滑动直线导轨对比滚动导轨的优缺点

滑动直线导轨对比滚动导轨的优缺点
滑动直线导轨对比滚动导轨的优缺点

直线导轨常简称为导轨,它的作用是支承并引导运动部件沿给定轨迹和行程作直线往复运动。导轨由两个相对运动的部件组成,一个部件固定在机架上,称为定轨,另一个在定轨上移动,称为动轨。

导轨多用于需要作直线往复运动的执行器。导轨的运动性能在低速时要求平稳、无爬行、定位准确,高速时要求惯量小、无超调或振荡。导轨的精度、承载能力和寿命对系统的精度、承载能力和寿命有直接影响。按轨面摩擦性质可将导轨分为滑动导轨、滚动导轨、液体静压导轨、气浮导轨、磁浮导轨。滑动导轨结构简单,刚性好,摩擦阻力大,连续运行磨损快,制造中轨面刮研工序的要求很高。滑动导轨的静摩擦因数与动摩擦因数差别大,因此低速运动时可能产生爬行现象。

滑动导轨常用于各种机床的工作台或床身导轨,装配在动轨上的多是工作台、滑台、滑板、导靴、头架等。导轨截面有矩形、燕尾形、V形、圆形等。重型机械中常将几种截面形状组合使用,共同承担导向和支承的作用。滚动导轨是在运动部件与支承部件之间放置滚动体,如滚珠、滚柱、滚针或滚动轴承。滚动导轨的优点是:摩擦系数不大予滑动导轨摩擦系数的1/10,静摩擦因数与动摩擦因数差别小,不易出现爬行现象,可用小功率电动机拖动,定位精度高,寿命长。

滚动导轨的缺点是:阻尼小而容易引起超调或振荡,刚度低,制造困难,对脏污和轨面误差较敏感。滚动导轨多用于光学机械、精密仪器、数控机床、纺织机械等。液体静压导轨、气浮导轨和磁浮导轨的动轨和定轨之间存在流体,摩擦更小,几乎没有磨损,无爬行现象,

但是刚度低,阻尼小,设计、制造和运行控制较复杂。按结构可将导轨分为开式导轨和闭式导轨。开式导轨必须借助外力,例如自身重力,才能保证动轨与定轨的轨面正确接触,这种导轨承受轨面正压力的能力较大,承受偏载和倾覆力矩的能力较差。闭式导轨依靠本身的截面形状保证轨面的正确接触,承受偏载和倾覆力矩的能力较强,例如燕尾形导轨。影响导轨导向精度的主要因素有:直线度、两个轨面的平行度、轨面粗糙度、耐磨性能、刚度、润滑措施等。

直线导轨的结构设计

直线导轨的结构设计(含滚动导轨) newmaker 1 导轨的作用和设计要求 当运动件沿着承导件作直线运动时,承导 件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1.一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的准确性。 2.运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。 3.良好的耐磨性。导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。导轨在使用过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。 4.足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5.温度变化影响小。应保证导轨在工作温度变化的条件下,仍能正常工作。 6.结构工艺性好。在保证导轨其它要求的前提下,应使导轨结构简单,便于加工、测量、装配和调整,降低成本。 不同设备的导轨,必须作具体分析,对其提出相应的设计要求。必须指出,上述六点要求是相互影响的。 2 导轨设计的主要内容 设计导轨应包括下列几方面内容: 1.根据工作条件,选择合适的导轨类型。 2.选择导轨的截面形状,以保证导向精度? 3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度范围内,有足够的刚度,良好的耐磨性,以及运动轻便和平稳。 4.选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。 5.选择合理的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和测量方法等。 3 导轨的结构设计 1. 滑动导轨 (1) 基本形式(见图21-10)

直线导轨的选择规则

直线导轨的选择 1.直线导轨的运动精度: 1)运动精度:a:滑块顶面中心对导轨基准底面的平行度;b:与导轨基准侧面同侧的滑块侧面对导轨基准侧面的平行度。 2)综合精度:a:滑块上顶面与导轨基准底面高度H的极限偏差;b:同一平面上多个滑块顶面高度H的变动量;c:与导轨基准侧面同侧的滑块侧面对导轨基准侧面间距离W1的极限偏差;d: :同一导轨上多个滑块侧面对导轨基准侧面W1的变动量。 3)导轨上有超过两个以上的导轨,只检验首尾两个滑块,中间的不做W1检验,但中间的W1应小于首尾的W1。 2.选择: 1---确定轨宽。 轨宽指滑轨的宽度。轨宽是决定其负载大小的关键因素之一 2---确定轨长。 这个长度是轨的总长,不是行程。全长=有效行程+滑块间距(2个以上滑块)+滑块长度×滑块数量+两端的安全行程,如果增加了防护罩,需要加上两端防护罩的压缩长度。 3---确定滑块类型和数量。 常用的滑块是两种:法兰型,方形。前者高度低一点,但是宽一点,安装孔是贯穿螺纹孔,后者高一点,窄一点,安装孔是螺纹盲孔。两者均有短型、标准型和加长型之分(有的品牌也称为中负荷、重负荷和超重负荷),主要的区别是滑块本体(金属部分)长度不同,当然安装孔的孔间距也可能不同,多数短型滑块只有2个安装孔。滑块的数量应由用户通过计算确定,在此只推荐一条:少到可以承载,多到可以安装。滑块类型和数量与滑轨宽度构成负载大小的三要素。 4---确定精度等级。 任何厂家的产品都会标注精度等级,有些厂家的标注比较科学,一般采用该等级名称的第一个字母,如普通级标N,精密级标P。 5---确定其他参数 除上述4个主要参数外,还有一些参数需要确定,例如组合高度类型、预压等级等。预压等级高的表示滑块和滑轨之间的间隙小或为负间隙,预压等级低的反之。感官区别就是等级高的滑块滑动阻力大,等级低的阻力小。表示方法得看厂家选型样本,等级数有3级的,

关于滚动直线导轨副的分类,你可能还不知道!

