工程力学之空间力系和重心

工程力学之空间力系和重心
工程力学之空间力系和重心

工程力学课后习题答案第五章 空间任意力系

第五章 空间任意力系 5.1解:cos 45sin 60 1.22x F F K N == c o s 45c o s 60 0.7 y F F K N == sin 45 1.4z F F K N == 6084.85x z M F m m K N m m ==? 5070.71y z M F m m K N m m ==? 6050108.84z x y M F m m F m m K N m m =+=? 5.2 解:21sin cos sin x F F F αβα=- 1c o s c o s y F F βα=- 12sin cos z F F F βα=+12sin cos x z M F a aF aF βα==+ 1sin y M aF β= 121cos cos sin cos sin z y x M F a F a aF aF aF βααβα=-=--- 5.3解:两力F 、F ′能形成力矩1M 1M Fa m ==? 11cos 45x M M = 10y M = 11sin 45z M M = 1c o s 4550x M M K N m == ? 11sin 4550100z z M M M M K N m =+=+=? C M m ==?63.4α= 90β= 26.56γ= 5.4 如图所示,置于水平面上的网格,每格边长a = 1m ,力系如图所示,选O 点为简化中心,坐标如图所示。已知:F 1 = 5 N ,F 2 = 4 N ,F 3 = 3 N ;M 1 = 4 N·m ,M 2 = 2 N·m ,求力系向O 点简化所得的主矢'R F 和主矩M O 。 题5.4图 解:' 1236R F F F F N =+-=

工程力学第三章空间力系与重心重点

课时授课计戈I 」 第三章空间力系与重心 掌握力在空间直角坐标系上的投影的计算 掌握力对轴的矩的计算 掌握空间力系的平衡条件 掌握重心的概念 空间力系的平衡条件 力对轴的矩的计算 第三章 空间力系与重心 第一节力在空间直角坐标系上的投影 第二节力对轴的矩 第三节 空间力系的平衡条件 第四节物体的重心 课本 教学方法 课堂教学 授课日期 2011.10.22 1044-3 目 的 要 求

教学过程: 复习:1、复习约束与约束反力概念。 2、复习物体受力图的绘制。 课: 第三章 空间力系与重心 第一节力在空间直角坐标系上的投影 1. 力在直角坐标轴上的投影和力沿直角坐标轴的分解 若已知力F 与正交坐标系Oxyz 三轴间的夹角分别为a 、p 、丫, 如图4-1 所示,则力在三个轴上的投影等于力F 的大小乘以与各轴夹角的余弦, 即 X=F cos a Y=W cos p Z=F cos 丫 当力F 与坐标轴Ox Oy 间的夹角不易确定时,可把力 F 先投影到坐 标平面Oxy 上,得到力F 砂,然后再把这个力投影到x 、y 轴上。在图4-2 中, 已知角丫和卩,则力F 在三个坐标轴上的投影分别为 (4-1) O 图4一 1 書

Z jr 乙Z

X=F sin 丫 COS 0 Y=F sin 丫 sin W Z=F cos 丫 若以人、人、人表示力F 沿直角坐标轴X 、y 、z 的正交分量,以i 、 j 、k 分别表示沿X 、y 、z 坐标轴方向的单位矢量,如图4-3所示,则 图4-2 戸=人+尸$+巧=为+Y +Zk 由此,力F 在坐标轴上的投影和力沿坐标轴的正交分矢 量间的关系可表示为 人=X ,人=Y ,人=zk (4-4) 如果己知力F 在正交轴系Oxyz 的三个投影,则力F 的大小和方向余弦为 F =J 护+尸+0 £ cos( F , i)= F (4-5) 例:图4-4所示的圆柱斜齿轮,其上受啮合力 E 的作用。已知斜齿 轮的齿倾角(螺旋角)P 和压力角a ,试求力E 沿x 、y 和z 轴的分力。 (4-2) (4-3)

工程力学-结构力学课件-04空间力系[1]p

4-1、力系中,F 1=100 N 、F 2=300 N 、F 3=200 N ,各力作用线的位置如图所示。试将力系向原点O 简化。 题4-1图 4-2、正方体上作用有六个力,力的模相同(方向如图所 示),该力系简化的最简结果是什么? A :平衡力系; B :合力; C :力偶; D :力螺旋 4-3、轴AB 与铅直线成β角,悬臂CD 与轴垂直地固定在轴上,其长为a ,并与铅直面zAB 成θ角,如图所示。如在点D 作用铅直向下的力F ,求此力对轴AB 的矩。 题4-2图

