连续梁抗倾覆稳定性计算(跨北江大道连续梁)

连续梁抗倾覆稳定性计算(跨北江大道连续梁)
连续梁抗倾覆稳定性计算(跨北江大道连续梁)

跨北江大道连续梁临时支墩抗倾覆稳定性验算

一、支架形式

跨北江大道连续梁跨度(50+80+50)m。0#块支架采用钢管立柱形式。在主墩一级承台顶面,顺桥向两侧,距墩中心线纵向3.8m处,各设置3根共6根φ800mm钢管(δ14),横桥向相邻钢管柱之间的中心距2.25m。承台上顺桥向两侧,在φ800mm钢管立柱周围,布设老新混凝土面连接钢筋。混凝土浇注后,钢管内填充细砂。为加强钢管立柱的稳定性,钢管柱之间用槽钢剪刀连接,立柱连结成整体。为加强钢管立柱的稳定性,加工2根30双槽钢,用双槽钢将两立柱连结成整体。支架布置形式见下图

二、计算过程

在0#块浇筑完毕后将6根Φ800mm钢管立柱接高至0#块底板,并与0#块底板预埋钢板标准焊接,作为临时支墩。对其结构形式进行简化,假定梁体向右侧倾斜,计算简图见下图:

施工时采用的临时固结措施必须能够承受最不利荷载组合,悬浇至最大悬臂长度时,在最不利荷载组合下,临时固结支墩承受的力为:N=27450KN ,M=14566KN ?m (设计给定值)。

按照静力平衡原则得出以下公式: R A +R B =N R B ×L = R A ×L+M

L=3.8m ,将数据代入公式,经计算得R B =15641.58KN ,R A =11808.42KN 。 由计算知,钢管立柱应能承受R A 、R B 中较大的力即15641.58KN , 对钢管柱进行验算

钢管柱采用外径800mm ,壁厚14mm 的圆钢管,材质Q235。每根钢管柱承受压力为F=15641.58÷3=5213.86KN 。按照轴心受压构件验算。 根据布置情况,钢管柱长度为8m 。

回转半径x i i 0.239y m

==

=

=

长细比0l /8/0.23933.47x i λ=== 按A 类构件查表得:0.956

φ

=

故每根立柱可承受的荷载为:

2

2

6

0.9560.40.386215107101.93kN

N π?-??=()

每根钢管柱承担的荷载为5213.86KN ,小于其承载力,故钢管柱整体稳定性安全。

支架结构能够满足施工要求。 对钢管柱的局部稳定性进行验算: 按照公式

计算,800÷14=57.14<100×(235÷215)=109.30

钢管柱的局部稳定性满足要求。

由上述计算,钢管立柱做临时固结措施即可满足图纸无砟轨道(50+80+50)m 预应力混凝土连续梁(双线)(悬灌施工) 佛肇施图(桥)-桥参修10设计要求。

因跨北江大道连续梁未在墩顶设置精轧螺纹钢做为临时固结措施,为安全起

见,将0#块用Φ32精轧螺纹钢与托架的I45b工字钢进行锚固,。按照最不利情况:混凝土在浇筑到9#梁段时,一端挂篮及混凝土坠落的情况进行计算。

计算简图见下图

假设A9段挂篮及混凝土坠落,相当于在B9段施加一不平衡力F,该力主要为挂篮与混凝土重力(混凝土重力已计算在梁体混凝土产生的倾覆力矩中)。梁体将沿支点B发生倾覆。梁体混凝土产生的倾覆力矩及抗倾覆力矩见下表。

