脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算
脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。而现行的国家标准中没有倾覆验算和稳定性验算内容。根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。

[关键词]脚手架;倾覆;稳定性;验算

结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。④结构或结构构件丧失稳定(如压屈等)”。可见它们同属于承载能力极限状态,但应分别考虑。《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。施工现场的起重机械在起吊重物时也要做倾覆验算。对于脚手架,由于浮搁在地基上,更应该做倾覆验算。

《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有

倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。如果需要,还可进行正常使用极限状态计算。

1脚手架的倾覆验算

1.1通用的验算公式推导

无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算:

(1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。当风荷载与一个以上的其它可变荷载组合时采用0.9;当风荷载仅与永久荷载组合时采用1.0。

对于平、立面无突出凹凸不平的脚手架,以下简称为规整脚手架,其倾覆验算应按如下表达式进行:

(2)式中:0.9为起有利作用的永久荷载的荷载分顶系数;cw、wk为风荷载的效应系数、风荷载的标准值。

对于规整脚手架,其上作用的永久荷载、可变荷载是抗倾覆的,

它们不应参与倾覆验算。此时应按如下表达式进行倾覆验算: (3)以上式(1)适用于外形复杂的脚手架,式(2)适用于有施工活荷载的规整脚手架,式(3)适用于无外荷载的规整脚手架。在倾覆验算时,为保证安全,需引入抗倾覆安全系数k,一般取k=1.2,即抗倾覆力矩为倾覆力矩的1.2倍以上。

1.2规整脚手架倾覆验算公式的进一步推导

设搭设的规整脚手架,长度l(m)、宽度b(m)及高度h(m),其上只有脚手架自重和风荷载作用。其倾覆沿受风面大的脚手架的外沿线,倾覆力矩mov由风荷载产生:mov=1.4wklh2/2,沿单位长度上的倾覆力矩mov=1.4wkh2/2。

抗倾覆力矩mr由脚手架自重产生:mr=0.9gklhb/2,沿单位长度上的抗倾覆力矩mr=0.9gkhb/2。引入抗倾覆系数k,倾覆力矩与抗倾覆力矩之间的关系应满足下式要求:

1.4kwkh2/2≤0.9gkhb/2

将其整理后可得到:

(4)取k=1.2代入式(4),得:

(5)式中:gk为脚手架按受风面面积平均分布的自重标准值(kn/m2);wk为风荷载标准值,wk=μzμs w0。风压高度变化系数μz按现行国家标准《建筑结构荷载规范》gb50009-2001规定采用,风荷载体型系数μs可参考jgj130-2001采用,基本风压w0(kn/m2)按gb50009-2001规定采用,也可按风力计算确定。

由式(4)、(5)可知,保证脚手架不倾覆,其高度与宽度之比值

应受到限制,比值与脚手架自重大小成正比,与风荷载成反比。

1.3计算实例1

设规整脚手架的立杆间距为1.0m×1.0m,步距1.2m,长度l=20m,宽度b=4m,高度h=19.2m的敞开式满堂扣件式钢管脚手架。现应用式(5)对该脚手架作倾覆验算。

1)无纵、横竖向剪刀撑时

脚手架自重标准值:立杆5×21=105根,设每根长20m,共2100m;纵向水平杆85根,横向水平杆357根,共3128m;直角扣件共3570个。脚手架自重gk=247.879kn,gk=247.879/(20×19.2)=0.6455 kn/m2。基本风压取九级风。平均风速产生的w0=0.32kn/m2,μ

z=1.25(b类粗糙度地面,高20m),μs=1.3φ=0.1625,风荷载标准值wk=0.065kn/m2,以上数值代入式(5)得:h/b≤0.5357×0.645 5/0.065=5.32,而本脚手架的高度与宽度之比为19.2/4=4.8<5.32,说明九级风时本脚手架不会发生倾覆倒塌。

2)设纵、横竖向剪刀撑时

纵向外侧面设竖向剪刀撑,与水平横杆夹角50.2°,共80根。横向每4跨设竖向剪刀撑,与水平横杆夹角50.2°,共48根。剪刀撑合计长度800m。转角扣件共640个。脚手架自重增加37.184kn,gk=0.645 5+37.184/20/19.2=0.742 3kn/m2,h/b=6.12。高宽比增加了15%,说明脚手架的剪刀撑对抗倾覆作用不大,但对提高稳定承载能力作用很大。

1.4计算实例2

设规整脚手架的立杆间距为1.2m×1.2m,步距1.2m,长度l=24m,宽度b=4.8m,高度h=19.2m的敞开式满堂扣件式钢管脚手架。现应用式(5)对该脚手架作倾覆验算。

1)无纵、横竖向剪刀撑时

脚手架自重标准值:立杆5×21=105根,设每根长24m共2520m,纵向水平杆85根,横向水平杆357根,共3753.6m,直角扣件共3570个。脚手架自重gk=288.030kn,

gk=288.030/20/19.2=0.625kn/m2。基本风压取九级风,平均风速产生的w0=0.32kn/m2,μz=1.25(b类粗糙度地面,高20m),μs=1.3φ=0.149 5,风荷载标准值wk=0.059 8kn/m2,以上数值代入式(5)得:h/b≤0.535 7×0.625/0.059 8=5.60,而本脚手架的高度与宽度之比为19.2/4.8=4.0<5.60,仍说明九级风时本脚手架不会发生倾覆倒塌。