4-4、图示空间构架由三根无重直杆组成,在D端用球铰链连接,如图所示。A、B和C端则用球铰链固定在水平地板上。如果挂在D端的物重P=10kN,试求铰链A、B和C的约束力。 题4-4图 和6构成。在节点A上作用一力F,此力在 矩形ABDC平面内,且与铅直线成45°角。 ?。等腰三角形EAK、FBM和 EAK? FBM = NDB在顶点A、B和D处均为直角,又 EC=CK=FD=DM。若F=10 kN,求各杆的 内力。 题4-5图

4-6、图示三圆盘A 、B 和C 的半径分别为150 mm 、100 mm 和50 mm 。三轴OA 、OB 和OC 在同一平面内,AOB ∠为直角。在这三圆盘上分别作用力偶,组成各力偶的力作用在轮缘上,它们的大小分别等于10 N 、20 N 和F 。如这三圆盘所构成的物系是自由的,不计物系重量,求能使此物系平衡的力F 的大小和角θ 。 4-7、如图所示,已知镗刀杆刀头上受切削力500=z F N ,径向力150=x F N ,轴向力 75=y F N ,刀尖位于Oxy 平面内,其坐标x =75 mm, y =200 mm 。工件重量不计,试求被切 削工件左端O 处的约束反力。 题4-7图 题4-6图

工程力学课后习题答案第五章空间任意力系

第五章 空间任意力系 解:cos 45sin 60 1.22x F F KN ==o o cos45cos600.7y F F KN ==o o sin 45 1.4z F F KN ==o 6084.85x z M F mm KN mm ==? 5070.71y z M F mm KN mm ==? 6050108.84z x y M F mm F mm KN mm =+=? 解:21sin cos sin x F F F αβα=- 1cos cos y F F βα=- 12sin cos z F F F βα=+12sin cos x z M F a aF aF βα==+ 1sin y M aF β= 121cos cos sin cos sin z y x M F a F a aF aF aF βααβα=-=--- 解:两力F 、F ′能形成力矩1M 1502M Fa KN m ==? 11cos 45x M M =o 10y M = 11sin 45z M M =o 1cos 4550x M M KN m ==?o 11sin 4550100z z M M M M KN m =+=+=?o 22505C z x M M M KN m =+=?63.4α=o 90β=o 26.56γ=o 如图所示,置于水平面上的网格,每格边长a = 1m ,力系如图所示,选O 点为简化中心,坐标如图所示。已知:F 1 = 5 N ,F 2 = 4 N ,F 3 = 3 N ;M 1 = 4 N·m,M 2 = 2 N·m,求力系向 O 点简化所得的主矢'R F 和主矩M O 。 题图

理论力学第三章空间力系习题解答

习 题 3-1 在边长为a 的正六面体上作用有三个力,如图3-26所示,已知:F 1=6kN ,F 2=2kN ,F 3=4kN 。试求各力在三个坐标轴上的投影。 图3-26 kN 60 1111====F F F F z y x 0kN 245cos kN 245cos 2222== ?=-=?-=z y x F F F F F kN 3 3 433kN 3 3 433kN 3 34333 33 33 3==-=-===F F F F F F z y x 3-2 如图3-27所示,已知六面体尺寸为400 mm ×300 mm ×300mm ,正面有力F 1=100N ,中间有力F 2=200N ,顶面有力偶M =20N ·m 作用。试求各力及力偶对z 轴之矩的和。 图3-27 203.034 44.045cos 2 1-?+??-=∑F F M z m N 125.72034 240220?-=-+ -= 3-3如图3-28所示,水平轮上A 点作用一力F =1kN ,方向与轮面成a=60°的角,且在过A 点与轮缘相切的铅垂面内,而点A 与轮心O '的连线与通过O '点平行于y 轴的直线成b=45°角, h =r=1m 。试求力F 在三个坐标轴上的投影和对三个坐标轴之矩。 图3-28 N 354N 225045sin 60cos 1000sin cos ==????==βαF F x N 354N 225045sin 60cos 1000cos cos -=-=????-=-=βαF F y