不平衡力F为挂篮的重量与挂篮兜底防护重量(按10t考虑)之和。F=45×10+10×10=550KN。计算时还应考虑支点A处钢管柱产生的重力及精轧螺纹钢的

拉力。钢管柱按8m计算,该力为抗倾覆力。F

A = F

B

= F

C

=3.14×0.42-3.14×(0.4

-0.014)2×8×78.5×3=650.97KN。每根精轧螺纹钢的拉力按照563KN考虑,8根共受

力4504KN。

倾覆弯矩M

=135512.5+550×33.2=153772.5KN?m。

抗倾覆弯矩M

=230746.4+650.97×7.6+4540×7.6=270197.772KN?m

M

,M

/M

=1.75,该加固方式安全系数为1.75,能够保证梁体稳定性。

三、施工方法

在0#块托架的I45b工字钢上用氧炔焊割孔,在0#块的对应位置预埋PVC 管,0#块混凝土浇筑完成并达到90%强度后,将Φ32精轧螺纹钢穿入,进行张拉

雨篷抗倾覆验算

雨篷抗倾覆验算 由规范第7.4.1条规定:砌体墙中钢筋混凝土雨篷的抗倾覆应按下式验算: M ov≤M r 式中 M ov----雨篷的荷载设计值对计算倾覆点产生的倾覆力矩; M r----雨篷的抗倾覆力矩设计值,可按第7.4.7条的规定计算。第7.4.2条雨篷计算倾覆点至墙外边缘的距离可按下列规定采用: 1 当L1≥2.2h b时 x0=0.3h 且不大于0.13L1。 2 当L1<2.2h b时 x0=0.13L1 式中 L1----雨篷埋入砌体墙中的长度(mm); x0----计算倾覆点至墙外边缘的距离(mm); h b----雨篷的截面高度(mm)。 注:当雨篷下有构造柱时,计算倾覆点到墙外边缘的距离可取0.5x0。 第7.4.3条挑梁的抗倾覆力矩设计值可按下式计算: M r=0.8G r(L2-x0)

式中 G r ----雨篷的抗倾覆荷载,为雨篷尾端上部45°扩展角的阴影范围 (其水平长度为L 3)内本层的砌体与楼面恒荷载标准值之和(图 7.4.3); L 2----G r 作用点至墙外边缘的距离。 L 1=240mm, h b =100mm L 1>2.2 h b 故x 0=0.3h b =0.3×100=30mm 荷载计算 雨篷板上的均布荷载: q 1=1.2×3.42×2.5+1.4×1.0+1.2×1.458×2=14.74kN 雨篷板端得集中荷载: F 1=1.458×2.5=3.645kN 雨篷的荷载设计值对计算倾覆点产生的倾覆力矩: M ov =3.645×(1.2-0.05-(0.120-0.030))+14.74×(1.2-(0.12-0.03))2/2=12.94kN ·m 雨篷的抗倾覆荷载(计算时把圈梁,楼板和过梁所占的区域按墙体来考虑): n l =1.5m,75.03 l m G r =((2.5+0.75×2)×3-1.5×1.8-0.75×0.75)×6.468+(2.5+0.75× 2)×1.8×7.012×2=157.48kN M r =0.8G r (L 2-x 0)=0.8×157.48×(0.12-0.03)=12.16kN ·m> M ov =12.044kN ·m 故抗倾覆验算满足要求。 故抗倾覆验算满足要求。

墙体抗剪承载力计算的应用

墙体抗剪承载力计算的应用 [摘要] 利用ALGOR FEA计算程序,分析了竖向压应力和水平力共同作用下无筋砖墙的应力。基于文中提出的平面受力砌体的破坏准则,对墙体裂缝分布进行了描述,并提出了 不同高宽比砖墙的水平开裂荷载的计算公式。最后建立了墙体抗剪承载力计算公式,其计算结果与试验值吻合较好。所提出的方法可供砌体结构设计和研究参考。 [关键词] 砖墙剪切承载力 Abstract:The stress of unreinforced brick wall under vertical compression and horizontal force has been analysed by ALGORFEAcomputer software.The formulas for calculation of horizontal cracking load of brick wall of different ratio ofheight to width have been proposed on the basis of failure criterions of plane-stress masonry.The crack distribution ofwall has been described in detail.In the end,the calculating formula of shear load-bearing capacity of wall has been es-tablished.The calculating results agree well with the experimental data.This method can provide reference for mason-ry structural design and research. Keywords:brick wall;shear;load-bearing capacity 混合结构房屋中,墙体除了承担屋(楼)盖传来的竖向压 力以及本身的自重外,还承担风、地震引起的水平力。因此,墙体受竖向压力和水平力共同作用是工程中常遇到的一种 受力状态。研究墙体在这种受力状态下的应力分布以及高宽比对墙体开裂荷载、裂缝分布情况和抗剪承载力的影响,对于丰富砌体结构基本理论和完善砌体结构构件抗剪承载力 的设计方法有较大的实际工程意义。

ANSYS四跨连续梁的内力计算教程

ANSYS四跨连续梁的内力计算 四跨连续梁模型图如下所示,各个杆件抗弯刚度EI相同,利用平面梁单元分析它的变形和内力 1.结构力学分析 利用结构力学方法可以求出这个连续梁的剪力图和弯矩图如下