2)设纵、横竖向剪刀撑时

纵、横向设竖向剪刀撑同例1,根数也相同,但每根剪刀撑长度由6.25m变为6.788m。剪刀撑合计长度868.89m。转角扣件共640个。脚手架自重增加42.709kn,gk=0.682 7kn/m2,h/b=6.12。高宽比增加了16%,仍说明脚手架的剪刀撑对抗倾覆作用不大,但对提高脚手架的稳定承载能力作用肯定很大。如果采用10年一遇基本风压w0=0.4kn/m2,则上面例1的h/b=4.26,4.90;例2的

h/b=4.22,4.90,都小于5.0。在此必须注意,作用在脚手架上的永久荷载或施工活荷载起抗倾覆作用,所以不参与倾覆验算。

总之,用式(4)、(5)对规整脚手架作倾覆验算是比较容易的,用脚手架的高宽比值表达抗倾覆是可行的。复杂的脚手架用公式(1)作倾覆验算也不难。

2脚手架的稳定性计算

脚手架属于杆系结构,对于杆系结构的弹性稳定理论比较成熟,并解决了许多实际问题。常用的刚架、排架、桁架等复杂的平面和空间结构的稳定性已有现成的手册可供查用。但脚手架由于施工因素的强烈干扰,使脚手架的立杆与水平横杆的连接性能不确定,导致不能应用前人的成果。但是,计算公式和图表不能直接套用,不等于稳定理论也过时。很多学者从实际工程和稳定理论出发,依据实践经验,应用强化结构构造措施和简单稳定验算方法,临时应付满足工程应用,不解决长远问题。当前唯一的解决途径是做必要的稳定试验,根据试验结果总结出理论上说得过去、好用的计算公式。以下笔者只是想对脚手架稳定性分析计算谈点粗浅的认识,用以区分脚手架的稳定性计算与倾覆验算。

有些标准在脚手架设计条文中引入了脚手架的高宽比,有一个标准规定模板支架的短向高宽比不宜大于5,大于5的应增设稳定措施。这个“5”不知从何而来?但与上面例题计算结果比较接近。但仍大于10年一遇风荷载算得的h/b=4.22,显得不安全。另一个标准规定的高宽比最大值没有超过2.5,而且高宽比大小与脚手架立杆计算长度系数μ拉上关系,但又看不清楚是什么关系,似乎是

高宽比大,计算长度系数也大,即稳定承载能力小。

为此,笔者查阅了有关文献。对于排架结构,例如单根悬臂柱的计算长度系数为2,二根相同的悬臂柱用一根横梁铰接连成排架,排架柱计算长度系数仍为2,且与横梁跨度大小无关。但用刚接连成刚架,刚架柱计算长度系数μ≈1+ibh/(6icl),式中ib、ic分别为横梁、柱的截面惯性矩,l、h分别为横梁跨度、柱高度。说明此时柱的计算长度系数与梁跨度有关,与高跨比(h/l)有关,更精确地说与梁柱线刚度之比有关。

有的学者总结为:单层或多层排架柱的稳定性计算可以用一根

单柱,单层或多层刚架柱的稳定性计算需要梁柱一起考虑。对于当前常用脚手架,立杆与横梁连接处于铰接与刚接之间,考虑施工等因素的影响,假定为铰接为好,所以用一根立杆的稳定性计算来代表整个脚手架的稳定性计算,已有的标准也是这样规定的。由此可见,排架的稳定性承载能力与排架高度有关,但与高宽比无关。脚手架已假定为排架,其稳定性承载能力也应与高度有关,而与高宽比无关,兹于刚接因素的影响可用一系数来补偿就可以了。因此,建议脚手架立杆计算长度系数规定与脚手架高宽比要求分别写。

3结语

当前常用脚手架的高宽比与脚手架倾覆有关,与稳定性承载能力无关。建议在编制有关标准时应分开表达。

抗倾覆稳定性验算

*作品编号:DG13485201600078972981* 创作者: 玫霸* 五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11.0米左右,此处的土为粘性土,可以采用“等值梁 法”进行强度验算。 首先进行最小入土深度的确定: 首先确定土压力强度等于零的点离挖土面的距离y ,因为在此处的被动 土压力等于墙后的主动土压力即: ()a p b K K P y -=γ 式中:P b 挖土面处挡土结构的主动土压力强度值,按郎肯土压力理论进 行计算即 a a b K cH K H P 22 12-=γ γ 土的重力密度 此处取18KN/m 3 p K 修正过后的被动土压力系数(挡土结构变形后,挡土结构 后的土破坏棱柱体向下移动,使挡土结构对土产生向上的摩擦力,从而使 挡土结构后的被动土压力有所减小,因此在计算中考虑支撑结构与土的摩 擦作用,将支撑结构的被动土压力乘以修正系数,此处φ=28°则K=1.78 93.42452=??? ? ?+?=? tg K K p

a K 主动土压力系数 361.02452=??? ? ?-=? tg K a 经计算y=1.5m 挡土结构的最小入土深度t 0: x y t +=0 x 可以根据P 0和墙前被动土压力对挡土结构底端的力矩相等来进行计算 ()m K K P y t a p 9.2600=-+=γ 挡土结构下端的实际埋深应位于x 之下,所以挡土结构的实际埋深应为 m t K t 5.302=?=(k 2 经验系数此处取1.2) 经计算:根据抗倾覆稳定的验算,36号工字钢需入土深度为3.5米,实际入土深度为3.7米,故:能满足滑动稳定性的要求 2、支撑结构内力验算 主动土压力:a a a K cH K H P 22 12-=γ 被动土压力:p p p cK K H P 22 12+=γ 最后一部支撑支在距管顶0.5m 的地方,36b 工字钢所承受的最大剪应力 d I Q d I Q S S z x x z ???? ??==*max max *max max max τ ,3.30* max cm I S z x = d=12mm,经计算 []ττ<=a MP 6.26max 36b 工字钢所承受的最大正应力 []σσ<==a MP W M 9.78max 经过计算可知此支撑结构是安全的 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口的位置,可降低

脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。而现行的国家标准中没有倾覆验算和稳定性验算内容。根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。 [关键词]脚手架;倾覆;稳定性;验算 结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。④结构或结构构件丧失稳定(如压屈等)”。可见它们同属于承载能力极限状态,但应分别考虑。《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。施工现场的起重机械在起吊重物时也要做倾覆验算。对于脚手架,由于浮搁在地基上,更应该做倾覆验算。 《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有

倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。如果需要,还可进行正常使用极限状态计算。 1脚手架的倾覆验算 1.1通用的验算公式推导 无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。当风荷载与一个以上的其它可变荷载组合时采用0.9;当风荷载仅与永久荷载组合时采用1.0。 对于平、立面无突出凹凸不平的脚手架,以下简称为规整脚手架,其倾覆验算应按如下表达式进行: (2)式中:0.9为起有利作用的永久荷载的荷载分顶系数;cw、wk为风荷载的效应系数、风荷载的标准值。 对于规整脚手架,其上作用的永久荷载、可变荷载是抗倾覆的,