N 866350060sin 1000sin -=-=??-=-=αF F z m N 25845cos 18661354cos ||||)(?-=???-?=?-?=βr F h F M z y x F m N 96645sin 18661354sin ||||)(?=???+?=?+?=βr F h F M z x y F m N 500160cos 1000cos )(?-=???-=?-=r F M z αF 3-4 曲拐手柄如图3-29所示,已知作用于手柄上的力 F =100N ,AB =100mm ,BC =400mm ,CD =200mm ,a=30°。试求力F 对 x 、y 、z 轴之矩。 图3-29 N 2530sin 100sin sin 2=??==ααF F x N 3.43N 32530cos 30sin 100cos sin -=-=????-=-=ααF F y N 6.8635030cos 10030cos -=-=??-=?-=F F z 3 .03504.0325)(||||)(?-?-=+?-?-=CD AB F BC F M z y x F m N 3.43325?-=-= m N 104.025||)(?-=?-=?-=BC F M x y F m N 5.73.025)(||)(?-=?-=+?-=CD AB F M x z F 3-5 长方体的顶角A 和B 分别作用力F 1和F 2,如图3-30所示,已知:F 1=500N ,F 2=700N 。试求该力系向O 点简化的主矢和主矩。 图3-30 N 4.82114100520014 25 221R -=--=? -?-='F F F x N 2.561141501432R -=-=?-='F F y N 7.4101450510014 15 1 21R =+=? +?='F F F z N 3.10767.410)2.561()4.821(222R =+-+-='F

空间力系习题 - 工程力学参考资料

第四章 空间力系 4-5 轴AB 与铅直线成α角,悬臂CD 与轴垂直地固定在轴上,其长为a ,并与铅直面zAB 成θ角,如图所示。如在点D 作用铅直向下的力F ,求此力对轴AB 的矩。 解:将力F 分解为F 1、F 2两个力,F 1垂直于AB 而与CE 平行,F 2平行于AB 如图(a )。这两个分力分别为: αs i n 1F F =,αcos 2F F = )()()(21F M F M F M AB AB AB +=0s i n 1+?=θa F θαs i n s i n Fa = 4-3 图示空间构架由三根无重直杆组成,在D 端用球铰链连接,如图所示。A 、B 和C 端则用球铰链固定在水平地板上。如果挂在D 端的物重W =10 kN ,试求铰链A 、B 和C 的反力。 解:取节点D 为研究对象,假设各杆都为拉力、受力如图(a )。平衡方程为: =∑x F ,045cos 45cos =?-?A B T T (1) 0=∑y F ,015cos 30cos 45sin 30cos 45sin =?-??-??-C B A T T T (2)

0=∑z F ,015sin 30sin 45sin 30sin 45sin =-?-??-??-T T T T C B A (3) 把T=W =10 kN 代入式(3) 解出:kN 4.26-==B A T T (压力)kN 5.33=C T (拉力) 4-11 图示三圆盘A 、B 和C 的半径分别为150 mm 、100 mm 和50 mm 。三轴OA 、OB 和OC 在同一平面内,AOB ∠为直角。在这三圆盘上分别作用力偶,组成各力偶的力作用在轮缘上,它们的大小分别等于10 N 、20 N 和F 。如这三圆盘所构成的物系是自由的,不计物系重量,求能使此物系平衡的力F 的大小和角α。 解:画出三个力偶的力偶矩矢如图(a ),由力偶矩矢三角形图(b )可见: mm N 5000400030002222?=+=+=B A C M M M 由图(a )100?=F M C ,N 50100== C M F 由图(b )可知:43tan ==B A M M β,'523687.36?=?=β '08143180?=-?=βα

第六章 空间力系 重心 习题

第六章空间力系重心习题概念题: 4.1 4.2 4.3 4.4 4.5 4.6

4.7 4.8 4.9 4.10 4.11 4.12 计算题:

4.2 4.3 4.4

4.5 4.6 4.7

4.8 课后习题 6-1已知力P大小和方向如图所示,求里P对z轴的矩。(题6-1图a中的P位于其过轮缘上作用点的切平面内,且与轮平面成α=60度角;图b中的力P位于轮平面内与轮的法线成β=60度角)。 6-2作用于手柄端的力F=600KN,试求计算力在x,y,z轴上的投影及对x,y,z 轴之矩。 6-3图示三脚架的三只角AD,BD,CD各与水平面成60度角,且AB=BC=AC,绳索绕过D处的滑轮由卷扬机E牵引将重物G吊起,卷扬机位于∠ACB的等分线上,且DE与水平线成60度角。当G=30KN时 被等速地提升时,求各角所受的力。 6-4重物Q=10KN,由撑杆AD及链条BD和CD所支持。杆的A端以铰链固定,又A,B和C三点在同一铅垂墙上。尺寸如图所示,求撑杆AD和链条BD,CD 所受的力(注:OD垂直于墙面,OD=20cm)。 6-5固结在AB轴上的三个圆轮,半径各为r1,r2,r3;水平和铅垂作用力大大小F1=F1’,F2=F2’为已知,求平衡时F3和F3’两力的大小。