滚动直线导轨副以滑块和导轨间的滚动代替相对接触滑动。滚动直线导轨副按滚动体的形状 可分为滚珠式、滚柱式和滚针式三种。 1、滚珠式 滚道包括滑块滚道、导轨滚道,以滚珠作为滚动体,滚珠与滚道的接触为点接触。滚珠式导 轨副的灵敏度好,定位精度高,但承载能力和刚度较小,需要通过预紧来提高刚度,适用于 非高刚性的数控机床。 2、滚柱式 相比于滚珠导轨副,滚珠式导轨副以滚柱作为滚动体,滚柱与滚道的接触为线接触。滚柱在 承受高负荷时,会形成极微小的弹性变形,而承载力及刚度会更大。主要应用于加工中心、NC复合加工机床、磨床、龙门式加工中心等大、重型机床,特别适合超高刚性、高精度、 超重负荷等高档机床使用。 3、滚针式 滚针导轨的特点是尺寸小,结构紧凑,为了提高工作台的移动精度,尺寸会按照直径进行分组,滚针导轨适用于导轨尺寸受限制的机床。 在数控机床的设计中,滚动直线导轨副的作用是对运动部分进行支撑和导向。 为了在机床的设计中更合理地选用滚动直线导轨副,使其充分发挥作用,选用滚动直线导轨 副的基本条件包括三部分内容: 1、确定导轨副的工作情况,即使用场合、导轨安装布局和安装方式。根据不同的应用场合,需要选择具有不同的预紧力和精度的导轨副。 2、确定导轨副的工作参数,即工作台的质量、中心、丝杠驱动位置以及工作台的负载。工 作参数能够体现整个导轨副所受的外载荷,是计算每个滑块受力时必不可少的条件。 3、确定导轨副的设计要求,即运行速度及加速度、精度要求、静态安全系数和寿命要求等。精度一般由滑块基准面相对同一则导轨侧面的行走直线误差、组合高度误差构成。不同的应 用场合选用不同精度的导轨副,对于多数机械设备选用普通级即可满足,数控机床设备选用 精密级,精密机械可选用超精密级。

导轨设计的基本要求

导轨设计的基本要求 1.导向精度 导向精度是指运动构件沿导轨导面运动时其运动轨迹的准确程度。影响导向精度的主要因素有导轨承导面的几何精度、导轨的结构类型、导轨副的接触精度、表面粗糙度、导轨和支承件的刚度、导轨副的油膜厚度及油膜刚度,以及导轨和支承件的热变形等。 直线运动导轨的几何精度一般包括:垂直平面和水平平面内的直线度;两条导轨面间的平行度。导轨几何精度可以用导轨全长上的误差或单位长度上的误差表示。 2.精度保持性 精度保持性是指导轨工作过程中保持原有几何精度的能力。导轨的精度保持性主要取决于导轨的耐磨性极其尺寸稳定性。耐磨性与导轨副的材料匹配、受力、加工精度、润滑方式和防护装置的性能的因素有关,另外,导轨及其支承件内的残余应力也会影响导轨的精度保持性。 3.运动灵敏度和定位精度 运动灵敏度是指运动构件能实现的最小行程;定位精度是指运动构件能按要求停止在指定位置的能力。运动灵敏度和定位精度与导轨类型、摩擦特性、运动速度、传动刚度、运动构件质量等因素有关。 4.运动平稳性 导轨运动平稳性是指导轨在低速运动或微量移动时不出现爬行现象的性能。平稳性与导轨的结构、导轨副材料的匹配、润滑状况、润滑剂性质及导轨运动之传动系统的刚度等因素有关。 5.抗振性与稳定性 抗振性是指导轨副承受受迫振动和冲击的能力,而稳定性是指在给定的运转条件下不出现自激振动的性能。 6.刚度 导轨抵抗受力变形的能力。变形将影响构件之间的相对位置和导向精度,这对于精密机械与仪器尤为重要。导轨变形包括导轨本体变形导轨副接触变形,两者均应考虑。 7.结构工艺性 结构工艺性是指导轨副(包括导轨副所在构件)加工的难易程度。在满足设计要求的前提下,应尽量做到制造和维修方便,成本低廉。

滚动导轨与直线导轨的区别

滚动导轨与直线导轨的差别 导轨是由金属或其它材料制成的槽或脊,可承受、固定、引导移动装置或 设备并减少其摩擦的装置。通常直线往复运动场合,如引导、固定机械部件、 专用设备、仪器等。它拥有比直线轴承更高的额定负载,同时可以承担--定的 扭矩,可在高负载的情况下实现高精度的直线运动。 通常使用的导轨主要分为滑动导轨和滚动导轨两种。相比于滚动导轨,滑动导轨 有运动轻快、无间隙、运动顺畅的特点。运动轻快主要体现在摩擦阻力方面,滑动的 摩擦系数大,通过摩擦阻力计算公式F=μ X mg,我们可以发现相同质量下的物体滑动摩擦阻力较大。事实上,滚动运动仅使用滑动运动约1/100的力度就能使物体运动。 而且滑动导轨因摩擦面积大会出现运动不畅或卡死现象,所以滑动导轨优势明显。 首先直线导轨的磨损较小,这可以大大提高导轨和设备的使用寿命。由于 在相互运动的金属材料之间如果不及时供给润滑油脂,就会产生更严重的磨耗 问题,从而影响使用。所以润滑效果同样是考量导轨系统好坏的因素之一。与 滑动导轨相比,滚动导轨的接触部分较小,而且是滚动摩擦;因此只需要少量的润滑油就可以满足使用要求。通常情况下滚动导轨的润滑油补给周期为1个月,运行长度约100Km。 而滚动导轨适用于高速运动;这是因为滚动导轨与滑动运动单位相比不容易产生摩擦热,所以热形变量很小,两则直线最高使用速度相差10倍以上。在使用寿命方面,滑动导轨受到的摩擦阻力较大,运动磨损随之也大,磨损带来的 精度变化较大,所以设备寿命预测困难。滚轮结构高速运行极低噪声现存导轨 采用的是钢球滚轮式技术,多数的钢球滚动在轨道和滑块的球循环道内,所以 会引起噪音,而运动速度也受限了。但是,我们的双轴心高速导轨采用的是双 列式轴承,轴承会完全地滚动,因此,会得到最大回转速度的直线运动及静音 作用。可调节间隙精度。导轨和滑块的组成状态也可以利用滑块侧面的螺帽来 调节隔间。双轴心导轨的几大特点1、耐蚀性及防锈性 导轨的发展也就是直线运动系统的发展过程,工业导轨首先出现的是滑动导向。但因为摩擦阻力较大、运动存在间隙、寿命低、润滑油使用量大等原因很 快就被淘汰掉。进而衍生出滚动导向系统,虽然比滑动系统略有优势,但仍存 在-一些问题,如轴易弯曲、载荷较小等缺点。紧接着工业导轨又出现了直线轴承和直线导轨,这两者的外形尺寸虽然相近,但直线导轨的承载能力更强。直 线导轨的钢球接触方式和直线轴承不同,相比于直线轴承易弯曲,直线导轨采 用全导轨支撑不易折弯,在荷载方面,直线导轨的单位钢球容许载荷提高了13倍,整体寿命提高了2200倍。