这里只给出了梁的弯曲刚度相同条件,没有指定梁截面的几何参数和材料的力学性质。从结构力学分析的条件上看,这些条件对于确定梁的内力已经足够,但是对于梁的变形分析和应力计算,还需要补充材料的力学参数和截面几何参数。所以以下分析中,假定梁的截面面积位0.3m2,抗弯惯性矩为0.003m4,截面高度为0.1m;材料的弹性模量为1000kN/m2,泊松比为0.3。补充这些参数对于梁的内力没有影响,但是对于梁的变形和应力是有影响的。 2.用节点和单元的直接建模求解 按照前面模型示意图布置节点和单元,在图示坐标系里定位节点的坐标和单元连接信息,以及荷载作用情况和位移约束。由于第二跨中间有两个集中力,所以在集中力位置设置两个节点。这样,就可以将这两个集中力直接处理成节点荷载。对于平面梁单元的节点只需输入平面上的两个坐标值,所以这里只输入节点的x坐标和y坐标。 (1)指定为结构分析 运行主菜单中preference偏好设定命令,然后在对话框中,指定分析模块为structural结构分析,然后单击ok按钮

(2)新建单元类型 运行主菜单preprocessor—element type—add/edit/delete命令,接着在对话框中单击add按钮新建单元类型 (3)定义单元类型 先选择单元为beam,接着选2d elastic3,然后单击ok按钮确定,完成单元类型的选择

(4)关闭单元类型的对话框 回到单元类型对话框,已经新建了beam3的单元,单击对话框close按钮关闭对话框 (5)定义实力常量 运行主菜单preprocessor—real constants—add/edit/delete命令,接着在对话框中单击add按钮新建实力常量

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

钢筋混凝土挑梁计算书

钢筋混凝土挑梁计算书 一、构件编号: TL_1 二、示意图: 三、设计依据: 《混凝土结构设计规范》 (GB 50010-2002) 《砌体结构设计规范》 (GB 50003-2001) 四、计算信息 1. 几何参数 梁宽度b = 340 mm 梁尾端高度h1 = 350 mm 墙边缘处高度h2 = 350 mm 梁顶端高度h3 = 180 mm 挑梁类型: 楼层挑梁 外挑长度L = 1500 mm 埋入墙体长度L1 = 1800 mm

墙体高度L W = 2800 mm 门洞宽度b M = 800 mm 门洞高度h M = 2100 mm 门洞至挑梁尾端距离D = 500 mm 墙厚b W = 240 mm 受拉钢筋合力点到受拉边距离a S = 25 mm 支撑处墙体类型: 有构造柱 2. 参数信息 混凝土等级: C20 f t = 1.100N/mm2f c = 9.600N/mm2纵筋种类: HRB335 f y = 300.000N/mm2 箍筋种类: HPB235 f yv = 210.000N/mm2 箍筋间距s = 200 mm 箍筋肢数n = 2 墙体材料: 烧结普通砖 砌体强度等级: MU20 砂浆强度等级: M7.5 砌体的抗压强度设计值f C = 2.39 N/mm2 砌体材料抗压强度设计值调整系数γa = 1.00 3. 荷载信息 端部集中恒载F k = 4.500 kN 外挑部分活荷载q k1 = 8.300 kN/m 外挑部分恒荷载g k1 = 10.000 kN/m 埋入部分恒荷载g k2 = 10.000 kN/m 挑梁容重γL = 25.000 kN/m3

斜截面抗剪承载力能力验算

斜截面抗剪承载力能力验算 1)按《公预规》5.2.10条要求,当截面符合:30200.5010d td V f bh γα-≤?可不进行斜截面抗剪承载力计算,仅需按《公预规》9.3.13条构造要求配置箍筋。 对于①-①截面: -3-32000.5100.510 1.0 1.3919009001188.45=21.7td d f bh kN V kN αγ??=?????=> ①-①截面可不进行斜截面抗剪承载力计算,箍筋按构造钢筋; 对于②-②截面~⑤-⑤截面: -3-3200.5100.510 1.0 1.39190012501650.63kN td f bh α?=?????= 按《公预规》5.2.9条规定: -3-3 0,00.51100.511030190012506634.29d cu k V f bh kN γ≤?=????= 对照剪力表值,②③④⑤计算表明,截面尺寸满足要求,但需配置抗剪钢筋并进行斜截面抗剪承载力计算。 2)弯起筋及箍筋配置 取5~5截面计算弯起钢筋及箍筋: 如图3-9所示,弯起钢筋弯起角度为45°,弯起钢筋末端与架立钢筋焊接,采用HRB335级钢筋,直径取25mm ,2490.9sb A mm = 图3-9弯起筋配置图 《公预规》9.3.13条规定,箍筋直径不小于8 mm ,采用带肋钢筋,间距不应大于梁高1/2,且不大于400mm 。采用10φ的六肢箍,则总面积为: 2678.5471sv A mm =?= 间距10cm V S =,设计抗拉强度280MPa sv f =,配筋率sv ρ为: sv sv 471 100%0.248%1900100 v A bs ρ= =?=? 满足《公预规》9.3.13条“箍筋配筋率sv ρ,HRB335不应小于0.12%”,同时《公预规》