脚手架稳定性计算学习资料

脚手架立杆的稳定性计算 2010-09-12 外脚手架采用双立杆搭设,按照均匀受力计算稳定性 稳定性计算考虑风荷载,按立杆变截面处和架体底部不同高度分别计算风荷载标准值。风荷载标准值按照 以下公式计算 Wk=0.7 卩 z 卩 s 3 0 其中3 0 --基本风压(kN/m2),按照《建筑结构荷载规范》 (GB50009-2001) 的规定采用: 3 0=0.37kN/m2 ; 卩Z--风荷载高度变化系数,按照《建筑结构荷载规范》 (GB50009-2001) 的规定采用:卩z= 0.74 , 0.74 ; 卩s--风荷载体型系数:取值为 1.132 ; 经计算得到,立杆变截面处和架体底部风荷载标准值分别为 : Wk 仁0.7 X 0.37 X 0.74 X 1.132=0.217kN/m2 ; Wk2=0.7 X 0.37 X 0.74 X 1.132=0.217kN/m2 ; 风荷载设计值产生的立杆段弯矩 MW 分别为: Mw1=0.85 X 1.4Wk1Lah2/10=0.85 X 1.4 X0.217 X 1.5 X 1.82/10=0.12 5kN?m ; b =N/( ? A) + MW/W < [f] 立杆的轴心压力设计值 :N=Nd=8.487kN ; 不考虑风荷载时,立杆的稳定性计算公式 b =N/( ? A) < [f] 立杆的轴心压力设计值 :N=N'd= 8.991kN ; 计算立杆的截面回转半径 :i=1.59 cm ; 计算长度附加系数参照《建筑施工扣件式钢管脚手架安全技术规范》 k=1.155 : 计算长度系数参照《建筑施工扣件式钢管脚手架安全技 术规 范》 计算长度,由公式IO=kuh 确定:10=3.118 m ; Mw2=0.85 X 1.4Wk2Lah2/10=0.85 1. 主立杆变截面上部单立杆稳定性计算。 X 1.4 X 0.217 X 1.5 X 1.82/10=0.125kN?m (JGJ130-2001)表 5.3.3 得 (JGJ130-2001)表 5.3.3 得:卩=1.5

脚手架立杆稳定性计算

屋面搭设满堂红脚手架立杆稳定性计算 1、钢管脚手架主要验算立杆的稳定性,可简化为按两端铰接的受压杆件计算。 2、荷载统计 钢管支架自重力 钢管:0.8*4*5*3.84*9.8=602n/m 2 扣件:4*5*13.2=264n/m 2 木板:0.8*0.8*0.35=224n/m 2 小计:602+264+224=1090n/m 2 吊篮后支座及配重 (1000+50)*9.8=10290n/m 2 合计:1090+10290=11380n/m 2 3、立杆纵距、横距均800mm ,每区格面积0.8*0.8=0.64m 2。 每根立杆承受的荷载为0.64*11380=7283.2n 。 4、设用ф48*3mm 钢管,A=424mm 2 钢管回转半径 15.9mm 442484d d i 2 221 2=+=+= 按强度计算,立杆的受压力为 2mm 17.17424 2.7283a n ===? 按稳定性计算立杆的受压力为 长细比47.759 .151200i l ===λ 查表得750.0=? 22mm n 215f mm n 90.22424 *750.02.7283a n =?===?? 考虑组合风荷载,计算公式 f w ≤+W M A N ?。 10 h 4.1*85.04.1*85.02 a wk w L W M M K == O W U U W s z k 7.0=,经查表得知,U z =1.27,U s =0.115,W O =0.65,

W K =0.7*1.27*0.115*0.65=0.066 立杆纵距L a =0.8 立杆步距h=1.2 009.010 2.1*8.0*066.0*4.1*85.0Mw 2 == 经计算 223mm n 215f mm n 67.2477.19.2210 *08.5009.090.22=?=+=+- 满堂红脚手架进过计算,立杆稳定性满足要求。

抗倾覆验算

一、便桥墩身抗倾覆检算 说明:1#墩为已完成墩身,且新建线路中线与1#墩身中线偏移0.19m,详见平面图所示。1#墩为最不利墩身,故以1#墩来检验墩身的抗倾覆安全性。 1、竖向力 竖向恒载: N1=95.75+39.2ⅹ9.2=456.39KN(桥跨上部结构自重) N2=562.5KN(墩身自重) N3=687.5KN(基础自重) 竖向活载: N4=1045.884KN(支点反力)Mx=18.068KN·m(支点反力对基底长边中心轴x-x轴力之矩) 2、水平力 制动力的大小均按竖向静活载(不包括冲击力)的10%计算,作用点在轨顶2m;离心力等于离心力率乘以支座的静活载反力N4,作用点在轨顶2m。 制动力T1: T1=(N1+N2+N3+N4)ⅹ10%=275.227KN 离心力T2: T2=CⅹN4 离心力率通过C=V2/(127R)计算,其中V为设计行车速度5Km/h,R为曲线半径400m,代入可得:C=52/(127ⅹ400)=0.0005 T2=0.0005ⅹ1045.884=0.523KN 3、风荷载(作用在墩身上的风力T墩、作用在列车上的风力T列车): 作用在桥梁受风面上的静压力,按《桥规》规定的标准求出最大风速后,通过风速与风压 1

关系公式Wo=γv2/(2q)求出基本风压值, 式中Wo为基本风压值(Pa) q为重力加速度(m/s2) γ为空气重度(N/m3) v为平均最大风速(m/s) 取标准大气压下,常温为15摄氏度时的空气重度12.255N/m3、纬度45度处重力加速度为9.8m/s2, 代入公式可以得出Wo=v2/1.6,查表v取12m/s计算得出Wo=90Pa 作用于桥梁上的风荷载强度W(Pa)按下式计算W=K1·K2·K3·Wo,查表取K1=1.0,K2=1.0,K3=0.8代入公式 可得W=72Pa 墩风压计算取横向迎风面积S=aⅹh,其中1#墩的a值为1.8m,h为墩高度5m代入可得墩迎风面积为9m2,T墩=9ⅹ72=0.65KN。 计算风力时,标准规矩列车横向受风面积等于受风面积按3m搞的长方带计算,作用点在轨面上2m高度处。 桥上有车时:W=K1·K2·800=800Pa≮1250Pa,列车迎风面积为3ⅹ(12.5+9.5+9+10)=96m2。T列车=96ⅹ800=76.8KN。 设基底截面重心至压力最大一边的边缘的距离为y(荷载作用在重心轴上的矩形基础且y=b/2),外力合力偏心距为e0,则两者的比值Ko可反映基础倾覆稳定性的安全度,Ko 称为抗倾覆稳定系数。 即Ko=y/ e0e0=(ΣPiei十ΣTihi)/ΣPi y=b/2=5/2=2.5m e=0.19m 2