滑动直线导轨对比滚动导轨的优缺点

直线导轨常简称为导轨,它的作用是支承并引导运动部件沿给定轨迹和行程作直线往复运动。导轨由两个相对运动的部件组成,一个部件固定在机架上,称为定轨,另一个在定轨上移动,称为动轨。 导轨多用于需要作直线往复运动的执行器。导轨的运动性能在低速时要求平稳、无爬行、定位准确,高速时要求惯量小、无超调或振荡。导轨的精度、承载能力和寿命对系统的精度、承载能力和寿命有直接影响。按轨面摩擦性质可将导轨分为滑动导轨、滚动导轨、液体静压导轨、气浮导轨、磁浮导轨。滑动导轨结构简单,刚性好,摩擦阻力大,连续运行磨损快,制造中轨面刮研工序的要求很高。滑动导轨的静摩擦因数与动摩擦因数差别大,因此低速运动时可能产生爬行现象。 滑动导轨常用于各种机床的工作台或床身导轨,装配在动轨上的多是工作台、滑台、滑板、导靴、头架等。导轨截面有矩形、燕尾形、V形、圆形等。重型机械中常将几种截面形状组合使用,共同承担导向和支承的作用。滚动导轨是在运动部件与支承部件之间放置滚动体,如滚珠、滚柱、滚针或滚动轴承。滚动导轨的优点是:摩擦系数不大予滑动导轨摩擦系数的1/10,静摩擦因数与动摩擦因数差别小,不易出现爬行现象,可用小功率电动机拖动,定位精度高,寿命长。 滚动导轨的缺点是:阻尼小而容易引起超调或振荡,刚度低,制造困难,对脏污和轨面误差较敏感。滚动导轨多用于光学机械、精密仪器、数控机床、纺织机械等。液体静压导轨、气浮导轨和磁浮导轨的动轨和定轨之间存在流体,摩擦更小,几乎没有磨损,无爬行现象,

但是刚度低,阻尼小,设计、制造和运行控制较复杂。按结构可将导轨分为开式导轨和闭式导轨。开式导轨必须借助外力,例如自身重力,才能保证动轨与定轨的轨面正确接触,这种导轨承受轨面正压力的能力较大,承受偏载和倾覆力矩的能力较差。闭式导轨依靠本身的截面形状保证轨面的正确接触,承受偏载和倾覆力矩的能力较强,例如燕尾形导轨。影响导轨导向精度的主要因素有:直线度、两个轨面的平行度、轨面粗糙度、耐磨性能、刚度、润滑措施等。

直线导轨的精度校准和应用范围

沿导轨体系的运动,大多数为直线运动,也有少量为弧线运动。本文评论的重点是直线导轨体系。当然,直线导轨的许多技能可以直接使用弧形导轨。 导轨为什么被称为“体系”呢?这是由于导轨体系的作业包含着若干元件的一起作业,最基本的元件为一个运动元件和一个固定元件。运动元件的方式有多种多样,今后将予以具体引见,固定元件通常为道轨式,它是导轨精度的包管,若是导轨曲折变形,运动元件或滑动元件便失掉准确的导向。 直线导轨属于高精密的导航配件,安装使用时,要非常专心,否则造成四面不平整而导致精密度下降等原因。如果机器需要更换导轨,而没有专业人员指导安装的话,业余的工作人员能够完成安装工序吗?没有专业的技术,安装直线导轨会出现哪些显著的问题呢? 导轨坏了,或者想要提升机械的精密加工能力,可以通过更换直线导轨完成,问题是,如何达到最佳的安装效果呢?其实,购买回来的直线导轨,只要不拆开内部结构,按照说明书进行安装,然后检测四周的平整程度,基本上都没问题了,不过要注意安装平面的整洁程度,不能有粉尘。 安装直线导轨之后,部分用户发现,经过一段时间的使用,它的尺寸精度开始下降,按照正常情况,这属于故障的表现,导轨产品能够连续经受多年的损耗,为什么突然之间,尺寸精度就无法保障了呢?这其中,一定存在着问题,根据多年安装的经验,笔者认为这是直线导轨在安装时,平衡度出现了问题。

安装时,一般的操作手法是,先将四面的螺丝套上,不紧不慢,同时套紧,不能单一螺丝拧紧,造成直线导轨平衡度倾斜的话,引起各种问题,例如,尺寸精度无法保障,多少都存在一些偏差,要杜绝此种情况,肯定要按照正确方法安装。 导轨产品,采用的是高碳钢,不容磨损,但是硬度大,不能敲击,直线导轨也是如此,如果出现某些问题,千万不能用硬物直接敲击校对。 直线导轨在工业生产中的应用非常广泛,直线导轨具有以下三个基本功能: (1)为承载体的运动导向 (2)为承载体供给润滑的运动外表 (3)把火车的运动或机床的切削所发生的力传到地基或床身上,削减由此发生的冲击对乘客和被迫加工零件的影响。

滚动直线导轨副的结构组成与由来

1907年瑞典公司成功研制用于回转运动的滚动轴承。滚动方式与滑动方式相比,能够大大减少摩擦阻力,节省能源,并且明显改善机械性能。 1932年,法国公布了用于直线运动的滚动直线导轨专利,从此决定了滚动直线导轨的基本形式。 滚动直线导轨可以理解为是一种滚动的运动部件,是由滚动体(钢球或滚柱)在滑块跟导轨之间的无限滚动循环,从而使负载平台能够沿着导轨进行高精度的线性运动。 滚动直线导轨副是由带滚道的导轨、安装在导轨上的滑块、位于滑块和导轨间循环运动的滚动体、返向器以及密封端盖等组成。 具有滚道的导轨是决定整个导轨组件的导向精度和运动性能的主要元件,用螺钉紧固在机床固定部件上(如床身、立柱等),其安装底面、定位侧面和滚道经过精密平面成形磨削,保证了滚道精确的几何形状,以及滚道与安装定位面之间的精确的尺寸精度。 滑块一般用螺钉紧固在机床运动部件上(如工作台,主轴箱等)。滑块上的返向器采用高强度工程塑料制成并引导滚动体返向形成连续的循环运动。密封端盖和密封底片是防尘的必要部件。导轨副的润滑通过油杯注入润滑油脂来进行。 自20世纪70年代末滚动直线导轨副开始商品化以来,其逐渐替代了传统的滑动导轨,广泛应用于精密机械中,成为数控机床、工业机器人以及各种测量仪器的重要组成部分,特别是作为高档数控机床的关键功能部件得到广泛的应用。 滚动直线导轨副主要由导轨、滑块、滚动体(滚柱或滚珠)以及返向器等组成。当滑块与导轨相对移动时,滚动体在导轨和滑块滚道直接滚动,并通过返向器的滚道,从工作负荷区到非工作负荷区,然后再滚动回工作负荷区,不断循环,从而把导轨和滑块之间的相对运动由滑动变成滚动体的滚动。 为了防止灰尘和异物进入导轨滚道,滑块两端及下部均装有橡胶密封垫,滑块上还装有润滑注油杯,通过手动或自动给滑块注油润滑。同时滑块端部还可以配备自润滑装置,使用时在

