量及其符号规则。 4、单个折射球面的物象关系式的三种形式及应用场合。 5、垂轴放大率β的大小与物和象的虚实的关系及物和象的大小的关系。【难点】 1、能对点源成完善象的表面及其在工程中的应用。 2、虚物概念的建立。 3、费马原理的意义 【深化和拓宽】费马原理 【教学方式及注意的问题】 1、注意建立物、象空间的虚实和物、象虚实的概念。 2、从工程语言的角度对符号规则进行必要的归纳与说明 【思考题和习题】 P12:11题 补充1-2题 第二章理想光学系统(8学时) 【教学目标及基本要求】 懂得理想光学系统的基点和基面的定义、性质及简化模型;能熟练地根据物体的位置和大小用图解法求象的位置和大小及根据象的位置和大小求物的位置和大小;能熟练地应用牛顿物象公式和高斯物象公式由物体的位置和大小求象的位置和大小或由求象的位置和大小求物体的位置和大小;会应用牛顿组合公式和高斯组合公式对两个光组进行组合,求组合系统的焦点和基点位置及组合系统对给定位置的物体的垂轴放大率及所成的象的位置和大小;也能按给定的要求将一个光组分解为两个光组;会应用薄透镜和薄光组的共轭距与其放大率和焦距的关系式,在共轭距、垂轴放大率和焦距三者中由要求的二者求第三者;会应用薄透镜和薄光组的成象特性验证作图求象及解析求象的正确性;会应用薄透镜和薄光组的成象特性迅速地判断任意一个位置的物体所成的象的位置范围、是放大象还是缩小象、是正象还是倒象、是实象还是虚象。 第二章理想光学系统 一、理想光学系统和共线成像理论 1、理想光学系统理论(高斯光学) 2、共线成像 3、共轴理想光学系统成像性质及相关概念

工程光学习题参考答案第一章几何光学基本定律

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。 解: 则当光在水中,n=时,v=m/s, 当光在冕牌玻璃中,n=时,v=m/s, 当光在火石玻璃中,n =时,v=m/s , 当光在加拿大树胶中,n=时,v=m/s , 当光在金刚石中,n=时,v=m/s 。 2. 一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =),下面放一直径为1mm 的金属片。若在玻璃 板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小 1mm I 1=90? n 1 n 2 200mm L I 2 x

2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2(1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0. 5. 一束平行细光束入射到一半径r=30mm 、折射率n=的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处反射光束经前表面折射后,会聚点又在何处说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。

工程光学习题参考答案第一章几何光学基本定律

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻 璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 2211sin sin I n I n =

66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。

几何光学课后部分习题答案2015

部分作业答案 几何光学部分 第一章 几何光学基本定律与成像 16、一束平行细光束入射到半径为30r mm =、折射率为 1.5n =的玻璃球上,求其会聚点的位置。如果在凸面镀上反射膜,其会聚点应在何处?如果凹面镀反射膜,则反射光束在玻璃中的会聚点在何处?反射光束经前表面折射后,会聚点又在何处? 解:玻璃球可以看作两个折射球面组合在一起,设凸面为第一面,凹面为第二面 (1)首先考虑光束射入玻璃球第一面时的状态,使用单折射球面物像关系公式 1 111111 n n n n l l r ''--=' 由1 1111.5;1;;30n n l r mm '==→-∞=,得190l mm '=。 对于第二面,由于两球面顶点距离260d r mm ==, 所以2 22121.0; 1.5;30;30n n l l d mm r mm ''===-==-,由物像关系 2 222222 n n n n l l r ''--=' 得2 15l mm '=,即会聚点位于第二面顶点右侧15mm 处。 (2) 将第一面镀膜,形成反射镜,就相当于凸面镜,则11111 ;1;;30n n l r m m '==-→-∞=, 得到1 15l mm '=,即会聚点位于第一面顶点右侧15mm 处。 (3)光线经过第一面折射后第二面镀膜则22 221.5; 1.5;30;30n n l mm r mm '==-==-,得到2 10l mm '=-,即反射光束在玻璃球内的会聚点位于第二面顶点左侧15mm 处。

(4)再经过第一面折射,将其记为第三面,则 33 3231.5; 1.0;2106050;30n n l l r mm r mm ''===+=-+== 由物像关系 3 333333 n n n n l l r ''--=' 得375l mm '=,即光束从玻璃球出来后的会聚点位于第一面顶点右侧75mm 处,也是第二面 顶点右侧15mm 处。 第二章 理想光学系统 5、一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm ,放大率为原先的3/4倍,求两块透镜的焦距为多少? 解: 17、有三个薄透镜,其焦距分别为1100f mm '=,250f mm =,350f mm '=-,其间隔 110d mm =,210d mm =,求组合系统的基点位置? 解: 1100f mm '=,2250f f mm '=-=-,350f mm '=- (1)求像方基点

工程光学-郁道银-第一章几何光学基本概念与成像规律课后习题答案

第一章习题 1 知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学习题参考答案第一章几何光学基本定律

第一章几何光学基本定律 1. 已知真空中的光速c =3m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火 石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2. 一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm。 3. 一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻 璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 1mm I=90 n n 200mm L I x

4.光纤芯的折射率为,包层的折射率为,光纤所在介质的折射率为,求光纤的数值 孔径(即,其中为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n0. 5. 一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第 二面。

相关文档
最新文档