挑梁的抗倾覆力矩

挑梁的抗倾覆力矩时荷载 当计算挑梁的抗倾覆力矩时荷载取为什么(结构工程师试题) 1.当计算挑梁的抗倾覆力矩时,荷载取为()。 A.本层的砌体与楼面恒荷载标准值之和 B.本层的砌体与楼面恒荷载设计值之和 C.本层恒载与活载标准值之和 D.本层恒载与活载设计值之和 【答案】A 【解析】挑梁的抗倾覆荷载为挑尾端上部45°扩散角的阴影范围内的本层砌体与楼面恒载标准值之和。2.在下列抗震设计叙述中,不正确的为()。 A.配筋砌块砌体剪力墙结构构件,当墙厚为190mm时,按8度作抗震设计的房屋,其最大高度不宜超过30m B.配筋砌块砌体房屋,其楼、屋盖处应设置钢筋混凝土圈梁,圈梁的混凝土强度等级不宜小于砌块强度等级的2倍,或该层灌孔混凝土的强度等级,但不应低于C20 C.蒸压粉煤灰砖房屋,高7层,每层层高2.8m,当7度设防时,应在房屋较大洞口的两侧和所有纵、横墙交接处设构造柱,且构造柱间距不宜大于4.8m D.框支墙梁的托梁,其几何尺寸有如下规定:托梁的截面宽度不应小于240mm,截面高度不应小于跨度的1/8,净跨度不宜小于截面高度的5倍。当墙体在梁端附近有洞口时,梁截面高度不宜小于跨度的1/6,且不宜大于跨度的1/5 【答案】D 【解析】框支墙梁的托梁,其几何尺寸有如下规定:托梁的截面宽度不应小于300mm,截面高度不应小于跨度的1/10,净跨度不宜小于截面高度的4倍。当墙体在梁端附近有洞口时,梁截面高度不宜小于跨度的1/8,且不宜大于跨度的1/6。 1.在下列各项次的叙述中,横墙情况符合刚性和刚弹性要求的为()。 A.横墙的厚度小于180mm B.横墙洞口的水平截面面积大于横墙截面面积的50% C.单层房屋:横墙的长度小于横墙的高度 多层房屋:横墙长度小于横墙总高度的二分之一 D.横墙的最大水平位移不大于横墙总高度的四千分之一 【答案】D 【解析】横墙的最大水平位移值UMAX≤H/4000时,仍可视作刚性或刚弹性方案房屋的横墙;而且符合此刚度要求的一段横墙或其他结构构件(如框架等),也可视作刚性或刚弹性方案房屋的横墙。 2.在砖墙上开设净跨度为1.2m的窗口,窗口顶部为钢筋砖过梁。已知过梁上的墙身高度为1.5m,则计算过梁上墙体重量时,应取墙体高度为()。 A.0.3m B.0.4m C.1.2m D.1.5m 【答案】B 【解析】当hwln/3时,应按高度为ln/3墙体的均布自重采用,即0.4m。

超静定多跨梁的计算

超静定多跨梁的计算 吴郁斌 力法的原理及二次超静定多跨梁的计算思路 力法是计算超静定结构的最基本的方法。采用力法解决超静定结构问题时,不是孤立地研究超静定问题,而是把超静定问题与静定问题联系起来,加以比较,从而把超静定结构问题转化为静定结构问题来加以解决。 在解决超静定多跨梁结构问题时,首先要确定超静定的次数,如下图所示: 图一 图一所示的静定多跨梁中,经分析得知,结构中的B 、C 两点的约束为多余约束,所以该结构为二次超静定问题。 其次,在确定超静定次数之后,按力学方法对模型进行转化,将超静定结构转变为静定结构。在图一所示的结构中,我们先假设B 、C 两点无约束,而作用两个集中力C B F F 、,方向按图一所示,这样我 们就把一个超静定多跨梁结构转化成简支梁结构,从而把解决超静定多跨梁结构的问题也转化成解决简支梁的问题。 最后,找出结构转化过程中的限制条件,按照条件列出力法方程。在图一所示的结构中,当我们把超静定多跨梁结构转化成简支梁的过