直线导轨地结构设计(含滚动导轨)

直线导轨的结构设计(含滚动导轨) 来源:作者: 江苏泰州市德基数控机床技术部发表于:2007-5-18 已阅读1121次 1 导轨的作用和设计要求 当运动件沿着承导件作直线运动时,承导件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1.一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的准确性。 2.运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。 3.良好的耐磨性。导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。导轨在使用过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。 4.足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5.温度变化影响小。应保证导轨在工作温度变化的条件下,仍能正常工作。 6.结构工艺性好。在保证导轨其它要求的前提下,应使导轨结构简单,便于加工、测量、装配和调整,降低成本。 不同设备的导轨,必须作具体分析,对其提出相应的设计要求。必须指出,上述六点要求是相互影响的。 2 导轨设计的主要内容 设计导轨应包括下列几方面内容: 1.根据工作条件,选择合适的导轨类型。 2.选择导轨的截面形状,以保证导向精度。 3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度范围内,有足够的刚度,良好的耐磨性,以及运动轻便和平稳。 4.选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。

5.选择合理的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和测量方法等。 3 导轨的结构设计 1. 滑动导轨 (1) 基本形式(见图21-10) 图21-10 三角形导轨:该导轨磨损后能自动补偿,故导向精度高。它的截面角度由载荷大小及导向要求而定,一般为90°。为增加承载面积,减小比压,在导轨高度不变的条件下,采用较大的顶角(110°~120°);为提高导向性,采用较小的顶角(60°)。如果导轨上所受的力,在两个方向上的分力相差很大,应采用不对称三角形,以使力的作用方向尽可能垂直于导轨面。 矩形导轨:优点是结构简单,制造、检验和修理方便;导轨面较宽,承载力较大,刚度高,故应用广泛。但它的导向精度没有三角形导轨高;导轨间隙需用压板或镶条调整,且磨损后需重新调整。 燕尾形导轨:燕尾形导轨的调整及夹紧较简便,用一根镶条可调节各面的间隙,且高度小,结构紧凑;但制造检验不方便,摩擦力较大,刚度较差。用于运动速度不高,受力不大,高度尺寸受限制的场合。

滚动直线导轨副反向器的设计

河南机电高等专科学校 毕业设计说明书 论文题目:滚动直线导轨副反向器的设计 系部:机械工程系 专业:机械制造与自动化 班级:机制061 学生姓名:王生伟 学号:060114123 指导教师:程雪利 2009年5 月22 日

第1章绪论 1.1引言 随着数控技术和机电一体化的普及和发展,机械传动机构的定位精度、导向的精度和进给速度在不断提高。传统的导向机构发生了重大变化,从七十年代中期开始,直线滚动导轨以其独有特点在越来越多的领域中得到应用。 直线滚动导轨一般有导轨、滑动块、反向器、滚动体和保持器等组成。它是一种新型的作为相对往复直线运动的滚动支承。能以滑块和导轨见的钢球滚动来代替直接的滑动接触,并且滚动体可以在滚道和滑块内实现无限循环。基于结构上的特点,与滚动导轨相比,它具有卓越的特点和优良的使用性能。 1.1.1摩擦特性 滚动直线导轨副在摩擦特性方面具有突出的优点,其摩擦阻力比滑动导轨小的多,摩擦系数u=0.002.0.004为滑动导轨的1/50左右,起动摩擦和动摩擦接近相等。在速度变化时u值稳定,运动轻快、灵活、平稳。因而可实现高速运动,提高了生产效率。 1.1.2 运动精度 滚动直线导轨副的摩擦系数极小,因此在起动是无颤动,低速下运动无爬行现象。当施加愈加载荷时可以消除间隙,提高刚性和精度。此外具有自动调心补偿安装基面误差的功能。故其整体运动精度高,因此可制成高精度高性能的机械。另外,由于滚动直线导轨具有很好的误差均化功能。 1.1.3寿命特点

滚动直线导轨副具有较好的承载特性,可以承受不同方向的力和力矩载荷。大部分的能量以磨损的形式消耗掉,因而磨损快,难以长期维持精度。相反,滚动直线导轨副摩擦小、磨损小及温升小,可以长期维持高精度,具有较长的精度寿命。 1.1.4承载特性 滚动直线导轨副具有较好的承载特性,可以承受不同方向的力和力矩载荷,可承受上下、左右的力及颠簸力矩、摇动力矩和摆动力矩等。具有很好的载荷适应性。在设计制造中加以适当预加载荷,可以增加阻尼以提高抗震性,同时可消除高频振动现象。如图1.1所示 图1.1 滚动直线导轨副的承载类型 1.1.5 经济性能 滚动直线导轨副因其摩擦阻力小、磨损小以及润滑维修保养容易,故维修成本低廉。此外,滚动直线导轨还有很好的互换性,易行成标准化、系列化,并有专业厂家成批生产,使用户选用十分方便,从而缩短了设计工时。另外节能省油使滚动直线导轨副的又以显著特点。总之,滚动直线导轨副作为一种新型支承部件由于在许多方面都具有突出特点,因而近年来被广泛应用于各种数控机床、加工中心精密工作台、工业机器人及医疗器械、检测仪器、轻工机械、运输机械之中,促进了机械工业的技术进步,带来了巨大的经济效益。

滚动直线导轨的安装说明

滚动直线导轨副的使用说明 1、基础件上安装导轨副的安装平面的精度要求: 使用单根导轨副的安装面其平面精度可略低于导轨副运行精度。 同一平面内使用两根或两根以上导轨副时,其安装面精度可低于导轨副运行精度。建议按下表选用的精度要求: 2、导轨副连接基准面的结构形式:

3、安装基面的台肩高度及倒角形式: ·将滑块和导轨安装在床身和工作台时,为使滑块和导轨不与基础件发生干涉,按下表中的r值加工或相应加工成清角槽: 4、滚动直线导轨副的安装调整: 安装与使用 请小心轻拿轻放,避免磕碰以影响导轨副的直线精度。不允许将滑块拆离导轨或超过行程又

推回去。若因安装困难,需要拆下滑块,可向我公司定购引导轨。(引导轨是一种装配辅助工具,其实际尺寸比导轨小一号。需要时,可将导轨与引导轨的端头对接,把滑块从导轨推到引导轨上,当导轨安装好后,再将滑块从引导轨推到导轨上,注意基准方向)。 安装注意事项 首先正确区分基准导轨副与非基准导轨副(基准导轨上有J的标记,滑块上有磨光的基准侧面): 其次认清导轨副安装时所需的基准侧面: 导轨副的基本安装步骤:

(1)、基准导轨副的安装方法(有下述两种方法): a、利用U型夹头将导轨的基准侧面与安装台阶的基准侧面夹紧,然后在该处用固定螺栓拧紧(建议采用配攻螺纹孔),由一端开始,依次将导轨固定:

b、无安装台阶时,将导轨一端固定后,按下图所示方法将表针靠在导轨的基准侧面,以直线块规为基准,自导轨的一端开始读取指针值校准直线度,并依次将导轨固定. (2)、非基准导轨副的安装方法: 如下图所示,将吸铁表座固定在基准导轨副的滑块上,量表的指针顶在非基准导轨副的导轨基准侧面,从导轨的一端开始读取平行度一面顺次将非基准导轨副固定好;另外,亦可参照(1)中两图所示的方法。

直线导轨选型(转载)

前面说了一下滚珠丝杠选型的大致原则和注意的要点,今天有空,谈一谈直线导轨的大致选型步骤和方法: 分类介绍: 先说明一下,本文所说的直线导轨均指滚动直线导轨。种类按滚动体类型分有滚珠导轨滚珠、滚柱导轨,前者包括交叉滚珠导轨,而交叉滚柱导轨则可归于后者。按形状分有方轨(截面尺寸大致呈等边矩形)和扁轨(截面尺寸大致呈扁平的矩形),不说明的一般指方轨,扁轨的官方称呼是微型滚珠滑轨。按制造结构分又可分成2排滚珠(或滚柱,下同)导轨、4排滚珠导轨等等。型号编排介绍: 目前直线导轨市场标准化程度相对比较高,除某些日本品牌之外多数种类各品牌之间可以替换,这也整个传动机械产品市场的趋势。各厂家大致的型号编排规则有两类,一类是欧系,一类是日系,前者以德系产品为代表,编号比较复杂,主要是字母和数字混合编号,但是数字含义比较复杂,有的就干脆全是数字,中间以点号隔开,比如:123.123.12.123.1。日系产品以日本产品为代表,编号相对简单一点,大致方式也是字母和数字,一般前面是数字,表示产品系列,后面的数字表示相关规格尺寸,例如轨的宽度、长度、滑块数量等,再后面的字母表示其他如形状精度等指标。上述描述是指大致编号原则,具体型号请参阅该品牌产品样本。 选型基本原则: 1---优先性能而不是价格:满足设计要求应是用户首先考虑的目标,然后找到恰当的供应商获得相对低价才是正途。机械产品特别是零部件行业极少有暴利情况,除高端品牌外如果忽略渠道因素你基本可以认为价高质优。 2---优先选择产品类型而不是品牌:作为用户,自豪于忠于某个品牌是愚蠢的,在适当的时候适当的场合选用不同品牌的产品十分必要。例:某用户电火花机装的是日本**K导轨,坏了一个滑块,保修期外需要订购,但是被厂家告之必须整套订购,7000多块,2.5个月到货,而台湾品牌****N类似型号只要2000多,现货。我以近10年本行业经验保证,这两个型号质量相差不大。但是换不了,为什么?因为原先的组合高和滑块安装孔不一样。(为避免广告嫌疑,品牌中部分字母以*代替) 3---优先考虑标准型号而非特殊型号:每个厂家的样本都会在同一个产品下列举很多规格,但实际上可能大部分都不生产或供货期很长,所以,非必要不要选用非常规规格,以避免在订货、交货期、维修等环节造成困扰。 4---优先考虑该品牌的持续供货能力而非单规格或单个订单:不要轻信任何厂家的打折促销(详见上海某某米网站广告:新用户打7折),导轨不是酱油,没有酿造和勾兑的成本区别。 5---在确定型号前先询问供应商:不要过于相信厂家样本,如果你仔细找一找,大概会在封底或封3最下边的某处看到这样的文字:“……本型录中所有参数仅供参考,我们会尽量使其正确但不能承诺完全无误。同时本公司保留未经预告便可更改产品参数的所有权利”,什么意思?你照这个样本买的东西可能和样本上的不一样,并且人家还可以不负法律责任。当然一般出现这样的问题人家会给你换,但耽误的时间是用户的。所以在选型时就和供应商及时沟通是必要的 选型步骤和参数考量: 1---确定轨宽。 轨宽指滑轨的宽度。轨宽是决定其负载大小的关键因素之一,四排滚珠(也有部分两排珠的)的方轨现货产品一般有15、20、25(23)、30(28)、35(34)、45、55(53)、65(63),某些品牌最大只生产到45规格,有些小厂家可能只到30。期货产品也有85、120等,但大部分厂家不生产。

