多元函数积分学37931

多元函数积分学37931
多元函数积分学37931

第八章.多元函数积分学

在不同的问题当中,可以对多元函数的积分进行不同的定义,因此,我们需要在不同的问题背景当中来定义不同的积分概念。

二重积分。

二重积分实际上就是对二元函数求定积分,在实际问题当中,需要对二元函数进行求和计算,或者直观地说,涉及到体积的计算与具有在二维区域上的分布的物理量的计算,就需要运用二重积分的概念来进行。

因此我们对二重积分的定义,与对单变量函数的定积分的定义是完全类似的,只是这里的积分区域不是一维的,而是二维平面上的区域。这样通过把积分区域任意划分成只有公共边界的子区域,然后在每一个子区域当中任意取一点,取这点的函数值与该子区域的面积之积,再把所有的这样的乘积加起来,得到一个和式,接下来,就是我们已经很熟悉的极限过程,即使得所有子区域当中面积最大者的面积趋向于0,也就是使得子区域的数目趋向于无穷大,看和式是否存在极限,以及可能的话,这个极限是多少。这就是关于二重积分的可积性问题与二重积分的计算问题。

关于可积性的问题有下面一个简单的定理:

如果函数在一个有界闭区域上有定义并且连续,则这个函数必定在这个区域上可积。 从上面的二重积分概念的说明,可以得到与单变量函数的定积分相类似的几何说明,即被积函数所描述的曲面与其在自变量平面上的积分区域上的投影之间所夹的空间的体积。基于这样的理解,可以很容易得到如下的二重积分的性质。

(1)??+??=??+D D D gdx j fdx i dx jg if )(,

其中i ,j 为任意常数。这是二重积分的线性性质;

(2),??+??=??D D fdx

fdx fdx D 21

其中D D D =?21。

(3)如果在区域D 上有

),(),(y x g y x f ≤,

则有

??≤??D D gdx

fdx ;

而对于D 上的可积函数f ,存在任意上界M 和任意下界m ,则有

MD

fdx mD D ≤??≤

其中D 为区域D 的面积。

(4)设函数f 为有界连通闭区域D 上的连续函数,则一定在这个区域上存在一点(a ,b ),使得 D

b a f fdx D ),(=??;

这个性质还可以推广到比较一般的形式:

设函数g 为D 上的非负值连续函数,f 在D 上可积,则存在一个介于f 在D 上的上界

与下界之间的唯一的常数k ,使得

??=??D D gdx

k gfdx 。

二重积分的计算方法与应用。

(一)二重积分的基本计算方法是在直角坐标系当中,把二重积分化成二次积分,也就是按先后顺序分别对两个自变量求定积分,因此也称为累次积分。

在作二次积分时,首先是把一个自变量看成是一个参数,而不是看成变量,这样第一步是作单变量函数的定积分,然后得到一个包含第二个变量的表达式,再对第二个变量求定积分,这样就得到了二重积分的值。这里对于选择进行积分运算的自变量的顺序是完全任意的,也就是说,假设函数的积分区间,是由曲线)(1x y y =和)(2x y y =,x=a ,x=b 所围成的区域,那么f 在这个区域上的二重积分为

=??=??)()(21),(),(x x b a D y y dy y x f dx dxdy y x f ??)()(21),(x x b a y y dx y x f dy

因此在实际问题当中,如果选择了一种积分顺序,而发现不是很恰当,或者显得很麻烦,则不妨尝试一下更换积分顺序,也许会更为恰当一些

(二)另外一种常常更为简单的计算二重积分的方法,是在极坐标下,通过把二重积分转变为二次积分来得到结果。

一般公式就是

??=??)()(21)sin ,cos (),(θθβαθθθσr r rdr r r f d d y x f D

注意公式当中的面积元素带因子r ,千万不要忘记。

之所以使用极坐标,是因为很多几何对象在极坐标当中具有更为简单的还是形式,这样就使得被积函数的形式更为简单,从而简化了积分计算。

直观地看,二重积分就是针对二元函数的定积分,那么只要是运用二元函数表达的变化规律,都有可能需要利用二重积分计算某种可加性质的量。

例如对于在一定的平面区域上的某个物理量的分布,就可以利用二重积分计算,比方说已知质量分布的平面薄片的质量,重心,转动惯量,均匀薄片的一阶矩,等等,对于计算体积以及与体积相关的物理量,更是需要运用二重积分进行计算。

曲面面积以及第一型曲面积分。

与二重积分主要是针对体积的计算不同,所谓曲面积分主要是针对与曲面有关的面积与质量的计算。而本课程只限制在处理光滑曲面或者是分片光滑的曲面,所谓光滑曲面定义为曲面的切平面连续转动,而法向量不为0。

计算曲面面积的关键是给出曲面的面积微元,即

dxdy f f ds y x 221++=,

然后对微元直接进行二重积分即可得到曲面面积

??++=D y x dxdy f f S 22

1。

如果进一步,曲面的面密度分布函数为),,(z y x μ,那么通过我们熟悉的分割,求和,

取极限这样一些过程,可以得到计算曲面的质量的公式为

??++=D y x d f f y x f y x m σμ22

1)),(,,(。

我们把上面的具有给定面密度分布的给定曲面的质量的计算加以推广,也就是考虑定义在给定曲面上的有界连续函数,或者分片连续函数),,(z y x f ,用这个函数沿着曲面进行积分,也就是利用面积的可加性,进行求和与取极限的过程,就得到所谓的第一型曲面积分,一般地写成??S ds z y x f ),,(。

第一型曲面积分具有与重积分完全类似的性质,例如线性性质和积分区域可加性性质。 而第一型曲面积分的一般计算方法,完全类似于上面的计算曲面质量的方法,一般地有:

??S ds z y x f ),,(=??++S y x dxdy g g y x g y x f 221)),(,,(。

第一型平面曲线积分的概念及计算。

在平面上的曲线方程,固然可以看成是一个一元函数,如果沿着这个曲线具有某个物理量的密度分布,那么要沿着这个曲线,求这个物理量的总量,就必须定义一种相应的沿着平面曲线求和式极限的积分,这就是平面曲线积分。我们把所讨论的曲线限制为简单光滑曲线。

在沿着曲线进行分割与求和积分时,根据具体问题的不同,可以有两种方法,即对弧长进行积分与对坐标进行积分,这两种方法,分别称为第一型与第二型平面曲线积分。

我们这里首先讨论第一型平面曲线积分,定义为

∑?=?=→?n i i i i s L s f ds y x f 10),(lim ),(ηξ,

其中),(y x f 为定义在曲线L 上的有界函数,把曲线L 分成任意的n 个光滑弧段,s i ?为第

i 个弧段的长度,),(ηξi i 为第i 个弧段上的任意一点,s ?为曲线上所有弧段中长度最长的

弧段。

值得注意的是,尽管被积函数具有两个自变量,但是由于积分是沿着一条固定的曲线进行的,按照物理学的理解,就是只有一个自由度,因此通过引入适当的参数,就可以把被积函数变换为一元函数。

从定义可以看到,曲线积分只不过是一种沿着固定曲线所进行的积分,很容易理解第一型平面曲线积分同样具有一般积分所具有的各种性质,如线性性质,积分区域可加性性质,估值性质与中值性质。

由于第一型平面曲线积分的被积式实际上是一个一元函数与弧微分的乘积,因此可以得到第一型平面曲线积分的计算公式为

?+=?β

αdt t y t x t y t x f ds y x f L ))(())('())(),((),(22;

如果使用曲线的平面直角坐标系方程y=g (x ),那么就得到相应的计算公式

?+=?b a L dx t g x g x f ds y x f ))((1))(,(),(2;

而如果曲线用极坐标方程形式)(θg r =给出,则相应的计算公式为

?+=?θθθθθθθθθ21)(')()sin )(,cos )((),(22d g g g g f ds y x f L 。

可以看到,曲线积分最终还是简化为一元函数的定积分计算。

平面向量场以及第二型平面曲线积分的概念和计算。

向量场的概念可以说是直接来源于物理学中的场的概念,平面向量场的定义,就是在平面区域D 上的一个向量值函数:

j y x f i y x f y x f ),(),(),(21+=,

直观地说,就是在平面区域D 上的每一点处都定义了一个向量,就构成了一个向量场。 如果在这样一个向量场中给定一条有向曲线,或者说沿着一条有向曲线,定义了一个有界的向量场,由于向量适宜于在坐标轴方向上进行分解,因此如果要求向量场沿着曲线的积分,一般对坐标进行积分,这样的积分方式称为第二型平面曲线积分。

这里同样把曲线限制为简单并且光滑或者分段光滑。

这样我们得到向量形式的定义为

∑?=?=→?n i i i i s L s f s d y x f 10),(lim ),( ηξ。

这种曲线积分形式的一个特征就是曲线规定了方向,因此出现了一个新的性质,即如果使得曲线反向,则得到的积分值就变号。其他的一般性质,如线性性质,积分曲线的可加性仍然成立,不过由于曲线的方向性,在连接曲线段时,必须注意方向性。

虽然第二型平面曲线积分应用向量形式来表示比较简明,不过进行计算时,还是采用分量形式,并且是分别对每个分量单独进行计算。

设向量场的两个分量为),(y x P 和),(y x Q ,那么第二型平面曲线积分的计算公式为

?=?βαdt

t x t y t x P dx y x P L )('))(),((),(;

?=?βαdt

t y t y t x Q dy y x Q L )('))(),((),(。

向量场沿着曲线的积分也可以采用对弧长积分的形式,这是通过引入沿着曲线的正方向

的任何一点的切向量t 而得到的:

?+=?L L ds y t y x Q x t y x P s d y x f )],cos(),(),cos(),([),( 。

格林公式。平面曲线积分与路径无关的条件。恰当微分。

上面我们已经根据不同的问题建立了两大类不同的积分形式,即重积分与线积分,那么

重积分与线积分是否具有很紧密的关系呢?这是由格林定理通过格林公式揭示出来的:

设P (x ,y )和Q (x ,y )是在平面区域D 上的具有各个一阶连续偏导数的函数,D 的边界由光滑或者分段光滑的简单曲线组成,并且约定边界的方向为沿着曲线的这个方向运动时,区域D 永远在边界线的左边,那么我们有格林公式如下:

????-??=?+?D D dxdy y P x Q Qdy Pdx )(。

这个公式具有非常重要的应用,即通过进行这两种不同积分形式的相互转化,而简化积分计算。

而这个公式更重要的应用,要求我们了解两个概念,即线积分的路径无关性,和单连通区域。

所谓线积分的路径无关性就是指如果一种曲线积分,在确定曲线的起点与终点后,积分值就是唯一的了,而与具体的起点与终点之间的曲线形状,或者说积分路径无关,我们就说这种曲线积分具有线积分的路径无关性。

一种曲线积分具有线积分的路径无关性的充要条件是:

设P (x ,y )和Q (x ,y )是在平面区域D 上的具有各个一阶连续偏导数的函数,那么曲线积分?+L

dy y x Q dx y x P ),(),(在D 内具有线积分的路径无关性的充要条件为 0

=?+C Qdy Pdx , 其中C 为D 内的任意一条闭曲线。

在实际问题当中,为了方便判断上面的充要条件,需要单连通区域的概念:所谓连通区域就是指一个区域内任意两点的连线都全部是属于这个区域。而单连通区域则是对于任意区域内的闭合曲线都可以连续地收缩为一点。可以想象,这种区域不允许在区域内部存在空洞。而存在空洞的这类不是单连通的连通区域称为复连通区域。