6-6平行力系由5个力组成,各力方向如图所示。已知:P1=150N,P2=100N,P3=200N,P4=150N,P5=100N。图中坐标的单位为cm。求平行力系的合力。 6-7有一齿轮传动轴如图所示,大齿轮的节圆直径D=100mm,小齿轮的节圆直径d=50mm。如两齿轮都是直齿,压力角均为α=20度,已知作用在大齿轮上的圆周力P1=1950N,试求转动轴作匀速转动时, 小齿轮所受的圆周力P2的大小及两轴承的反力。

空间力系习题

第四章 空间力系 4-1 力系中,F 1=100 N 、F 2=300 N 、F 3=200 N ,各力作用线的位置如图所示。试将力系向原点O 简化。 解:由题意得 N 3455 2200132300R -=? -?-=x F N 25013 3300R =? =y F N 6.105 1200100R =?-=z F m N 8.513.05 12001.013 3300?-=?? -?? -=x M m N 6.361.0132 20020.0100?-=?? +?-=y M m N 6.1033.05 22002.0133300?=??+??=z M 主矢 N 4262R 2R 2R R =++= x y z F F F F ,N )6.10250345(R k j i ++-=F 主矩 m N 122222?=++= z y x O M M M M ,m N )1046.368.51(?+--=k j i O M 4-3 图示力系的三力分别为N 3501=F 、N 4002=F 和N 6003=F ,其作用线的位置如图所示。试将此力系向原点O 简化。 解:由题意得 N 1442 1 60018100 60350'R -=? -?=x F N 1010866 .0600707.040018100 80350'R =?+?+?=y F N 517707.040018100 90350'R -=?--? =z F 主矢 N 114 42'R 2'R 2'R R =++= z y x F F F 'F , N )5171011144(R k j i F -+-='; m N 48mm N 48000120707.0400601810090 350?-=?-=??-?? -=x M m N 07.21mm N 21070901810090 350?=?=?? =y M 6021 60090866.06006018100 60350901810080350??+??-??-?? =z M m N 4.19mm N 19400?-=?-= 主矩 m N 55.9mm N 55900222?=?=++= z y x O M M M M m N )4.191.2148(?-+-=k j i M O

空间力系及重心

第六章 空间力系及重心 一、内容提要 1、空间力对点之矩和对轴之矩 1)空间力对点之矩是矢量,且F r F m o ?=)( 2)空间力对轴之矩是一代数量,其正负号按右手螺旋规则确定,大小有两种计算方法: (a )先将力投影到垂直于轴的平面上,然后按平面上力对点之矩计算,即 )()(yz o Z F m F m = (b)若已知力在坐标轴上的投影F x 、F y 和F Z 及该力的作用点的坐标x 、y 、z ,则力对各坐标轴的矩可表示为 =)(F m x yF z -zF y =)(F m y zF x -xF z =)(F m z xF y -yF x 3) 力对点之矩和力对轴之矩的关系(力矩关系定理): x o x F m F m )]([)(= y o y F m F m )]([)(= z o z F m F m )]([)(= 4)特殊情况 当力与轴平行或相交(即力与轴共面)时,力对轴之矩等于零。 2、空间任意力系的简化、合成 1)空间任意力系的简化、力系的主矢与主矩 主矢R /=∑F i , 主矢的大小和方向与简化中心的位置无关。 主矩M o =∑m o (F), 主矩的大小和转向一般与简化中心的位置有关。 2)空间任意力系的合成结果

空间任意力系的平衡方程的基本形式为 0=∑x F ,0=∑y F ,0=∑Z F 0)(=∑F m x ,0)(=∑F m y ,0)(=∑F m Z 2)几种特殊力系的平衡方程 (a )空间汇交力系的平衡方程的基本形式为 0=∑x F ,0=∑y F ,0=∑Z F (b )空间平行力系,若力系中各力与轴平行,则0≡∑x F ,0≡∑y F , 0)(≡∑F m Z ,其平衡方程的基本形式为: 0=∑Z F ,0)(=∑F m x ,0)(=∑F m y (c )空间力偶系的平衡方程的基本形式为 0)(=∑F m x ,0)(=∑F m y ,0)(=∑F m Z 4、本章根据合力矩定理推导了重心坐标公式。对于简单形状的均质物体,其重心可用积分形式的重心坐标公式确定,或直接查表。至于复杂形状的均质物体的重心,可采用分割法或负面积(负体积)法求得。