滚动导轨选型

直线运动系统选用思路: 1.根据实际应用工况初步选定型号系列和配置方式 2.静安全系数验算 直线运动系统承受过大的静载荷时,滚动体和接触面会发生永久变形,这个永久变形如果大到一定程度时,就会影响直线运动系统的平稳运行。所以要根据基本额定静载荷和最大实际静载荷来验算静安全系数是否达到要求。 3.寿命验算 利用额定动载荷和最大实际动载荷来验算直线运动系统所能运行的里程数或时间数是否能达到我们的要求。 4.如果静安全系数和寿命其中的一项或均达不到要求,就需要改变型号系列和配置方式重 新计算了。 相关定义: 基本额定静负荷C0(N):在产生最大应力的接触部位,使滚动体和导轨面永久变形量之和达到滚动体直径的0.0001倍时,大小一定的径向静止负载。作为静作用力的限度。 容许静力矩M R/P/Y(Nm):在产生最大应力的接触部位,使滚动体和导轨面永久变形量之和达到滚动体直径的0.0001倍时,方向和大小一定的静止力矩。作为静作用力矩的限度。 静安全系数f s:负载能力(基本额定静负荷C0、容许静力矩M R/P/Y)与实际负荷(F、M r/p/y)的比值。f s=C0/F或f s=M R/P/Y/M r/p/y。 基本额定动载荷C(N):一批相同的直线运动系统在相同条件下运行,使滚珠直线导轨额定寿命为L=50km、滚柱直线导轨额定寿命为L=100km的方向和大小一定的负荷。 额定寿命L(km):一批相同的直线运动系统在相同条件下运行,其中90%不产生表面剥落而所能达到的总运行距离。直线运动系统的额定寿命L是根据基本额定动负载C和实际最大负荷F max按下式计算得到的: 滚珠直线运动系统寿命:L=(C/F max)3×50 滚柱直线运动系统寿命:L=(C/F max)10/3×100 1.使用条件确定: 导轨安装空间;安装姿势(水平、竖直、倾斜、悬臂等);负载情况(大小、方向、位置等);尺寸(长度、跨距、滑块个数、导轨根数等);使用频度(负荷周期);速度、加速度;要求寿命;精度、刚度要求;使用环境等 在特殊环境下,首先要考虑材料(标准材料、不锈钢材料等)、润滑(脂润滑、油润滑、其它润滑剂,定期润滑、强制润滑等)、表面处理(防锈、外观、淬火等)、防护等条件。 2.形式和系列的选择: 不同的厂家有不同的导轨系列和形式,有的是针对不同应用领域而分类的(比如:一般机床应用、产业自动化机器应用、仪器仪表类机器应用、重型机器应用),台湾HIWIN就是这样分的;有的是按所受载荷形式来分类的(主要承受上下载荷类、上下左右四向载荷相当类),日本NSK和THK就是这样来分的。其实,不管怎么分类,均是按载荷大小和作用方向来分类的。根据实际应用中的载荷情况,确定导轨的形式和系列。 3.选用精度等级 因为导轨部是由导轨、滑块、滚动体等零件组装而成的,各零件的制造精度和它们间的装配精度必然导致装配完成后总体精度误差,这个误差的大小就是导轨的精度等级问题。具体的比如有:滑块顶面相对于导轨底面、滑块侧面相对于导轨定位面的运行精度、一根导轨上若干滑块顶面的高度差距等。各个厂家均会将自己的产品按精度大小分成若干等级,我们

滚动直线导轨的设计

直线导轨的结构设计(含滚动导轨) newmaker 1 导轨的作用和设计要求 当运动件沿着承导件作直线运动时,承导件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1.一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的准确性。 2.运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。 3.良好的耐磨性。导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。导轨在使用过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。 4.足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5.温度变化影响小。应保证导轨在工作温度变化的条件下,仍能正常工作。 6.结构工艺性好。在保证导轨其它要求的前提下,应使导轨结构简单,便于加工、测量、装配和调整,降低成本。 不同设备的导轨,必须作具体分析,对其提出相应的设计要求。必须指出,上述六点要求是相互影响的。 2 导轨设计的主要内容 设计导轨应包括下列几方面内容: 1.根据工作条件,选择合适的导轨类型。 2.选择导轨的截面形状,以保证导向精度。 3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度范围内,有足够的刚度,良好的耐磨性,以及运动轻便和平稳。 4.选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。

5.选择合理的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和测量方法等。 3 导轨的结构设计 1. 滑动导轨 (1) 基本形式(见图21-10) 图21-10 三角形导轨:该导轨磨损后能自动补偿,故导向精度高。它的截面角度由载荷大小及导向要求而定,一般为90°。为增加承载面积,减小比压,在导轨高度不变的条件下,采用较大的顶角(110°~120°);为提高导向性,采用较小的顶角(60°)。如果导轨上所受的力,在两个方向上的分力相差很大,应采用不对称三角形,以使力的作用方向尽可能垂直于导轨面。 矩形导轨:优点是结构简单,制造、检验和修理方便;导轨面较宽,承载力较大,刚度高,故应用广泛。但它的导向精度没有三角形导轨高;导轨间隙需用压板或镶条调整,且磨损后需重新调整。 燕尾形导轨:燕尾形导轨的调整及夹紧较简便,用一根镶条可调节各面的间隙,且高度小,结构紧凑;但制造检验不方便,摩擦力较大,刚度较差。用于运动速度不高,受力不大,高度尺寸受限制的场合。 圆形导轨:制造方便,外圆采用磨削,内孔珩磨可达精密的配合,但磨损后不能调整间隙。

滚动直线导轨副的主要性能特点及正确安装方式

滚动直线导轨副的主要性能特点及正确安装方式 滚动直线导轨副的主要性能: 1、运动特性 由于滚动直线导轨副的摩擦极小,随动性好,低速时不易产生爬行,能实现高定位精度。滚动直线导轨副的运动借助钢球或滚柱滚动实现,与此同时可根据需要适当增加导轨副预载荷,确保钢球或滚柱不发生滚动,实现平稳运动。 2、寿命特性 滚动导轨副中采用多个滚动体作为支撑,摩擦小,磨损少,可以长期保持高精度。同时滚道能较容易地获得很高的加工精度及较高的表面硬度,因此滚动直线导轨副具有较长的工作寿命。 3、承载特性 滚动直线导轨副承载性能较好,可以承受不同方向的力和力矩载荷,如承受上下左右方向的力,以及俯仰力矩、偏摆力矩和旋转力矩,同时也可以适当的施加预加载荷,可以增加阻尼,提高抗振性。 4、驱动特性 滚动直线导轨副的驱动功率大幅度下降,是普通机械的1/10。通常采用滚动直线导轨副的机床由于摩擦阻力小,使驱动转矩大大减少,机床所需电力降低80%,节能效果明显,可实现机床的高速运动。 5、经济特性 滚动直线导轨副具有良好的互换性,能够快速形成标准化、系列化,用户选型十分方便,有效缩短了设计工时。滚动直线导轨副还具有节能省油,摩擦阻力小的特点,所以润滑、维修和保养较方便,故维修成本低廉。 滚动直线导轨副具有众多的突出优点,因而在机械工业中得到广泛应用。各种数控机床、精密工作台、工业机器人、医疗器械、检测仪器、轻工机械以及运动机械中都有体现。 滚动直线导轨是用来支撑和引导运动的一种部件,按给定的方向做往复直线运动。滚动直线导轨大量应用在自动化机械上。 那么滚动直线导轨副应该如何安装呢? 1、检查安装面