这样我们可以针对单连通区域得到更为方便的,判断一种曲线积分具有线积分的路径无关性的充要条件如下:

设P (x ,y )和Q (x ,y )是在单连通区域D 上的具有各个一阶连续偏导数的函数,那么曲线积分?+L dy y x Q dx y x P ),(),(在D 内具有线积分的路径无关性的充要条件为

x Q y P ??=??。

这样判断一种曲线积分是否具有线积分的路径无关性,就更为方便了,而对于具有线积分的路径无关性的曲线积分,不妨写成

?+B

A Qdy Pdx ,

其中A 和B 为曲线的起点和终点。

判断一种曲线积分具有线积分的路径无关性,能够极大地简化这种曲线积分的计算,因为我们有可能通过选择合适的路径,使得积分计算变得非常简单。

我们知道对于单变量函数的微分运算,存在逆运算,就是函数的不定积分,那么对于多元函数的全微分,要引入它的逆运算,就需要应用具有路径无关性的曲线积分的概念。

首先是存在性问题,即给出一个微分形式Pdx+Qdy ,如何判断是否存在一个二元函数f ,使得df 就是所给定的微分形式,或者说判断所给定的微分形式是否为全微分或者说恰当微

下面的一个判断存在性的充要条件:

设P (x ,y )和Q (x ,y )是在单连通区域D 上的具有各个一阶连续偏导数的函数,那么所给微分形式是一个全微分的充要条件为在D 内总是成立

x Q y P ??=??。

如果一个微分形式是恰当微分,也就是说具有函数f (x ,y )作为它的原函数,那么它在定义单连通区域内的某条曲线L (起点为(a ,b ),终点为(c ,d ))上的线积分为

?+L dy y x Q dx y x P ),(),(=),(),(b a f d c f -,

可以看到这种计算方法,与单变量的定积分是完全类似的。

三重积分及其应用与计算。

基于我们已经讨论的二重积分,再推广到三重积分,甚至更多重积分,都是很容易的,不存在原则性的新问题。

首先定义完全是类似的,只是积分区域从二维到了三维,可以想象为在三维立体区域当中作分割,作和式,取极限这一系列我们已经很熟悉的步骤,而得到三重积分。

而且完全与二重积分类似地,三重积分同样具有线性性质和在积分区域上的可加性质,以及估值性质与介值性质。

三重积分可以应用于在空间区域具有一定分布的物理量的计算,例如具有空间密度分布的物体的质量,以及它们的重心,一阶矩,二阶矩,转动惯量等等。

与二重积分的计算一样,三重积分的计算主要就是转化为累次积分的计算,可以是先作一个定积分,再作二重积分的累次积分;或者是反过来,先作二重积分的累次积分,再作一个定积分。如何选择积分顺序对于决定计算是否简单具有非常重要的作用。而恰当地选择积分顺序,需要我们多加练习,才能增加经验。例如如果我们能够观察到积分区域的某个方向的截面比较规范,最后作定积分的积分限比较容易得到,就不妨使用先作二重积分的累次积分,再作一个定积分的方法。

当然,作多重积分最为重要的是在选择好方法进行计算之前,能够对被积函数和积分区域都作仔细的分析与观察,寻找可能有的简化方法,比方说利用积分区域的对称性与被积函数的奇偶性等等。很多时候,把被积函数转化到别的坐标系里,常常能极大地简化被积函数的形式,从而简化积分计算过程,这是我们后面会讨论的问题。

而保证计算正确性的关键是各次积分的积分限的确定。因此要有意识地加强对一个多重积分确定积分限方面的训练。

圆柱坐标和球面坐标中的三重积分。

圆柱坐标就是把直角坐标的XY 平面变换为极坐标,而Z 轴不变所得到的坐标,因此圆柱坐标与直角坐标之间的变换关系为

?????===z z r y r x θ

θsin cos

熟悉与掌握一种坐标系的重要方法,是看当各个坐标变量取常数时,分别表示了什么样的几何对象,对于三维坐标的三个变量,就有三个变量分别取定值,和两两取定值一共6

r 为定值,表示以Z 轴为中心轴的圆柱面系;

θ为定值,表示过Z 轴的半平面系;

r 为定值,表示以Z 轴为法向的平面系;

r 和θ同时为定值,表示与Z 轴平行的直线系;

z 和θ同时为定值,表示起始于Z 轴并且与Z 轴垂直的射线系;

z 和r 同时为定值,表示圆心在Z 轴并且与Z 轴垂直的圆。

球面坐标就是在三个正交平面上的坐标都是极坐标。坐标分量由点的位置向量长度以及位置向量分别和Z 轴与X 轴的正向的夹角组成。

球面坐标与直角坐标的变换关系为

?????===αθ

αθαcos sin sin cos sin r z r y r x

同样的可以得到坐标变量取定值时所表示的几何对象:

r 为定值,表示以原点为球心的球面系;

θ为定值,表示过Z 轴的半平面系;

α为定值,表示以原点为顶点,以Z 轴为对称轴的圆锥面系;

r 和θ同时为定值,表示半平面上以原点为圆心的半圆系;

α和θ同时为定值,表示起始于原点的射线系;

α和r 同时为定值,表示圆心在Z 轴并且与Z 轴垂直的圆。

所有这些特别情形都希望同学们自己动手实际画出来,以加强印象,对于在这些坐标里计算多重积分非常有好处。

在这两种坐标里计算多重积分,首先是给出分别在这些坐标系里的体积微元的表达式: 在圆柱坐标系里是dz rdrd dv θ=;

在球面坐标系里是αθαd drd r dv sin 2=。

因此可以分别得到在这两个坐标系里的三重积分的计算公式:

在圆柱坐标系里是

???=???ΩΩdz rdrd z r r f dv z y x f θθθ),sin ,cos (),,(; 在

球面坐标系里是???=???ΩΩα

θααθαθαd drd r rcoa r r f dv z y x f sin ),sin sin ,cos sin (),,(2

在具体问题当中,如何选择坐标系,必须对具体问题经过分析才能决定,一般说来,或者是在某个坐标系里被积函数变得简单,或者说在某个坐标系里可以更为方便地选择积分顺序,从而简化计算,总之是把多重积分归结到曲线积分和曲面积分,看在哪种坐标里曲线或曲面的方程更为简单,或者说出现能够加以简化的现象。这些都必须通过我们加强练习来获

得观察分析能力,而不是在看例题时,什么都理解,而面对实际问题时,就一筹莫展了。

第二型曲面积分的概念与计算。

在实际问题当中,我们还会遇到可定向的曲面,即能够明确定义一个曲面的两个侧面的曲面,也就是说,在这个曲面的任意一点,都可以确定而统一地定义曲面的两侧空间,这个定义不至于因为这点在曲面上位置的变化而变化,严格地说,就是假设在一点指定一个法向向量为正向,然后使得这点在曲面任意运动,那么在这点回到原来的位置时,如果法向方向保持不变,就说这个曲面是可定向的,或者说是有向的。

在有向曲面上,我们可以定义在这种曲面上的第一型曲面积分,为了表明是在有向曲面上作积分这个差别,特别称为第二型曲面积分:

设在有向曲面S 上有定义的向量场

k z y x R j z y x Q i z y x P z y x f ),,(),,(),,(),,(++=

如果对于S 上的每一点,向量场在正法向上的投影沿着S 所作的第一型曲面积分存在,则称之为向量场对曲面S 沿着指定侧的第二型曲面积分,即

S d z y x f S ???),,(。

利用第二型曲面积分可以很自然地用来表示一个流速场通过曲面S 的流量,而在物理学的场论里,类似的物理量是非常多的。

由于本质上第二型曲面积分是来源于第一型曲面积分,因此也就具有类似的性质,如线性性质,积分区域的可加性性质,不过对于有向曲面还可以取曲面的另外一侧作为曲面的法向,这样得到的第二型曲面积分值与原来的积分值异号。

计算第二型曲面积分,主要是采用转化为二重积分的计算的方法。

我们只考虑上面向量积分式的一个分量即可。例如把

dxdy z y x R S ??),,(转化为XY 平面

上的二重积分。

如果S 为母线平行于Z 轴的柱面,则显然有 dxdy

z y x R S ??),,(=0;

否则利用方程z=f (x ,y )表示曲面S ,则得到

dxdy z y x R S ??),,(=??±D dxdy

y x f y x R )),(,,(,

其中D 为曲面S 在XY 平面上的投影区域,正负号根据积分进行时是否沿着正法向来决定。

高斯公式以及散度。

在闭曲面上的曲面积分与闭曲面所包含的空间体积上的三重积分之间存在一个关系,即所谓的散度定理,或者说高斯公式:

设在空间区域Ω上存在C 1函数),,(z y x P ,),,(z y x Q ,),,(z y x R ,而这个空间区域的边界为光滑可定向曲面组成,那么有

??++Ω?dxdy

z y x R dzdx z y x Q dydz z y x P ),,(),,(),,( =?????+??+??dv z R y Q x P )(

其中曲面积分是沿着曲面外侧进行的。

把高斯公式写成向量的形式,可以进一步看到高斯公式与格林公式的相似性,不过需要引入向量场的一个数值函数,即散度:

定义在向量场

k z y x R j z y x Q i z y x P z y x f ),,(),,(),,(),,(++=

的数值函数

z R y Q x P z y x f div ??+??+??=),,( ,

称为向量场在点(x ,y ,z )的散度。

那么高斯公式就可以写成向量形式:

???Ω=???ΩΩ?d f div S d f ,

又由于散度还可以应用向量微分算子来表示,因此又可以写成:

???Ω??=????ΩΩ?d f S d f n 0,

可以看到高斯公式与格林公式的相似形式了。

如果把向量场直观理解为某种流量场的话,就可以把向量场中一点的散度,理解为向量场在该点的某种相对体积膨胀率,我们可以把该点用任意一个闭曲面包围起来,对这个曲面运用高斯公式,得到

???Ω=???Ω

Ω?d f div S d f ,

如果向量场为C 1函数,就可以对上面等式右边的三重积分应用积分中值定理,再使得闭曲面向该点收缩,体积趋向于0,得到 Ω???=Ω?→ΩS

d f z y x f div lim ),,(0。

因此在物理场中,散度大于0的点称为源,而小于0的点称为汇,高斯公式更是具有非常明显的物理意义。

空间曲线积分以及旋度,斯托克斯公式。

从平面曲线积分可以很自然地推广到空间向量场对空间曲线的积分,并且同样存在相似的两种积分方式,即对弧长积分与对坐标积分,这里我们主要考虑对坐标积分,可以写成

?++=??C

C Rdz Qdy Pdx s d f 。

空间曲线积分在所谓有势场里具有很好的性质,所谓有势场是指存在一个定义在相应空间区域的势能函数,使得所考虑的向量场为这个势能场的梯度。

而一个向量场同时是有势场的充要条件为

向量场 k z y x R j z y x Q i z y x P z y x f ),,(),,(),,(),,(++=

为有势场的充要条件是

x Q y P ??=??;

x R z P ??=??;

z Q y R ??=??。

然后对于一个有势场,其中定义的曲线积分具有如下性质:

设定义在单连通区域Ω的向量场),,(z y x f

同时为势能函数),,(z y x g 的梯度,即为有势场,

(1) 那么对于空间区域内的任意曲线C ,向量场在C 上面的线积分与路径无关;