落地脚手架计算书(适用于24米以下)

目录 一、编制依据 (1) 二、工程参数 (1) 三、横向水平杆(小横杆)验算 (2) 四、纵向水平杆(大横杆)验算 (4) 五、扣件抗滑承载力验算 (4) 六、立杆的稳定性计算 (5) 七、脚手架搭设高度计算 (8) 八、连墙件计算 (9) 九、立杆地基承载力计算 (10)

一、编制依据 1、工程施工图纸及现场概况 2、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 3、《建筑施工安全检查标准》JGJ59-2011 4、《混凝土结构工程施工质量验收规范》GB50204-2015 5、《混凝土结构设计规范》GB50010-2010 6、《建筑结构荷载规范》GB50009-2012 7、《建筑地基基础设计规范》GB50007-2011 8、《建筑施工高处作业安全技术规范》JGJ80-2016 9、《危险性较大的分部分项工程安全管理办法》建质[2009]87号文 二、工程参数

1800 3001050 三、横向水平杆(小横杆)验算 《建筑施工扣件式钢管脚手架安全技术规范》规定:

“当使用冲压钢脚手板、木脚手板、竹串片脚手板时,纵向水平杆应作为横向水平杆的支座,用直角扣件固定在立杆上。”施工荷载的传递路线是:脚手板→横向水平杆→纵向水平杆→纵向水平杆与立杆连接的扣件→立杆,如图: 横向水平杆按照简支梁进行强度和挠度计算,小横杆在大横杆的上面。 (一)抗弯强度计算 1、作用横向水平杆线荷载标准值: q k =(Q K +Q P1 )×S=(3+×= kN/m 2、作用横向水平杆线荷载设计值: q=×Q K ×S+×Q P1 ×S=×3×+××= kN/m 3、考虑活荷载在横向水平杆上的最不利布置(验算弯曲正应力、挠度不计悬挑荷载,但计算支座最大支反力要计入悬挑荷载),最大弯矩: M max = ql b 2 = × =·m 88 4、钢管载面模量W= 5、Q235钢抗弯强度设计值,f=205N/mm2 6、计算抗弯强度 σ=M max = ×106 =mm2〉205N/mm2 W×103 7、结论:不满足要求!建议减少脚手架纵距或横距或小横杆间距,或控制施工荷载!(二)变形计算 1、钢材弹性模量E=×105N/mm2 2、钢管惯性矩I= 3、容许挠度 [ν]=l/150与10mm

脚手架的计算和荷载计算

脚手架的计算和荷载 落地式扣件钢管脚手架计算书 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。 计算的脚手架为双排脚手架,立杆采用单立管。 搭设尺寸为:立杆的纵距1.50米,立杆的横距0.80米,立杆的步距1.80米。 采用的钢管类型为48×3.5,连墙件采用2步3跨,竖向间距3.60米,水平间距4.50米。 施工均布荷载为3.0kN/m2,同时施工2层,脚手板共铺设4层。 一、大横杆的计算: 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。 1.均布荷载值计算 大横杆的自重标准值: P1=0.038kN/m 脚手板的荷载标准值: P2=0.300×0.800/3=0.080kN/m 活荷载标准值: Q=3.000×0.800/3=0.800kN/m 静荷载的计算值: q1=1.2×0.038+1.2×0.080=0.142kN/m 活荷载的计算值: q2=1.4×0.800=1.120kN/m 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度)

大横杆计算荷载组合简图(支座最大弯矩) 2.抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下: 跨中最大弯矩为 M1=(0.08×0.142+0.10×1.120)×1.5002=0.278kN.m 支座最大弯矩计算公式如下: 支座最大弯矩为 M2=-(0.10×0.142+0.117×1.120)×1.5002=-0.327kN.m 我们选择支座弯矩和跨中弯矩的最大值进行强度验算: =0.327× 106/5080.0=64.332N/mm2 大横杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度考虑为三跨连续梁均布荷载作用下的挠度 计算公式如下: 静荷载标准值q1=0.038+0.080=0.118kN/m 活荷载标准值q2=0.800kN/m 三跨连续梁均布荷载作用下的最大挠度

脚手架详细计算书

多排脚手架计算书 计算依据: 1、《建筑施工脚手架安全技术统一标准》GB51210-2016 2、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 3、《建筑结构荷载规范》GB50009-2012 4、《钢结构设计规范》GB50017-2003 5、《建筑地基基础设计规范》GB50007-2011 、脚手架参数 、荷载设计

计算简图: 立面图

侧面图三、横向水平杆验算

纵、横向水平杆布置 取多排架中最大横距段作为最不利计算 承载能力极限状态 q=1.2 ×(0.04+G kjb ×l a/(n+1))+1.4 G×k×l a/(n+1)=1.2 (0×.04+0.35 1×.2/(2+1))+1.4 3×1.2/ (2+1)=1.896kN/m 正常使用极限状态 q'=(0.04+G kjb ×l a/(n+1))=(0.04+0.35 1.2×/(2+1))=0.18kN/m 计算简图如下: 取前后立杆横距最大的那跨计算,并考虑在顶端处有横向水平杆外伸 1、抗弯验算