程中,我们必须限制B 、C 两点的竖向位移为0,因为在原来的超静定多跨梁结构中,B 、C 两点有约束。然后根据限制条件列出力法方程。 假设作用于多跨梁上的载荷在B 、C 两点产生的竖向位移分别为1?和2?,作用于B 点的单位竖向力(即当1=B F 时)在B 、C 两点产生的竖向位移分别为1211δδ和,作用于C 点的单位竖向力(即当1=C F 时)在B 、C 两点产生的竖向位移分别为21δ和22δ。设作用于B 、C 两 点的实际作用力大小分别为倍的单位力、21X X 。我们都知道梁的位移与载荷的大小成正比,所以根据限制条件以及假设条件,可以列出如下方程: ???=?-?+?=?-?+?0022221 211212111X X X X δδδδ 通过上述方程就可以计算出B 、C 两点的支座反力C B F F 、,然后通 过力平衡方程和弯矩平衡方程就可以解出两外两点(A 、D 两点)的支座反力,即 ?????==∑∑0 0y A M F ,?()???=?+?-+?+?=+++0a 0211y L F F L L F L F F F F F D C B D C B A 解之,就可以得到各个支座的反力,进而得到梁上各段的剪力图和弯矩图了。 多次超静定多跨梁的解决办法 在工程实际中,有些超静定梁结构的超静定次数超过两次,即称为多次超静定梁结构或称为N 次超静定梁结构。在解决多次超静定梁结构时,需要注意一下两个事项:

多跨连续梁计算程序使用手册

上海易工工程技术服务有限公司https://www.360docs.net/doc/c217940676.html, 多跨连续梁计算程序 用户使用手册

上海易工工程技术服务有限公司多跨连续梁计算软件使用手册 目 录 一、功能简介 (1) 基本功能 (1) (2) 运行环境 (1) (3) 计算依据 (1) (4) 参数输入约定 (1) (5) 计算原理 (2) 二、程序说明 (6) 程序功能 (3) (7) 程序界面 (3) 三、参数输入 a)基本参数输入 (4) b)地基系数输入 (4) c)支撑设置 (4) d)截面参数 (5) e)边载和地基参数 (6) f)连续梁参数 (7) g)节点支撑、连接方式 (9) h)荷载定义 (11) i)荷载输入 (12) j)组合参数输入 (15) 四、结果查询、显示和输出 (1)计算结果查询 (17) (2)计算结果图形显示 (17) (3)计算结果报告书输出 (18) 五、计算算例 (1)算例1 刚性支座 (19) (2)算例2弹性支座 (23) (3)算例3弹性地基 (25) 六、附录 (1)设置 (28)

一、功能简介 1.1.基本功能: 多跨连续梁计算程序软件是依据港口工程技术规范最新版开发的工程辅助设计软件,该系统考虑多种支撑方式(弹性支撑、刚性支撑、自定义支撑)、多种单元模式(普通梁单元、弹性地基梁单元)、多种连接方式(节点铰接、节点固结)、多种荷载(集中力、均布力、滚动力),并且考虑叠合构件问题,此外该系统提供直观的3D视图方式显示连续梁实体模型、荷载、作用效应等,并且为用户提供完整的WORD格式报告书。 1.2.运行环境: 项 目最 低推 荐 处理器Pentium II 350Pentium III450 内 存128MB256MB 可用硬盘50MB100MB 显示分辨率800*6001024*768 打印机Windows支持的图形打印机激光打印机 操作系统Windows 98Windows 2000/xp 1.3、计算依据 使用规范 《港口工程荷载规范》 《港口工程混凝土结构设计规范》 1.4、参数输入约定 1.4.1、坐标系约定 X方向为沿连续梁方向,X零点为连续梁左侧。 1.4.2、作用效应值的正负号约定: 弯矩:下部受拉为正,上部受拉为负。 剪力:断面左侧向下为正,断面右侧向上为正。 1.4.3、参数采用的量纲:

多跨连续梁计算程序

多跨连续梁计算程序V2.0 用户使用手册 上海易工工程技术服务有限公司

目 次 一、功能简介 (3) 1.1 基本功能 (3) 1.2 运行环境 (3) 1.3 计算依据 (3) 1.4 参数输入约定 (3) 1.4.1 坐标系约定 (3) 1.4.2 作用效应值的正负号约定 (3) 1.4.3 参数采用的量纲 (3) 1.5 计算原理 (3) 1.5.1 内力计算 (3) 1.5.2 效应组合 (4) 1.5.3 配筋计算 (4) 二、程序说明 (5) 2.1 程序功能 (5) 2.2 程序界面 (5) 三、参数输入 (6) 3.1基本参数输入 (6) 3.2 地基系数 (6) 3.3 截面参数 (6) 3.4 连续梁参数 (8) 3.5 节点支撑、连接方式 (9) 3.6 荷载定义 (10) 3.7 荷载输入 (11) 3.8 组合参数输入 (13) 四、结果查询、显示和输出 (15) 4.1 计算结果查询 (15) 4.2 计算结果图形显示 (15) 4.3 计算结果报告书输出 (15) 五、计算算例 (17) 5.1、算例1刚性支座 (17) 5.2 算例2弹性支座 (21) 5.3 算例3弹性地基梁 (23) 六、附录 (27) 6.1 分项系数设置 (27) 6.2 材料设置 (27) 6.3 支撑方式设置 (27) 6.4 背景颜色设置 (28)