(2) 并且这个积分值等于势能函数在曲线两个端点的函数值的差。

上面关于有势场的充要条件还可以使用另一种表述,即引入一种新的描述向量场的运算,旋度。

所谓旋度是一个向量,为向量微分算子(哈密顿算子)与向量场的外积。写成

f f rot f curl ??==。

这样,有势场的充要条件也就可以表述为旋度为0的向量场。

利用旋度的概念,还可以把平面曲线上的格林公式推广到空间曲线上,得到所谓斯托克斯公式:

定义在空间区域Ω上的向量场

k z y x R j z y x Q i z y x P z y x f ),,(),,(),,(),,(++=

为C 1

向量场,S 为空间区域Ω内以分段光滑曲线C 作为边界的分片光滑曲面,则有 ?????=??S C s

d f s d f

其中C 的环绕方向与S 的正法向遵循右手法则。

非常类似于运用高斯公式可以更深刻地理解散度概念,运用斯托克斯公式也可以更深刻地理解旋度的概念。

类似地,对于向量场中的任意一点M ,取一个以空间曲线C 为边界的有界曲面S 包含该点M ,对它运用斯托克斯公式,并且使得S 收缩趋向于M 点,就得到 S s

d f z y x f curl C M S n ??=→ lim ),,(。

反过来,对于向量场内的面积微元S ,可以得到 ??=C n

s d f S z y x f curl ),,(,

称为向量场围绕闭曲线C 的环量,这个表达式还可以理解为向量场沿着空间中任意闭曲线C

的环量,等于向量场的旋度通过任意以C为边界的空间曲面S的通量。这种理解使得斯托克斯公式在物理学获得了广泛的应用。

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

《高等数学一》第六章多元函数微分学历年试题模拟试题课后习题大汇总(含答案解析)

第六章多元函数微分学 [单选题] 1、 设积分域在 D由直线x+y二0所围成,则 | dxdy 如图: [单选题] 2、 A 9 B、4 C 3

【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】 [单选题] 3、 设H 二才,则y=() A V 皿2-1) B 、xQnx-1) D 【从题库收藏夹删除】 【正确答案】C 【您的答案】您未答题 【答案解析】 首先设出-,J ' 二一;,然后求出 最后结果中把二】用’’次方代换一下就可以得到结果. [单选题] 4、 Ft F'y,尸空二 dx F f y

[% I 设Z = 则去九£ |() km ,(心+& J D )L 『(也几) AK^*° A'X ?■ 【从题库收藏夹删除】 【正确答案】D 【您的答案】您未答题 【答案解析】本题直接根据偏导数定义得到 [单选题] 5、 设z=ln (x+弄),示=() A 1 B 、 X+旷" C 1-2妒 盂+沙 D X + 帘 一" 【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】 B 、 lim U m /侃+山+ 3) — / (险用) Ay 了0+山』0)—/(兀 几) Ar lim /(x+Ax.y)-/^) 4y

|"S 1 I 对x求导,将y看做常数,小门?八 [单选题] 6、 设U 了:,;_丁;:£=() 【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】<■■-?■■■■■:川[单选题] 7、 设f(x r x+y) = ^ + x2t则£0,卩)+ £(尽刃二() A丨; B、… C : D ', 【从题库收藏夹删除】 【正确答案】B 【您的答案】您未答题 【答案解析】 f(x,兀+y)=砂+ F二疏》+兀) /fcy) = ^y X '(^y)=y 二兀 £(2)+另(“)=曲 [单选题] 8

多元函数积分的计算方法技巧

第10章 多元函数积分的计算方法与技巧 一、二重积分的计算法 1、利用直角坐标计算二重积分 假定积分区域可用不等式 表示, 其中, 在上连续. 这个先对, 后对的二次积分也常记作 如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2) D a x b x y x ≤≤≤≤??12()()?1()x ?2()x [,]a b y x f x y d dx f x y dy D a b x x (,)(,)() ()σ??????=12D c y d y x y ≤≤≤≤,()()φφ12φ1()y φ2()y [,]c d f x y (,)D f x y d f x y dx dy dy f x y dx D y y c d c d y y (,)(,)(,)()()()()σφφφφ??????=????? ? ??=1212

显然,(2)式是先对,后对的二次积分. 积分限的确定 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交点与, 这里的、 就是将,看作常数而对积分时的下限和上限;又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为. 例1计算, 其中是由抛物线及直线所围成的区域. x y D ],[b a x x y D D ))(,(1x x ?))(,(2x x ?)(1x ?)(2x ?x y x [,]a b x x a b xyd D ??σD y x 2=y x =- 2

2.利用极坐标计算二重积分 1、就是极坐标中的面积元素. 2、极坐标系中的二重积分, 可以化归为二次积分来计算. 其中函数, 在上连续. 则 注:本题不能利用直角坐标下二重积分计算法来求其精确值. D y y x y :,-≤≤≤≤+1222xyd dy xydx x y dy D y y y y σ?????==???? ??-+-+12 2 212 2 2 212[] =+-=-?12 245 8 2512y y y dy ()rdrd θr →cos θ r →sin θrdrd →θ f x y dxdy D (,)??f r r rdrd D (cos ,sin )θθθ??αθβ?θ?θ≤≤≤≤12()()r ?θ1()?θ2()[,]αβf r r rdrd d f r r rdr D (cos ,sin )(cos ,sin )() () θθθθθθα β ?θ?θ????=12

多元函数微分学练习题

多元函数微分学练习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1 (,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? . 12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 .