M max=max[ql b2 /8,qa12/2]=max[1.896 1×.22/8,1.896 ×0.152/2]=0.341kN m· σ=0γM max/W=1×0.341 ×106/5260=64.87N/mm2≤[f]=205N/mm2 满足要求! 2 、挠度验算 νmax=max[5q'l b4/(384EI) ,q'a14/(8EI)]=max[5 0×.18 ×12004/(384 ×206000×127100),0.18 ×1504/(8 ×206000×127100)]=0.185mm νmax=0.185mm≤ [ ν=]min[l b/150,10]=min[1200/150,10]=8mm 满足要求! 3 、支座反力计算承载能力极限状态 R max=q(l b+a1)2/(2l b)=1.896 (×1.2+0.15)2/(2 ×1.2)=1.44kN 正常使用极限状态 R max'=q'(l b+a1)2/(2l b)=0.18 ×(1.2+0.15)2/(2 ×1.2)=0.136kN 四、纵向水平杆验算 承载能力极限状态 由上节可知F1=R max=1.44kN q=1.2 0.0×4=0.048kN/m 正常使用极限状态 由上节可知F1'=R max'=0.136kN q'=0.04kN/m 1 、抗弯验算计算简图如下:

脚手架稳定性计算

脚手架立杆的稳定性计算 2010-09-12 外脚手架采用双立杆搭设,按照均匀受力计算稳定性。 稳定性计算考虑风荷载,按立杆变截面处和架体底部不同高度分别计算风荷载标准值。风荷载标准值按照以下公式计算 Wk=0.7μz μs ω0 其中ω0 -- 基本风压(kN/m2),按照《建筑结构荷载规范》(GB50009-2001)的规定采用: ω0=0.37kN/m2; μz -- 风荷载高度变化系数,按照《建筑结构荷载规范》(GB50009-2001)的规定采用:μz= 0.74,0.74; μs -- 风荷载体型系数:取值为1.132; 经计算得到,立杆变截面处和架体底部风荷载标准值分别为: Wk1=0.7 ×0.37×0.74×1.132=0.217kN/m2; Wk2=0.7 ×0.37×0.74×1.132=0.217kN/m2; 风荷载设计值产生的立杆段弯矩MW 分别为: Mw1=0.85 ×1.4Wk1Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; Mw2=0.85 ×1.4Wk2Lah2/10=0.85 ×1.4×0.217×1.5×1.82/10=0.125kN?m; 1. 主立杆变截面上部单立杆稳定性计算。 考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA) + MW/W ≤ [f] 立杆的轴心压力设计值:N=Nd=8.487kN; 不考虑风荷载时,立杆的稳定性计算公式 σ=N/(φA)≤ [f] 立杆的轴心压力设计值:N=N'd= 8.991kN; 计算立杆的截面回转半径:i=1.59 cm; 计算长度附加系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得: k=1.155 ; 计算长度系数参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)表5.3.3得:μ=1.5 ;

脚手架稳定性验算

附件: 脚手架受力验算 1、参数信息 (1)脚手架参数 本计算书按照脚手架搭设高度拟定为20米来计算;搭设尺寸为:立杆的纵距为米,立杆的横距为米,大横杆和横撑(以下称小横杆)的步距为米; 采用的钢管类型为Φ; 横杆与立杆连接方式为双扣件:取扣件抗滑承载为系数为; (2)活荷载参数 施工均布活荷标准值: m3;脚手架用途:施工行走脚手架; 同时施工层数:2层。 (3)风荷载参数 本工程地处四川盆地南部,基本风压取 m2; 风荷载高度变化系数U z 为,风荷载体型系数U s 为; 脚手架计算中考虑风荷载作用。 (4)静荷载参数 每米立杆承受的结构自重标准值 (kN/m2):; 脚手板自重标准值 (kN/m3):; 安全设施与安全网 (kN/m3):; 脚手板类别: 5分板; 每米脚手架钢管自重标准值。 2、大横杆的计算 按照《扣件式钢管脚手架安全技术规范》(JGJ130-2001 ) 第条规定,大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。将大横杆上面的脚手板自重和施工活荷载作为均布荷载计算大横杆的最大弯矩和变形。

(1)均布荷载值计算 大横杆的自重标准值 10.0384/P kN m = 5 分板的荷载标准值 20.5x1/20.25/P kN m == 活荷载标准值 1.5x1/20.75/Q kN m == 静荷载的计算值 11.2x0.03841.2x0.250.3461/q kN m =+= 活荷载的计算值 21.4x0.751.05/q kN m == 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度) (2)抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下: 221max 11 0 .080.10M q l q l =+ 跨中最大弯矩为 ()22max 0.08x0.34610.10x1.05x10.1327M kN m =+=? 支座最大弯矩计算公式如下: 222max 110.100.117M q l q l =-- 支座最大弯矩为 ()22max 0.10x0.34610.117x1.05x 10.1575M kN m =-+=-? 我们选择支座弯矩和跨中弯矩的最大值进行强度验算: 620.157510/508031.004/kN mm σ=?= 大横杆的计算强度小于mm 2,满足要求。 q 1q 1 q 1q 1

抗倾覆稳定性验算

五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11、0米左右,此处得土为粘性土,可以采用“等值梁法”进行强度验算。 首先进行最小入土深度得确定: 首先确定土压力强度等于零得点离挖土面得距离y,因为在此处得被动土压 式中:P 挖土面处挡土结构得主动土压力强度值,按郎肯土压力理论进行计 b 算即 土得重力密度此处取18KN/m3 修正过后得被动土压力系数(挡土结构变形后,挡土结构后得土破坏棱柱体向下移动,使挡土结构对土产生向上得摩擦力,从而使挡土结构后得被动土压力有所减小,因此在计算中考虑支撑结构与土得摩擦作用,将支撑结构得被动土压力乘以修正系数,此处φ=28°则K=1、78 主动土压力系数 经计算y=1、5m : 挡土结构得最小入土深度t 与墙前被动土压力对挡土结构底端得力矩相等来进行计算x可以根据P 0 挡土结构下端得实际埋深应位于x之下,所以挡土结构得实际埋深应为(k 经验系数此处取1、2) 2 经计算:根据抗倾覆稳定得验算,36号工字钢需入土深度为3、5米,实际入土深度为3、7米,故:能满足滑动稳定性得要求