第5章空间力系与重心

第5章空间力系与重心 教学提示:本章介绍空间力系和重心、包括空间力的投影与分解、力对轴之 矩、空间力系的平衡、物体的重心.是静力学重要内容之一。 教学要求:本章是学生掌握以下内容,并学会实际应用。 (1) 空间汇交力系的概念 (2) 力对轴之矩和力对点之矩概念和计算 (3) 空间力偶系 (4) 空间力系的简化 (5) 空间力系的平衡条件和平衡方程 (6) 物体的重心 5.1力在直角坐标轴上的投影 已知力F与x轴如图5.1(a)所示,过力F的两端点A、B分别作垂直于x轴的平面M及N ,与x轴交于a、b,则线段ab冠以正号或负号称为力F在x轴上的投影,即 F x=±ab 符号规定:若从a到b的方向与x轴的正向一致取正号,反之取负号。 已知力F与平面Q,如图5.1(b)所示。过力的两端点A、B分别作平面Q的 '称为力F在平面Q上的投影。应注意的是力在垂直线AA′、BB′,则矢量B A' 平面上的投影是矢量,而力在轴上的投影是代数量。 (a) (b) 图5.1 图5.2

现在讨论力F 在空间直角坐标系Oxy 中的情况。如图5.2(a)所示,过力F 的端点A 、B 分别作x 、y 、z 三轴的垂直平面,则由力在轴上的投影的定义知,OA 、OB 、O C 就是力F 在x 、y 、z 轴上的投影。设力F 与x 、y 、z 所夹的角分别是α、β、γ,则力F 在空间直角坐标轴上的投影为: ??? ??±=±=±=γβα c o s c o s c o s F F F F F F z y x (5-1) 用这种方法计算力在轴上的投影的方法称为直接投影法。 一般情况下,不易全部找到力与三个轴的夹角,设已知力F 与z 轴夹角为γ ,可先将力投影到坐标平面Oxy 上,然后再投影到坐标轴x 、y 上,如图5.2(b )所示。设力F 在Oxy 平面上的投影为F xy 与x 轴间的夹角为θ,则 ??? ??±=±=±=γθγθγc o s s i n s i n c o s s i n F F F F F F z y x (5-2) 用这种方法计算力在轴上的投影称为二次投影法。 若已知力F 在坐标轴上的投影,则该力的大小及方向余弦为 ? ? ? ??===++=F Z F Y F X Z Y X F γβαcos ,cos ,cos 2 22 (5-3) 如果把一个力沿空间直角坐标轴分解,则沿三个坐标轴分力的大小等于力在这三个坐标轴上投影的绝对值。 例5.1 如图5.3所示,已知力F 1=2kN ,F 2=1kN ,F 3=3kN ,试分别计算三力在x 、y 、z 轴上的投影。 图5.3 解:

空间力系和重心

第六章空间力系和重心 教学目标 1 能熟练地计算力在空间直角坐标轴上的投影和力对轴之矩。 2 了解空间力系向一点简化的方法和结果。 3 能应用平衡条件求解空间汇交力系、空间任意力系、空间平行力系的平衡问题。 4 能正确地画出各种常见空间约束的约束力。 5 对重心应有清晰的概念,能熟练地应用组合法求物体的重心。 本章重点 1 力在空间直角坐标轴上的投影和力对轴之矩。 2 空间汇交力系、空间任意力系、空间平行力系平衡方程的应用。 3 各种常见空间约束的约束力。 4 重心的坐标公式。 本章难点 空间矢量的运算,空间结构的几何关系和立体图。 教学过程(下页)

一、空间力系的简化 1.空间力系向一点简化 刚体上作用空间力系),,(21n F F F ,将力系中各力向任选的简化中心O 简化。 主矢:∑∑='=C i F F F ,与O 点选择无关。 (6-1) 主矩:∑∑∑?===)()(00i i i i F r F M M M ,与O 点的选择有关。 (6-2) 主矢F 和主矩0M 的解析表达式 222)()()(∑∑∑++=iz iy ix F F F F (6-3) F F x F ix ∑= ),cos( ,F F y F iy ∑= ),cos( ,F F z F iz ∑= ),cos( 2 220))(())(())((i z i y i x F M F M F M M ∑∑∑++= (6-4) 0) (),cos(M F M x M i x ∑= ,0 0) (),cos(M F M y M i y ∑= ,0 0) (),cos(M F M z M i z ∑= 结论:空间力系向任一点简化,一般可得到一力和一力偶,该力通过简化中心,其大小和方向等于力系的主矢,该力偶的力偶矩矢等于力系对简化中心的主矩。 2.空间力系简化的最后结果 (1)空间力系平衡 0=F ,00=M ,此空间力系为平衡力系。 (2)空间力系简化为一合力偶 0=F ,00≠M ,此空间力系简化为一合力偶,合力偶矩矢等于力系主矩0M 与简 化中心的位置无关。

相关文档
最新文档