一、功能简介 1.1 基本功能 多跨连续梁计算系统是依据港口工程最新技术规范开发的工程辅助设计软件,该系统考虑多种支撑方式(弹性支撑、刚性支撑、自定义支撑)、多种单元模式(普通梁单元、弹性地基梁单元)、多种连接方式(节点铰接、节点固结)、多种荷载(集中力、均布力、滚动力),并且考虑叠合构件问题,此外该系统提供直观的3D视图方式显示连续梁实体模型、荷载、作用效应等,并且为用户提供完整的WORD格式报告书。 1.2 运行环境 项 目最 低推 荐 处理器Pentium II 350Pentium III450 内 存128MB256MB 可用硬盘50MB100MB 显示分辨率800*6001024*768 打印机Windows支持的图形打印机激光打印机 操作系统Windows 98Windows 2000/xp 1.3 计算依据 使用规范 《港口工程荷载规范》 (JTS 144-1-2010) 《港口工程混凝土结构设计规范》(JTJ 267) 1.4 参数输入约定 1.4.1 坐标系约定 X方向为沿连续梁方向,X零点为连续梁左侧。 1.4.2 作用效应值的正负号约定 弯矩:下部受拉为正,上部受拉为负。 剪力:断面左侧向下为正,断面右侧向上为正 1.4.3 参数采用的量纲 长度单位采用m,力采用kN,其它衍生的量纲以此为标准(特殊说明的 除外), 1.5 计算原理 1.5.1 内力计算 本系统采用的是平面杆系有限单元法进行结构分析,可以梁单元或弹性地基梁单元计算。

挑梁计算书

说明:本计算书为挑梁计算书,悬挑部分上部有墙体!可能多数人实际计算时都没墙体,当然计算方法是一样的,只需去掉墙体荷载即可,希望此计算书能对大家有所帮助。 楼挑梁验算 一层E-F/7-9轴未按原设计修建墙体,一~四层均设置了挑梁。挑梁截面尺寸为b=240mm,h=400mm,上部钢筋3B14,下部钢筋2B12,箍筋Φ6@200,现对挑梁验算如下: 一、荷载及内力计算 挑梁荷载设计值计算如下: 双面粉刷的240mm厚砖墙2 5.24kN/m 挑梁自重 2.88kN/m 1.2(0.4= ? ? 25) 0.24 以上总计荷载设计值.23kN/m q= + = ? ? 2.1 9 2.6 1 5.24 2.88 二、挑梁抗倾覆验算 砌体中挑梁抗倾覆验算按《砌体结构设计规范(GB 50003-2001)》第7.41~7.43条有关公式进行验算。计算简图见图1。

图 1 挑梁埋入砌体的长度m h m l b 88.040.02.22.221=?=>=,则计算倾覆 点至墙外边缘的距离0x 为: m h x b 12.040.03.03.00=?== 则挑梁的荷载设计值对计算倾覆点产生的倾覆力矩V M 0为: ()m kN x l ql M v ?=+??=+=10.2512.05.15.05.123.19)5.0(00 挑梁的抗倾覆荷载为图1虚线范围内的砌体重量、楼面恒荷载标准值以及圈梁重量之和。砌体重量标准值为: ()[]kN 54.418.078.218.1238.224.5=?++?? 楼面恒载有:100mm 厚现浇板层重为22.5kN/m ,20mm 厚1:2水泥砂浆面层重为20.4kN/m 。楼面恒荷载标准值总计为2 2.9kN/m ;则作用 在挑梁埋入砌体的长度内的集中力(见图2)为: ()kN 36.5245.10.255.09.2=÷?+?