2、支撑结构内力验算 主动土压力: 被动土压力: 最后一部支撑支在距管顶0、5m得地方,36b工字钢所承受得最大剪应力 d=12mm,经计算 36b工字钢所承受得最大正应力 经过计算可知此支撑结构就是安全得 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口得位置,可降低 经计算 因此此处不会发生管涌现象 4、顶力得计算 工程采取注浆减阻得方式来降低顶力. φ1800注浆后总顶力为: F=fo、S*0、3=25*667/10*0、3*1、1=550t fo—土得摩擦阻力,一般为25KN/m2 S-土与管外皮得摩擦面积 0。3-注浆减阻系数 1。1—顶力系数 5、后背得计算 E=1、5×0、5×Υ×H2×tg2(45+φ/2)+2chtg(45+φ/2) (式中Υ土得重度(18KN/m3)c土得粘聚力10kpa,φ摩擦角28o)计算得每米588吨,后背工作宽度为4米,后背承载力为2354吨。(参照最

脚手架计算示例

脚手架计算书⑴ 本工程脚步手架采用①48x3、5无缱钢管,立杆横距为1、05m,立杆纵距为1、8m,步距为1、 8m,共9步16、2m;施工作业层按一层计,则脚手片满铺三层『自重标准值为0、IKN/m?;脚手架外 立杆里侧挂密目安全网封闭施工『自重标准值为0、1K N/m2。 一、横向.纵向水平杆计算 1、横向、纵向水平杆得抗弯强度按下式计算: 式中M —弯矩设计值按M"、2M GK +1、4M GK 计算; M GK 为脚手板自重标准值产生得弯矩; M QK 为施工荷载标准值产生得弯矩; W —?面模量,查表e48x3、5mm 钢管W=5、0 8 cm3; f —40材得抗弯强度计算值,住2 05N/mm2. (1)纵向水平杆得抗弯强度按图1三跨连续梁计算,计算跨度取纵距1 a=l 8 00mm 。 a 、考虑静载情况 gk = 0、1x1、05/3=0、0 35KN/m= 3 5N/m 按图2静载布置情况考虑跨中与支座最大弯矩。 图1:纵向水平杆计篦简图 厶ck

Ml中=0、08gMa2 M B =M C= - 0、Igda? b、考虑活载情况 qk=3kN/m2xl、0 5 m/3=10 5 ON/m 按图久4两种活载最不利位置考虑跨中最大弯矩。 ■p 图3:活救最不利状况计算简图之(1) nr HZ I" 图4:活栽最不利状况计算简图之(2) Ml中=0、lOlqda^ 按图5种活载最不利位置考虑支座最大弯矩。 M B=M C=-O, 17 7 q K 1

.|k n lo 图5:活戦战不利状况计算支座弯矩 根据以上情况分析,可知图2与图3(或图4)这种静载与活载最不利组合时Ml 中 跨中弯矩最大。 M GK=0、08gKla2=0、08x35x1, 8—9、07N、m M QK=O、10 5以=0、101x1050x1, 82=343. 6 N、m M = l, 2M GK +1.4M QK=1.2X9. 07+1、4x343、6= 491、92 N、m 注汽卷器9 6、8N/mm2 (f=2O5N/mm2 (2)横向水平杆得抗弯强度计算 木板1 1 tt 笆wrts —,1 L 1 $ 图6:横向水平杆计》简图 计算横向水平杆得内力时按简支梁计算如图6,计算跨度取立杆横距lo=lO5Omm,KI手架横向水平杆得构造计算夕卜伸长度a i=350mm,a 2= 1 OOrnrrio a.考虑静载情况

脚手架计算公式资料

高大脚手架计算书(已通过专家论证) 脚手架计算书 1、脚手架相关力学计算条件 根据檐高和施工的需要,搭设脚手架的高度为H=74.20m(考虑到屋顶局部高处因此均按80m 计算)、立杆横距Lb=1.05m、立杆纵距L=1.20m,大横杆步距h=1.2m,横向水平杆靠墙一侧外伸长度=300mm,铺5cm厚木脚手板4层,同时施工2层,施工荷载按结构施工时取 Qk=4KN/M2,(装修时荷载考虑两层同时作业,每两米按一人操作计算,人边放一个300mm 高直径500mm的灰斗,架体脚手板上排放两箱外墙面砖),连墙杆布置为两步三跨(2h×3L),钢管为φ48×3.2,基本风压W0=0.35KN/m2,采用密目立网全封闭,计算脚手架的整体稳 定。 其它计算参数查《建筑施工扣件式钢管脚手架安全技术规范》及《建筑施工计算手册》知:立杆截面面积A=489mm2(由于使用旧钢管,考虑到磨损,钢管壁厚按3.2mm计算,则截面面积A=458mm2),钢管回转半径i=1.58cm,截面模量W=5.08cm3,钢材抗压强度设计值f=205N/mm2,脚手架钢管重量为0.0384KN/m,扣件自重为0.014KN/个,木脚手板的自重0.35KN/m2,密目网(密度为2300目/100cm2)的自重0.005KN/m2,挡脚板、栏杆的自重 0.14KN/m。 2、纵向水平杆计算: 脚手架属于双排扣件式钢管脚手架,施工荷载由纵向水平杆传至立杆,只对纵向水平杆进 行计算,按三跨连续梁计算,计算简图如下 抗弯强度按下式计算 σ=≤f M=0.175F?L F—由横向水平杆传给纵向水平杆的集中力设计值,F=0.5qlb(1+ )2 q―作用于横向水平杆的线荷载设计值; q= (1.2Qp+1.4QK)?S1 Qp―脚手板自重=0.35 KN/m2; QK―施工均布荷载标准值(装修施工时为2KN/M2)取QK=3KN/M2; f―Q235钢抗弯强度设计值,按规范表5.1.6采用,f=205N/mm2; S1―施工层横向水平杆间距,取S1=1200mm; 1.4―可变荷载的荷载分项系数; a1―横向水平杆外伸长度,取a1=300mm -柱距,取 =1050mm -排距,取 =1200mm W-截面模量,按规范附录B表B取值,W=5.08cm3; σ=

塔式起重机抗倾覆计算及基础设计

塔式起重机抗倾覆计算 及基础设计 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用××,基础砼标号为C35(7天和28天期龄各一组), 要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:,塔身宽度B:,自重F K :453kN,基础承台厚度h:,最大起重荷载Q:60kN,基础承台宽度b:,混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn·m, F K = 530KN,Fv K =,砼基础重量G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=); G K ----------基础自重; b---------矩形基础底面的短边长度。(b= 将上述塔式起重机各项数值M K 、Fv K 、F K 、h、G K 、b代入式①得: e =< b/3= 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊基础底板处承载力特征值为372Kpa。取塔式起重机基础底土层的承载力标准值为372Kpa,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长×