必须用油石除去安装基准面上的毛刺,用干净的棉质抹布擦拭干净。 2、紧靠基准 将滚动导轨副轻轻放在安装面上,并使直线导轨基面与底座基准面轻轻紧靠,以便基准面贴向侧面安装定位面。 3、检查螺钉孔之间的间隙 将螺钉逐个拧紧到底后再反拧半圈。这样做一方面确认螺钉之间的距离、螺钉深度是否合适,是否有异物阻挡,另一方面是为了后面为导轨侧面加力提供空间。 4、拧紧侧面螺钉(或其他侧面固定装置) 按顺序,从中间到两边,拧紧侧面螺钉(或其他侧面固定装置),使导轨侧基面和基座侧基面紧密贴合。在保证安装精度条件下,锁紧力不宜过大,常以滚动导轨副用安装螺钉推荐扭矩1/3值为限度。 5、拧紧所有安装螺钉 轻轻移动平台到主轨与副轨的滑座上,用力矩扳手,先锁紧在移动平台上的侧向迫紧螺丝,安装后再依照定位顺序进行。

直线滚动导轨的特点及选用

直线滚动导轨的特点及选用 摘要:介绍了直线滚动导轨的性能特点及选用时涉及到的一些性能参数。 关键词:直线滚动导轨;寿命 1、直线滚动导轨的特点 直线滚动导轨在数控机床中有广泛的应用。相对普通机床所用的滑动导轨而言,它有以下几方面的优点: 1.1 定位精度高 直线滚动导轨可使摩擦系数减小到滑动导轨的1/50。由于动摩擦与静摩擦系数相差很小,运动灵活,可使驱动扭矩减少90%,因此,可将机床定位精度设定到超微米级。 1.2 降低机床造价并大幅度节约电力 采用直线滚动导轨的机床由于摩擦阻力小,特别适用于反复进行起动、停止的往复运动,可使所需的动力源及动力传递机构小型化,减轻了重量,使机床所需电力降低90%,具有大幅度节能的效果。 1.3 可提高机床的运动速度 直线滚动导轨由于摩擦阻力小,因此发热少,可实现机床的高速运动,提高机床的工作效率20~30%。 1.4 可长期维持机床的高精度 对于滑动导轨面的流体润滑,由于油膜的浮动,产生的运动精度的误差是无法避免的。在绝大多数情况下,流体润滑只限于边界区域,由金属接触而产生的直接摩擦是无法避免的,在这种摩擦中,大量的能量以摩擦损耗被浪费掉了。 与之相反,滚动接触由于摩擦耗能小.滚动面的摩擦损耗也相应减少,故能使直线滚动导轨系统长期处于高精度状态。同时,由于使用润滑油也很少,大多数情况下只需脂润滑就足够了,这使得在机床的润滑系统设计及使用维护方面都变的非常容易了。 2、宜线滚动导轨的寿命 在选用直线滚动导轨时,应对其本身的寿命进行初步验算。 当直线滚动导轨承受负荷并做滚动运动时,导轨面和滚动部分(钢珠或滚柱)就会不断地受到循环应力的作用,一旦达到临界值,滚动表面就会产生疲劳破损,在某些部位产生鱼鳞状剥离,这种现象称为表面剥落。 所谓直线滚动导轨的寿命,就是指导轨表面或滚动部分由于材料的滚动疲劳而发生表面剥落时为止总行走距离。 直线滚动导轨的寿命具有很大的分散性。即使同批制造的产品,在同样运转条件下使用,其寿命也会有很大的差距。因此,为了确定直线滚动导轨的寿命,一般使用额定寿命这一参数。 所谓额定寿命是指让—批同样的直线滚动导轨逐个地在相同的条件下运动,其中90%的总运行距离能达到不发生表面剥落。 对于使用钢珠的直线滚动导轨,额定寿命L为:

导轨及选型及计算

导轨的选型及计算 按结构特点和摩擦特性划分的导轨类型见表6-1[5],各类导轨的主要特点及应用列于表中。 表6-1 导轨类型特点及应用 6.1 初选导轨型号及估算导轨长度 X 方向初选导轨型号为494012GGB 20B AL2P -? [6]具体数据见《机械设计手册》9-149 Y 方向初选导轨型号为4109022G G B20AAL 1-?P 导轨的运动条件为常温,平稳,无冲击和震动 为何选用滚动直线导轨副: 1)滚动直线导轨副动静摩擦力之差很小,摩擦阻力小,随动性极好。有利

于提高数控系统的响应速度和灵敏度。驱动功率小,只相当普通机械的十分之一。 2)承载能力大,刚度高。 3)能实现高速直线运动,起瞬时速度比滑动导轨提高10倍。 4)采用滚动直线导轨副可简化设计,制造和装配工作,保证质量,缩短时间,降低成本。 导轨的长度: 由于导轨长度影响工作台的工作精度和高度,一般可根据滑块导向部分的长度来确定导轨长度。 其公式为: L=H+S+△l-S1-S2 由此公式估算出Lx=940mm,Ly=1090mm 其中L—导轨长度 H—滑块的导向面长度 S—滑块行程 △l—封闭高度调节量 S1—滑块到上死点时,滑块露出导轨部分的长度 S2—滑块到下死点时,滑块露出导轨部分的长度 6.2 计算滚动导轨副的距离额定寿命 X方向的导轨计算 X方向初选导轨型号为4 940 12 GGB20B AL2P- ?,查表9.3-73[1]得,这种导轨的额定动,静载荷分别为Ca=13.6kN,Coa=20.3kN。 4个滑块的载荷按表9.3-48序号1的载荷计算式计算。 其中工作台的最大重量为: G=100×9.8=980N F1=F2=F3=F4=1/4(G1+F)=250N 1)滚动导轨的额定寿命计算公式[6]为: L=(f h f t fc fa Ca/ fwPc) ε ?K=27166km 式中 L——额定寿命(km); Ca——额定动载荷(KN); P——当量动载荷(KN); Fmax——受力最大滑块所受的载荷(KN); Z——导轨上的滑块数;