跨连续梁内力计算程序程序

六跨连续梁内力计算程序 说明文档

一.程序适用范围 本程序用来解决六跨连续梁在荷载作用下的弯矩计算。荷载可以是集中力Fp(作用于跨中)、分布荷载q(分布全垮)、集中力偶m(作用于结点)的任意组合情况。端部支承可为铰支或固支。 二.程序编辑方法 使用Turbo C按矩阵位移法的思路进行编辑,用Turbo C中的数组来完成矩阵的实现,关键的求解K⊿=P的步骤用高斯消元法。 三.程序使用方法 运行程序后,按照提示,依次输入结点编号,单元编号,单元长度,抗弯刚度(EI的倍数),集中力,均部荷载,集中力偶,各个数据间用空格隔开,每一项输入完毕后按回车键,所有数据输入完毕后按任意键输出结果。 输出结果中包括输入的数据(以便校核),角位移的值(以1/EI为单位)以及每个单元的左右两端弯矩值。 四.程序试算 1.算例1 算力图示: 输入数据: 结点:1 2 3 4 5 6 0;单元:1 2 3 4 5 6;长度:4 6 6 8 4 6; EI:1 1 2 1 ;Fp:0 12 8 0 6 0;q:8 0 0 4 0 6;m:0 0 -8 0 10 0 0 运行程序如下:

结果为: 角位移为:1 (11.383738,-1.434142,-8.980504,14.053733,-10.192107,10.048027,0)EI 单元编号 1 2 3 4 5 6 左端弯矩 右端弯矩 2. 算例2 算例图示: 6EI 8kN/m 4m 3m 2m 8m kN/m 123 6547 4kN/m 3m 3m 3m 2m 6m 12kN 8kN 8kN.m 6kN 10kN.m EI EI EI 1.5EI 1.52EI 输入数据: 结点:0 1 2 3 4 5 6; 单元:1 2 3 4 5 6; 长度:4 6 6 8 4 6; EI :1 1 2 1 ; Fp :0 12 8 0 6 0; q :8 0 0 4 0 6; m :0 0 -8 0 10 0 0

脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。而现行的国家标准中没有倾覆验算和稳定性验算内容。根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。 [关键词]脚手架;倾覆;稳定性;验算 结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。④结构或结构构件丧失稳定(如压屈等)”。可见它们同属于承载能力极限状态,但应分别考虑。《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。施工现场的起重机械在起吊重物时也要做倾覆验算。对于脚手架,由于浮搁在地基上,更应该做倾覆验算。 《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有

倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。如果需要,还可进行正常使用极限状态计算。 1脚手架的倾覆验算 1.1通用的验算公式推导 无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。当风荷载与一个以上的其它可变荷载组合时采用0.9;当风荷载仅与永久荷载组合时采用1.0。 对于平、立面无突出凹凸不平的脚手架,以下简称为规整脚手架,其倾覆验算应按如下表达式进行: (2)式中:0.9为起有利作用的永久荷载的荷载分顶系数;cw、wk为风荷载的效应系数、风荷载的标准值。 对于规整脚手架,其上作用的永久荷载、可变荷载是抗倾覆的,

梁计算实例

模板计算 1、工程概况 柱网尺寸8.4m×12m,柱截面尺寸900mm×900mm 纵向梁截面尺寸450mm×1200mm,横向梁截面尺寸450mm×900mm,无次梁,板厚150 mm,层高12m,支架高宽比小于3。 (采用泵送混凝土) 2、工程参数(技术参数)

荷载面板次楞自重m2支架自重m 可变 荷载 施工人员及设备 荷载 m2 (根据不同情 况定) 倾倒砼对梁侧模板 荷载 2kN/m2 振捣砼对梁底模 板荷载 2kN/㎡ 振捣砼对梁侧模板 荷载 4kN/㎡ 3计算 梁侧模板计算 图梁侧模板受力简图 3.1.1 KL1梁侧模板荷载标准值计算 新浇筑的混凝土作用于模板的侧压力标准值,依据建筑施工模板安全技术规范,按下列公式计算,取其中的较小值: V F C2 1 t 22 .0β β γ = 4.1.1-1

H F c γ= 4.1.1-2 式中 : γc -- 混凝土的重力密度,取24kN/m 3 ; t 0 -- 新浇混凝土的初凝时间,按200/(T+15)计算,取初凝时间为小时。 T :混凝土的入模温度,经现场测试,为20℃; V -- 混凝土的浇筑速度,取11m/h ; H -- 混凝土侧压力计算位置处至新浇混凝土顶面总高度,取1.2m ; β1-- 外加剂影响修正系数,取; β2-- 混凝土坍落度影响修正系数,取。 V F C 210t 22.0ββγ==×24××××= kN/m 2 H F c γ==24×=m 2 根据以上两个公式计算,新浇筑混凝土对模板的侧压力标准值取较小值m 2 。 3.1.2 KL1梁侧模板强度验算 面板采用木胶合板,厚度为18mm ,验算跨中最不利抗弯强度和挠度。计算宽度取1000mm 。 面板的截面抵抗矩W= 1000×18×18/6=54000mm 3; 截面惯性矩I= 1000×18×18×18/12=486000mm 4; 1、面板按三跨连续梁计算,其计算跨度取支承面板的次楞间距,L=0.15m 。 2、荷载计算 新浇筑混凝土对模板的侧压力标准值G 4k =m 2 , 振捣砼对侧模板产生的荷载标准值Q 2K =4kN/m 2。 荷载基本组合