脚手架立杆稳定计算

例:有一框架剪力墙结构的建筑,建设地点位于某市有密集建筑群的郊区,该市的基本 风压2 0=0.66/m KN ω。该建筑物室内外地坪高差0.40m ,首层层高5.0m,二至三层层高 4.50m,四至九层层高均为3.0m,建筑高度32.4m,女儿墙高1.2m,拟采用扣件式双排钢管落地式脚手架。初步拟定: 1.05m b l =, 1.8m a l =,为使脚手架作业层能与建筑物楼层相匹配,地面到标高 5.000m 段,h=1.8m,连墙件按三步三跨设置,标高5.000m 至14.000m 段,h=1.5m ,连墙件按三步三跨设置,标高14.000m 以上,h=1.5m ,连墙件按二步三跨设置。采用50mm 厚木脚手板,护栏高度为1.1m,挡板为冲压钢脚手板,满外设剪刀撑,横向斜撑按规定设置,围护设施为满外吊挂密目安全网,请验算该脚手架的整体稳定性。 解:该脚手架属步距、连墙件竖向间距有变化的脚手架,应分别验算其底部立杆段、标高5.000m 处的上部立杆段及标高14.000m 处的上部立杆段。 根据20=0.66/m KN ω且满外吊挂密目安全网,属全封闭脚手架脚手架,需要按组合风荷载计算(当200.35/m KN ω>时需要计算组合风荷载) 满铺三层脚手板,一层操作平台 按遮挡大小分为:(1)敞开式脚手架(仅设有作业层栏杆和挡脚板,无其它遮挡设施的脚手架)。(2)局部封闭脚手架。(3)半封闭脚手架(安全网的面积占30%~70%)。(4)全封闭脚手架:(沿脚手架外侧全长和全高封闭的脚手架)。(5)开口型脚手架。(6)封圈型脚手架。 注:本题中地面到标高5.000m 段,h=1.8m 不正确,因为计算的截面是扫地杆处的立杆截面,所以是离地20cm 处。所以这段的步距为 5.40.2 5.2h m=1.73m 33-== 整体稳定性验算: 组合风荷载: W M N f A W ?+≤ (1) 计算立杆段的轴向力设计值 121.2()0.9 1.4G K G K QK N N N N =++?∑ 脚手架结构自重产生的轴向力标准值1G K N 查表得:当h 1.73m =时 2 g 0.1427/m k KN = 当h 1.5m =时 2 g 0.1552/m k KN = 所以10.1427 5.20.1552(32.4 5.4) 4.93244G K N KN =?+?-= 构配件自重产生的轴向力标准值2G K N

脚手架计算

落地式扣件钢管脚手架计算书 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》 (JGJ130-2001)。 计算的脚手架为双排脚手架,搭设高度为40.0米,立杆采用单立管。 搭设尺寸为:立杆的纵距1.50米,立杆的横距1.05米,立杆的步距1.50米。 采用的钢管类型为48×3.5,连墙件采用3步3跨,竖向间距4.50米,水平间距4.50米。 施工均布荷载为3.0kN/m2,同时施工2层,脚手板共铺设4层。 一、小横杆的计算: 小横杆按照简支梁进行强度和挠度计算,小横杆在大横杆的上面。 按照小横杆上面的脚手板和活荷载作为均布荷载计算小横杆的最大弯矩和变形。 1.均布荷载值计算 小横杆的自重标准值 P1=0.038kN/m 脚手板的荷载标准值 P2=0.350×1.500/3=0.175kN/m 活荷载标准值 Q=3.000×1.500/3=1.500kN/m 荷载的计算值 q=1.2×0.038+1.2×0.175+1.4×1.500=2.356kN/m 小横杆计算简图 2.强度计算 最大弯矩考虑为简支梁均布荷载作用下的弯矩 计算公式如下: M=2.356×1.0502/8=0.325kN.m =0.325×106/5080.0=63.917N/mm2

小横杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度考虑为简支梁均布荷载作用下的挠度 计算公式如下: 荷载标准值q=0.038+0.175+1.500=1.713kN/m 简支梁均布荷载作用下的最大挠度 V=5.0×1.713×1050.04/(384×2.06×105×121900.0)=1.080mm 小横杆的最大挠度小于1050.0/150与10mm,满足要求! 二、大横杆的计算: 大横杆按照三跨连续梁进行强度和挠度计算,小横杆在大横杆的上面。 用小横杆支座的最大反力计算值,在最不利荷载布置下计算大横杆的最大弯矩和变形。 1.荷载值计算 小横杆的自重标准值 P1=0.038×1.050=0.040kN 脚手板的荷载标准值 P2=0.350×1.050×1.500/3=0.184kN 活荷载标准值 Q=3.000×1.050×1.500/3=1.575kN 荷载的计算值 P=(1.2×0.040+1.2×0.184+1.4× 1.575)/2=1.237kN 大横杆计算简图 2.强度计算 最大弯矩考虑为大横杆自重均布荷载与荷载的计算值最不利分配的弯矩和