滚动直线导轨副的研究状况和发展趋势

滚动直线导轨副的研究状况和发展趋势 发表时间:2019-09-11T14:21:09.470Z 来源:《基层建设》2019年第16期作者:王皓樊明贞周亮[导读] 摘要:滚动直线导轨副作为精密仪器的一种,具备承载能力强,动静摩擦系数小,定位精度高,精度保持性好,寿命长等特点。山东建筑大学机电工程学院山东济南 250100摘要:滚动直线导轨副作为精密仪器的一种,具备承载能力强,动静摩擦系数小,定位精度高,精度保持性好,寿命长等特点。目前,它已成为数控机床、精密电子机械、工业机器人和测量仪器不可或缺的重要组成部分。滚动直线导轨副在国内的发展于20世纪80年代初,远远落后于国外。基础零部件的落后,阻碍了高端先进机床等设备的发展,导致国内很多尖端设备依赖于进口。伴随中国制造2025的 步伐,整个工业环境对滚动直线导轨副的精密性和高速性提出了新的要求,也促进滚动直线导轨副得到高速的发展。关键词:滚动直线导轨副,研究状况,发展趋势,测试技术在20世纪70年代,随着机械产品的数控技术的运用,“滚动导轨”应运而生。1973年,成熟的滚动直线导轨副的开发在日本成功开展,并开始批量生产。国内的开发始于20世纪80年代初,并且仅开发了大约40年。作为高精度滚动功能零部件,该滚动直线导轨副承载能力强,动静摩擦系数小,定位精度高,精度保持性好,寿命长。它已被广泛应用于高精度、高速、节能环保等领域。目前,它已成为数控机床、精密电子机械、工业机器人和测量仪器不可或缺的重要组成部分。本文介绍一下滚动直线导轨的研究现状和滚动直线导轨的发展趋势,指出了进一步研究和应用的方向。 一.滚动直线导轨副的现今研究状况 高端数控机床是装备制造业的重要战略支撑。然而滚动直线导轨副作为高档数控机床的关键基础部件之一,中国的制造与测试技术同国外先进制造商(如日本的THK,NSK,德国的INA等)有很大的差距。 1.1滚动直线导轨额定静载荷、动态负载和额定寿命研究概述滚动直线导轨副故障的主要原因是重复的压缩应力,即接触疲劳使得滚动表面层的疲劳剥离。一种理论称为最大静态剪切应力,还有一种理论Lundberg.G和Palmgren.A提出最大动态剪切应力。基于上述两种理论,国内孙建利教授等人所使用一种对比的原理--滚动直线导轨副来比较所述轴承和所述滚珠丝杠副之间的相似性,并提出了滚动直线导轨的相应的计算方法,额定静载荷、动态负载和额定寿命也被定义出来。国外德国的Michael Schnaider博士对导轨的使用寿命进行了一些研究。日本学者,如清水茂府,石川义雄和井ツ尺实等人,他们对滚动直线导轨的动态和静态载荷和寿命进行了理论和实验研究。 1.2滚动直线导轨副静刚度研究概述 线性静刚度是选择导轨时要考虑的最重要因素之一。滚动直线导轨的静刚度的研究是基于两个理论。其中之一是赫兹理论,另一个是模型仿真的方法。 关于导轨副的预加载荷,国内很多科研团队也做了很多研究,孙建利等人,提出了许多理论计算公式和方法,并做了很多的实验。建立了过盈尺寸和预加载荷的关系。倪国林等人建立了理论计算模型对滚动直线导轨副进行研究。东北大学的孙伟使用ADAMS模拟滚动直线导轨副的动态特性。 在国外的研究中,在滚动直线导轨的静态刚度方面,日本川匠、清水茂夫等人对其深入研究。Ohta建立考虑导轨的弹性变形的垂直刚度的半分析计算模型。该模型不仅考虑施加的载荷下导轨对滑块的变形,同时也考虑在导轨副中的预加载力而导致的滑块的变形量。 1.3滚动直线导轨副摩擦力研究概述 滚动直线导轨副作为一种精密传动部件,特别是高速运转状态下,极其容易发热引起变形,进而影响系统的整体精密度。在对摩擦性能的研究,一些日本学者,如角田和雄所作的差动滑动摩擦力在滚动轴承的理论推导,此理论是基于赫兹的弹性接触理论推导出来。日本的须田稳、石川义雄在摩擦的试验研究,主要针对直线运动球轴承进行研究,发现摩擦力周期性地波动。国内研究中,国内孙健利、刘建素、张朝辉等对滚动直线导轨副的两点接触导轨副和四点接触导轨副等进行了深入的研究并获得了不同接触条件下的差动滑动摩擦公式。孙健力、刘建素等人还对滚动直线导轨副进行了实验。据研究表明摩擦力的周期性波动与滚动体的直径有直接的关系,为了降低滚动直线导轨副摩擦力提高系统响应而进行设计,分析其中周期性的波动原因,发现周期性波动与钢球循环进出承载区有关。 二.滚动直线导轨副的发展趋势 随着高新技术的发展及应用,各种新的类别和新功能的滚动直线导轨不断应运而出,并在智能化、精度高、互换性好、成本低,环保的方向迈进。 2.1高性能、智能化方向发展 随着技术的进步,低端产品竞争日渐加剧,且利润率过低,像THK公司着力于高性能滚动直线导轨副的发展方向。THK直线导轨SSR 系列,通过滚动体保持架与组装在SSR滑块上的反向器,使滚动体作循环运动。使滚动体保持架可消除滚动体之间的摩擦并提高润滑脂的保持性。 “Monorail”的滚动直线导轨副安装了抗磁性传感器,这使导轨同时具备了快速直线运动功能和各种数据传感器检测功能。滚动直线导轨副与DC伺服电机结合用以达到直线传送的目的。运动结构非常紧凑,具有控制功能响应快,操作方便。 2.2向互换性、低成本方向发展 互换性的发展能够将成本快速降低,导轨和滑块可以单独制造和存储,并可以进行标准化装配。为了满足互换性要求,需要制定行业标准,推动标准化生产,并提高导轨和滑块等部件的加工精度。通过标准化制造和互换性,使客户不必再因为一个零部件的损坏而对一个人的部分更换,浪费了资源也使生产成本提高。 2.3向绿色环保方向发展 滚动直线导轨副的噪声的主要原因是滚动体自身的碰撞,还有就是滚动体与反向器和导轨的碰撞。经过研究发现用质量较轻的陶瓷球(Si5N4)替代钢球可以降低噪声。通过实际测量,当移动速度是在0.3至1.17米/秒的范围内,平均噪声降低为4.5分贝。 三.滚动直线导轨副测试技术的发展趋势

相关文档
最新文档