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

多元函数微分学习题课

多元函数微分学习题课 1.已知)(),(22y x y x y x y x f ++-=-+?,且x x f =)0,(,求出),(y x f 的表达式。 2.(1)讨论极限y x xy y x +→→00lim 时,下列算法是否正确?解法1:0111lim 00=+=→→x y y x 原式;解法2:令kx y =,01lim 0=+=→k k x x 原式;解法3:令θcos r x =,θsin r y =,0sin cos cos sin lim 0=+=→θθθθr r 原式。 (2)证明极限 y x xy y x +→→0 0lim 不存在。 3.证明 ?????=≠+=00 )1ln(),(x y x x xy y x f 在其定义域上处处连续。 4. 试确定 α 的范围,使 0|)||(|lim 22)0,0(),(=++→y x y x y x α 。 5. 设 ?? ???=+≠+++=000)sin(||),(22222222y x y x y x y x xy y x f ,讨论 (1)),(y x f 在)0,0(处是否连续? (2)),(y x f 在)0,0(处是否可微? 6. 设F ( x , y )具有连续偏导数, 已知方程0),(=z y z x F ,求dz 。 7. 设),,(z y x f u =有二阶连续偏导数, 且t x z sin 2=,)ln(y x t +=,求x u ??,y x u ???2。 8. 设)(u f z =,方程?+ =x y t d t p u u )()(?确定u 是y x ,的函数,其中)(),(u u f ?可微,)(),(u t p ?'连续,且 1)(≠'u ?,求 y z x p x z y p ??+??)()(。 9. 设22v u x +=,uv y 2=,v u z ln 2=,求y z x z ????,。 10.设),,(z y x f u =有连续的一阶偏导数 , 又函数)(x y y =及)(x z z =分别由下两式确定: 2=-xy e xy ,dt t t e z x x ?-=0sin ,求dx du 。 11. 若可微函数 ),(y x f z = 满足方程 y z x z y x '=',证明:),(y x f 在极坐标系里只是ρ的函数。

2多元函数积分学.docx

2.多元函数积分学 K考试内容》(数学一) 二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件己知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用 K考试要求》(数学一) 1 ?理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。 3?理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 4.掌握计算两类曲线积分的方法。 5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。会用高斯公式、斯托克斯公式计算曲面、曲线积分。 7.了解散度与旋度的概念,并会计算。 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。 K考试要求』(数学二) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 K考试要求》(数学三) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 2.了解无界区域上较简单的广义二重积分及其计算。 K考试要求》(数学四) 同数学三

2.多元函数积分学 K知识点概述H 2. 1二重积分 基本概念:定义、基本性质 计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区 域;&型简单区域)一般变换法 几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量 2. 2三重积分 基本概念:定义、基本性质 计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域 投影法(先定积分后二重积分) 截面法(先二重积分后定积分)柱坐标法;球坐标法;一般变换法 儿何应用:体积物理应用:质量、质心、转动惯量、引力 2. 3曲线积分 第一类曲线积分 基本概念:定义、基本性质 计算方法:参数化法 儿何应用:弧长 物理应用:质量、质心、转动惯量、引力 第二类曲线积分 基本概念:定义、基本性质计算方法:参数化法 曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形); 全微分的原函数;场论基本概念与计算格林公式(平面曲线积分);斯托克 斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

实变函数教材

目录 1.数论的内容......... ... (3) 2.实变函数论的特点......... (4) 3.学习实变函数论的方法......... (5) 4.本教材的特色处理之处......... (5) 第一章集合论 §1.1集合概念与运算......... (6) §1.2集合的势、可数集与不可数集 (13) 习题...... (25) 第二章点集 §2.1R n空间...... ... (26) §2.2几类特殊点和集......... (30) §2.3有限覆盖定理与隔离性定理 (35) §2.4开集的构造及其体积... (38) 习题......... (45) 第三章测度论 §3.1Lebesgue外测度定义及其性质 (46) §3.2可测集的定义及其性质...... ... (48) §3.3可测集的构造......... (55) 习题......... (59) 第四章可测函数 §4.1可测函数定义及其性质... ...... (59) §4.2可测函数的结构......... (63) §4.3可测函数列的依测度收敛 (70) 习题

第五章Lebesgues积分理论 §5.1Lebesgue积分的定义及其基本性质... (77) §5.2Lebesgue积分的极限定理 (84) §5.3(L)积分的计算... (88) §5.4Fubini定理......... (93) 习题......... (98) 第六章积分与微分 §6.1单调函数与有界变差函数... (101) §6.2绝对连续函数......... (106) §6.3微分与积分......... (108) 习题......... (112) 附录 1.不可测集......... (113) 2.一般集合的抽象测度和抽象积分...... (115) 3.单调函数的可微性

完整word版微积分课程教学大纲

《微积分》课程教学大纲 课程类型: 公共基础课课程代码: 0140026 课程学时: 75 学分: 5 适用专业: 经济学专业(金融方向) 开课时间:一年级一学期开课单位: 基础部数学教研室 大纲执笔人: 兰星大纲审定人: 王培颖 一、课程性质、任务 课程性质:微积分已经被广泛应用于各种经济活动之中,并且与其他经济学分支互相渗透或结合。微积分即是掌握现代化科学知识必不可少的基础知识和基本工具,也是后继课程《概率论与数理统计》《计量经济学》等的基础课程,所经,微积分已经成为经济学专业学生必修的一门专业基础课。 教学目的与任务:首先要使学生掌握经济学专业所必须的微积分知识和方法,迸一步培养学生正确、熟练的计算能力,同时还要通过微积分课程的教学,对学生进行数学思想和方法的教育训练,进一步培养学生正确、深刻的思维能力,及独立的分析解决实际问题的能力。 备注:本教学大纲以赵树嫄等主编的《微积分》为编写标准。 二、课程教学内容 (一)教学内容、目标与学时分配 教学内容教学目标学时分配 75 理论教学部分 6 1、函数(第一章) 1/2 了解 1.1集合1 理解 1.2实数集1/2 1.3 理解函数关系 1/2 了解 4 1.分段函数 1/2 5建立函数关系的例题掌握. 11 1.6函数的几种简单性质了解 1 了解反函数与复合函数.17 1 掌握 8 1.函数的几种简单性质17 、极限与连续(第二章)2 . 21理解数列极限 2 2.函数极限理解22 理解变量极限. 23 2 4.无穷大与无穷小理解 21 5. 2掌握极限的运算法则 3 6. 2 两个重要极限了解3 2.7利用等价无穷小量代换求极限掌握 2 了解.8函数的连续性 22 9 3、导数与微分(第三章)理解 3.1引出导数概念的例题 1