双排脚手架稳定性计算

钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。 计算参数: 双排脚手架,搭设高度50.0米,30.0米以下采用双管立杆,30.0米以上采用单管立杆。 立杆的纵距1.50米,立杆的横距1.05米,内排架距离结构0.20米,立杆的步距1.50米。 钢管类型为48×3.2,连墙件采用3步3跨,竖向间距4.50米,水平间距4.50米。 施工活荷载为3.0kN/m2,同时考虑1层施工。 脚手板采用木板,荷载为0.35kN/m2,按照铺设11层计算。 栏杆采用竹笆片,荷载为0.15kN/m,安全网荷载取0.0050kN/m2。 脚手板下小横杆在大横杆上面,且小横杆全部在主结点。 基本风压0.50kN/m2,高度变化系数1.6700,体型系数0.8690。 地基承载力标准值170kN/m2,基础底面扩展面积0.250m2,地基承载力调整系数0.40。 一、小横杆的计算: 小横杆按照简支梁进行强度和挠度计算,小横杆在大横杆的上面。 按照小横杆上面的脚手板和活荷载作为均布荷载计算小横杆的最大弯矩和变形。 1.均布荷载值计算 小横杆的自重标准值 P1=0.038kN/m 脚手板的荷载标准值 P2=0.350×1.500/1=0.525kN/m 活荷载标准值 Q=3.000×1.500/1=4.500kN/m 荷载的计算值 q=1.2×0.038+1.2×0.525+1.4×4.500=6.976kN/m 小横杆计算简图 2.抗弯强度计算 最大弯矩考虑为简支梁均布荷载作用下的弯矩 计算公式如下: M=6.976×1.0502/8=0.961kN.m =0.961×106/4729.0=203.297N/mm2 小横杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度考虑为简支梁均布荷载作用下的挠度 计算公式如下: 荷载标准值q=0.038+0.525+4.500=5.063kN/m 简支梁均布荷载作用下的最大挠度 V=5.0×5.063×1050.04/(384×2.06×105×113510.0)=3.427mm 小横杆的最大挠度小于1050.0/150与10mm,满足要求!

脚手架稳定性验算

附件: 脚手架受力验算 1 、参数信息 (1)脚手架参数 本计算书按照脚手架搭设高度拟定为20 米来计算;搭设尺寸为:立杆的纵距为2.438 米,立杆的横距为1.268 米,大横杆和横撑(以下称小横杆)的步距为0.495 米; 采用的钢管类型为Φ48x3.25 ;横杆与立杆连接方式为双扣件:取扣件抗滑承载为系数为0.80 ; (2)活荷载参数 施工均布活荷标准值:1.500kN/ m 3;脚手架用途:施工行走脚手架; 同时施工层数:2 层。 (3)风荷载参数 本工程地处四川盆地南部,基本风压取0.2kN/m 2;风荷载高度变化系数U z为1.86 ,风荷载体型系数U s 为0.65;脚手架计算中考虑风荷载作 用。 (4)静荷载参数 每米立杆承受的结构自重标准值(kN/m 2):0.1126 ; 脚手板自重标准值(kN/m3):0.500 ; 安全设施与安全网(kN/m3):0.005 ; 脚手板类别: 5 分板;每米脚手架钢管自重标准值3.84kg 。 2、大横杆的计算按照《扣件式钢管脚手架安全技术规范》(JGJ130-2001 )第5.2.4 条规定,大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。将大横杆上面的脚手板自重和施工活荷载作为均布荷载计算大横杆的最大弯矩和变形。 (1)均布荷载值计算 大横杆的自重标准值P1 0.0384kN / m 5 分板的荷载标准值P2 0.5x1/ 2 0.25kN /m

Q 1.5x1/ 2 0.75kN /m q 1 1.2x0.0384 1.2x0.25 0.3461kN /m q 2 1.4x0.75 1.05kN / m 静荷载标准值 q 1 0.0384 0.25 0.2884kN / m 活荷载标准值 静荷载的计算 值 大横杆计算荷载组合简图 ( 支座最大弯矩 ) (2)抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的 跨中最大弯矩计算公式如下: M 1max 0 .08q 1l 2 0.10q 1l 跨中最大弯矩为 M 2max 0.08x0.3461 0.10x1.05 x12 0.1327kN m 支座最大弯矩计算公式如下: 22 M 2max 0.10q 1l - 0.117q 1l 支座最大弯矩为 M 2max 0.10x0.3461 0.117x1.05 x 12 0.1575kN m 我们选择支座弯矩和跨中弯矩的最大值进行强度 验算: 0.1575 106 /5080 31.004kN /mm 2 大横杆的计算强度小于 205.0N/mm 2,满足要求。 (3)挠度计算 最大挠度考虑为三跨连续梁均布 计算公式如下: V max 0.677 q 1l 4 100E I 0.990 q 2l 4 100E I q 1 大横杆计算荷载组合简q 1 q 1 ( 跨中最大弯矩和跨中最大挠 ) q 1

抗倾覆稳定性验算

五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11.0米左右,此处的土为粘性土,可以采用“等值梁法”进行强度验算。 首先进行最小入土深度的确定: 首先确定土压力强度等于零的点离挖土面的距离y ,因为在此处的被动土压力等于墙后的主动土压力即: ()a p b K K P y -=γ 式中:P b 挖土面处挡土结构的主动土压力强度值,按郎肯土压力理论进行计 算即 a a b K cH K H P 22 12-=γ γ 土的重力密度 此处取18KN/m 3 p K 修正过后的被动土压力系数(挡土结构变形后,挡土结构后的 土破坏棱柱体向下移动,使挡土结构对土产生向上的摩擦力,从而使挡土结构后的被动土压力有所减小,因此在计算中考虑支撑结构与土的摩擦作用,将支撑结 构的被动土压力乘以修正系数,此处φ=28°则K=1.78 93.42452=??? ? ?+?=?οtg K K p a K 主动土压力系数 361.02452=??? ? ?-=?οtg K a 经计算y=1.5m

挡土结构的最小入土深度t 0: x y t +=0 x 可以根据P 0和墙前被动土压力对挡土结构底端的力矩相等来进行计算 ()m K K P y t a p 9.2600=-+=γ 挡土结构下端的实际埋深应位于x 之下,所以挡土结构的实际埋深应为 m t K t 5.302=?=(k 2 经验系数此处取1.2) 经计算:根据抗倾覆稳定的验算,36号工字钢需入土深度为3.5米,实际入土深度为3.7米,故:能满足滑动稳定性的要求 2、支撑结构内力验算 主动土压力:a a a K cH K H P 22 12-=γ 被动土压力:p p p cK K H P 22 12+=γ 最后一部支撑支在距管顶0.5m 的地方,36b 工字钢所承受的最大剪应力 d I Q d I Q S S z x x z ???? ??==*max max *max max max τ ,3.30* max cm I S z x = d=12mm,经计算 []ττ<=a MP 6.26max 36b 工字钢所承受的最大正应力 []σσ<==a MP W M 9.78max 经过计算可知此支撑结构是安全的 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口的位置,可降低 经计算25.12' ' ''=-γγγωh kh 因此此处不会发生管涌现象

相关文档
最新文档