多元函数微积分练习题

练习题 一 多元函数微分学部分练习题 1 求函数y x y x z -+ += 11的定义域. 2已知xy y x xy y x f 5),(2 2 -+=-,求),(y x f . 3计算下列极限 (1) 22) 0,1(),() ln(lim y x e x y y x ++→ (2) 442 2),(),(lim y x y x y x ++∞∞→ (3) 2 43lim ) 0,0(),(-+→xy xy y x (4) x y x xy 1) 1,0(),()1(lim +→ (5)2222)1,2(),(2lim y x y x xy y x ++→ (6)2222)0,0(),() (2sin lim y x y x y x ++→ 4 证明极限 y x y x y x +-→)0,0(),(lim 不存在. 5 指出函数2 2),(y x y x y x f -+= 的间断点. 6计算下列函数的偏导数 (1))ln(2y x z = (2)x xy z )1(-= (3)),(2 y x f x z = (4))(xy x z ?= (5)y xy y x z 234 4+-+= (6))ln(22y x z += (7))3cos(22y x e z y x += (8)y xy z )1(+= (9)2 221 z y x u ++= (10)? = 220 sin y x dt t z 7 计算下列函数的二阶偏导数 (1)2 43y xy x z -+= (2))ln(xy y z = (3)y e z xy sin = (4)),(2 y x f x z = (5)2 (,)z f xy x =

考研数学(数学三)公认教材及参考书:

考研数学(数学三)公认教材及参考书 高等数学:同济五版 线性代数:同济六版 概率论与数理统计:浙大三版 推荐资料: 1、李永乐考研数学3--数学复习全书+习题全解(经济类) 2、李永乐《经典400题》 3、《李永乐考研数学历年试题解析(数学三)真题》 考研数学规划: 课本+复习指导书+习题集+模拟题+真题=KO 复习资料来说:李永乐的不错,注重基础;陈文灯的要难一些。 经济类一般都用李永乐的(经济类数学重基础不重难度),基础好的话可以考虑下陈文灯的书。李永乐的线性代数很不错陈文灯的高等数学很不错 2009年全国硕士研究生入学统一考试数学(三)考试大纲 考试科目:微积分、线性代数、概率论与数理统计 考试形式和试卷结构: (一)试卷满分为150分考试时间为180分钟. (二)内容结构:高等教学约56%线性代数约22% 概率论与数理统计约22% (三)题型结构: 单项选择:8小题,每小题4分,共32分 填空题:6小题,每小题4分,共24 解答题(包括证明题):9小题,共94分 全国硕士研究生入学统一考试英语考试大纲 完形填空:10分(20道选择题每题0.5分)[可以抛弃的题型] 阅读:60分 其中阅读A部分(阅读理解):40分(20道选择题每题2分)(这个是重中之重) 阅读B部分(新题型):10分(5道题每题2分一共有四种题型) 阅读C部分(翻译):10分(5道题每题2分) 作文:30分(除了阅读A之外最重要的部分) 小作文(书信作文):10分 大作文(图画作文):20分

微积分 一函数极限连续 考试内容 函数的概念及表示方法函数的有届性单调性周期性和奇偶性复合函数反函数分段函数和隐函数基本初等函数的性质及其图形初等函数函数的关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质和无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质 二一元函数微分学 考试内容 导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达法则函数的单调性判别函数的极值函数的图形的凹凸性拐点及渐近线函数图形的描绘函数的最大值和最小值 三一元函数积分学 考试内容 原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱不尼茨公式不定积分和定积分的换元积分法和分部积分法反常积分定积分的应用 四多元函数微积分学 考试内容 多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法语隐函数求导法二阶偏导数全微分多元函数的机制和条件极值最大值最小值二重积分的概念基本性质和计算无界区域上的简单的反常二重积分 五无穷级数 考试内容 常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理冥级数及其收敛半径收敛区间(指开区间)和收敛域冥级数的和函数冥级数在其收敛区间的基本性质简单冥级数的和函数的求法初等函数的冥级数展开式 六常微分方程和差分方程 考试内容 常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用

第八讲 多元函数积分学知识点

第八讲 多元函数积分学知识点 一、二重积分的概念、性质 1、 ∑??=→?=n i i i i d D f dxdy y x f 1 0),(lim ),(δηξ ,几何意义:代表由),(y x f ,D 围成的曲顶柱体体积。 2、性质: (1)=??D dxdy y x kf ),(??D dxdy y x f k ),( (2)[]??+D dxdy y x g y x f ),(),(= ??D dxdy y x f ),(+??D dxdy y x g ),( (3)、D d x d y D =?? (4)21D D D +=,??D dxdy y x f ),(=??1),(D dxdy y x f +??2 ),(D dxdy y x f (5)若),(),(y x g y x f ≤,则≤??D dxdy y x f ),(??D dxdy y x g ),( (6)若,),(M y x f m ≤≤则MD dxdy y x f mD D ≤≤??),( (7)设),(y x f 在区域D 上连续,则至少存在一点D ∈),(ηξ,使=??D dxdy y x f ),(D f ),(ηξ 二、计算 (1) D:)()(,21x y x b x a ??≤≤≤≤ ????=) ()(21),(),(x x b a D dy y x f dx dxdy y x f ?? (2) D :)()(,21y x y d y c ??≤≤≤≤, ????=) ()(21),(),(x x d c D dy y x f dy dxdy y x f ?? 技巧:“谁”的范围最容易确定就先确定“谁”的范围,然后通过划水平线和 垂直线的方法确定另一个变量的范围 (3)极坐标下:θθθrdrd dxdy r y r x ===,sin ,cos ????=) (0)sin ,cos ( ),(θβαθθθr D rdr r r f d dxdy y x f 三、曲线积分 1、第一型曲线积分的计算 (1)若积分路径为L :b x a x y ≤≤=),(φ,则

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

《高等数学一》第六章多元函数微分学历年试题模拟试题课后习题大汇总(含答案解析)

第六章多元函数微分学 [单选题] 1、 设积分域在D由直线所围成,则=().A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 [单选题] 2、 ().

A、9 B、4 C、3 D、1 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 [单选题] 3、 设,则=(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 首先设出,然后求出 最后结果中把用次方代换一下就可以得到结果.

[单选题] 4、 设则().A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】本题直接根据偏导数定义得到. [单选题] 5、 设,=(). A、 B、

C、 D、 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 对x求导,将y看做常数,. [单选题] 6、 设,则= ().A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 [单选题] 7、 A、 B、 C、

【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 [单选题] 8、 函数的定义域为(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 ,,综上满足:. [单选题] 9、 (). A、0

C、1 D、∞ 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 [单选题] 10、 设,则().A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 [单选题] 11、

多元函数积分学

多元函数积分学总结 多元函数积分学是一元函数积分学的拓展与延伸,包括二重积分、三重积分、曲线积分、曲面积分。 几何意义:曲顶柱体的体积 性质:线性性质、可加性、单调性、估值性质、中值定理 计算方式:x 型、y 型、极坐标(2 2 y x +) 常见计算类型: ① 选择积分顺序:能积分、少分块 ② 交换积分顺序:确定积分区域→交换积分顺序→开始积分 ③ 利用对称性简化计算:要兼备被积函数和积分区域两个方面,不可误用。 ④ 极坐标系下的二重积分的定限:极点在积分区域内(特殊:与x 轴相切、与y 轴相切)、极点不在积分区域内 ⑤ 其他:利用几何意义、含绝对值时先去绝对值、分段函数、概率积分 了解“积不出来函数”:dx x ?)cos(2、dx e x ? -2 、dx x ? ln 1、dx x x ?sin 概率积分例题展示 证明 2 2 π = ? ∞ +-dx e x 证:令=)(x f 2 x e - ① 易证)()(x f x f -=?)(x f 为偶函数? 2 12 = ? +∞ -dx e x dx e x 2 ? +∞ ∞ -- (奇偶对称性、轮换对称性、周期性→简化计算) ② 已知dx e x ? -2 为“积不出来函数”,所以改变我们所求目标函数dx e x 2 ?+∞ ∞ --的形式 令= w dx e x 2 ? +∞ - 4 1 2 =w ? dx e x 2 ? +∞ ∞ -- 4 1= dxdx e x x ? ?+∞ ∞ -+-+∞ ∞ -) (22 (了解“积不出来函数”,增强目标意识,适当转化目标函数形式)

③ 令其中一个x 变成y ,构造2 2 y x + 2 w 4 1 = dxdy e y x ? ?+∞ ∞ -+-+∞∞ -) (22 ④ 将θcos r x =,θsin r y =带入上一步的2 w 易得),0(+∞∈r ,)2,0(π∈θ 2 w =θdrd e r r ? ?-+∞ ?π 20 2 41 = ?? +∞ -?π20 2 θd dr e r r 20 2 12 1 2dr e r ?=? +∞ -π 2021212 lim dr e b r b ?=?-+∞ →π )1(2121 2lim --=-+∞ →b b e π π4 1==?w 2π 即220π=?∞+-dx e x 成立 (极坐标系?直角坐标系,选择合适的积分次序将二重积分?二次积分,了解广义定积分) (此类积分为概率积分 b dt e b dx e t bx π 2110 2 2 ? ? ∞ +-∞ +-= = )

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

微积分教学大纲

《微积分》教学大纲 课程代码: 名称:微积分学 授课专业:工业设计专业 学时数:100 一、课程的目的和要求 学生能够通过本课程的学习,获得一元函数微积分学、多元函数微分学方面比较系统的知识。同时,这些知识的掌握也会给后续课程的学习打下基础。 更重要的是,在教学过程中使学生加深高等数学的辩证统一思想的理解,并利用这一思想解决一些实际问题。通过这门课程的学习,提高学生的空间想象能力、逻辑思维和创造性思维能力,全面提高学生的数学素质。 二、课程教学内容 第一部分函数 主要内容:函数的概念与性质,复合函数、初等函数的概念。 要求: 1、理解函数的概念,能列出简单实际问题中的函数关系。 2、理解函数的单调性、周期性、有界性和奇偶性; 3、理解反函数和复合函数的概念; 4、理解初等函数的概念和性质。 重点:函数的的概念与性质。 难点:列出问题中的函数关系,反函数和复合函数的概念。 第二部分极限与连续 主要内容:极限的概念,极限四则运算,无穷小、无穷大的概念,函数连续的概念。 要求: 1、了解数列极限、函数极限的概念(对极限的精确定义、证明不作要求); 2、掌握极限四则运算法则,会用两个重要极限求极限; 3、理解解无穷小与无穷大、高阶无穷小、同阶无穷小和等价无穷小的概念; 4、理解函数在一点连续和在一区间连续概念,了解函数间断的概念; 5、了解初等函数的连续性,了解在闭区间上连续函数的性质. 重点:极限的四则运算法则。 难点:极限的概念,连续的概念。 第三部分导数与微分 主要内容:导数和微分的概念,导数和微分的运算。 要求: 1、理解导数和微分的概念,理解导数的几何意义,了解函数的可导与连续之间的关系; 2、熟练掌握导数和微分的运算法则、导数的基本公式,了解高阶导数概念,能熟练求初等函数的一阶、二阶导数(n>2阶导数不作要求); 3、掌握复合函数和隐函数的求导法; 4、会求曲线的切线与法线方程,了解微分在近似计算中的应用。

相关文档
最新文档