静定梁内力计算

第三章静定结构的受力分析 学习目的和要求 不少静定结构直接用于工程实际,另外,它还是静定结构位移计算及超静定结构的计算基础。所以静定结构的内力计算是十分重要的,是结构力学的重点内容之一。通过本章学习要求达到: 1、练掌握截面内力计算和内力图的形状特征。 2、练掌握截绘制弯矩图的叠加法。 3、熟练掌握截面法求解静定梁、刚架及其内力图的绘制和多跨静定梁及刚架的几何组成特点和 受力特点。 4、了解桁架的受力特点及按几何组成分类。熟练运用结点法和截面法及其联合应用,会计算简 单桁架、联合桁架既复杂桁架。 5、掌握对称条件的利用;掌握组合结构的计算。 6、熟练掌握截三铰拱的反力和内力计算。了解三铰拱的内力图绘制的步骤。掌握三铰拱合理拱 轴的形状及其特征 学习内容 梁的反力计算和截面内力计算的截面法和直接内力算式法;内力图的形状特征;叠加法绘制内力图;多跨静定梁的几何组成特点和受力特点。静定梁的弯矩图和剪力图绘制。桁架的特点及分类,结点法、截面法及其联合应用,对称性的利用,几种梁式桁架的受力特点,组合结构的计算。三铰拱的组成特点及其优缺点;三铰拱的反力和内力计算及内力图的绘制;三铰拱的合理拱轴线。 §3.1梁的内力计算回顾 一、截面法 1、平面杆件的截面内力分量及正负规定: 轴力N (normal force) 截面上应力沿轴线切向的合力以拉力为正。 剪力Q (shearing force)截面上应力沿轴线法向的合力以绕隔离体顺时针转为正。 弯矩M (bending moment) 截面上应力对截面中性轴的力矩。不规定正负,但弯矩图画在拉侧。

2、截面内力计算的基本方法: 截面法:截开、代替、平衡。 内力的直接算式:直接由截面一边的外力求出内力。 1、轴力=截面一边的所有外力沿轴切向投影代数和。 2、剪力=截面一边的所有外力沿轴法向投影代数和,如外力绕截面形心顺时针转动,投影取正否则取负。 3、弯矩=截面一边的所有外力对截面形心的外力矩之和。弯矩及外力矩产生相同的受拉边。 (例子5) 二、内力图的形状特征 内力图与荷载的对应关系 内力图与支承、连接之间的对应关系 1、在自由端、铰结点、铰支座处的截面上无集中力偶作用时,该截面弯矩等于零(如图1-(a)C 右截面、图1-(b)A截面),有集中力偶作用时,该截面弯矩等于这个集中力偶,受拉侧可由力偶的转向直接确定(如图1-(a)C左截面和D截面)。

多跨连续梁计算程序使用手册

上海易工工程技术服务有限公司 https://www.360docs.net/doc/c217940676.html, 易工多跨连续梁计算程序V1.0 用户使用手册

多跨连续梁计算程序使用手册 一、 功能简介 (1) 基本功能 (1) (2) 系统组成 (1) (3) 运行环境 (2) 二、 程序说明 (1) 程序功能 (3) (2) 程序界面 (3) 三、使用说明 (1) 基本参数输入 (4) (2) 材料参数输入 (4) (3) 地基系数输入 (5) (4) 截面参数 (5) (5) 连续梁参数 (7) (6) 节点支撑、连接方式 (7) (7) 荷载定义 (10) (8) 荷载输入 (10) (9) 组合参数输入 (13) 四、 结果输出 (1) 作用效应标准值计算结果 (15) (2) 各种工况下作用效应组合结果 (17) (3) 作用效应包络值 (17) (4) 辅助功能 (18) 五、 计算算例 (1) 算例1 刚性支座 (21) (2) 算例2弹性支座 (26) 六、计算原理 (1) 设置 (31) (2) 作用效应值正负号约定 (33)

一、功能简介 1.1.基本功能: 多跨连续梁计算系统是依据港口工程技术规范(1998年)开发的工程辅助设计软件,该系统考虑多种支撑方式(弹性支撑、刚性支撑、自定义支撑)、多种单元模式(普通梁单元、弹性地基梁单元)、多种连接方式(节点铰接、节点固结)、多种荷载(集中力、均布力、滚动力),并且考虑叠合构件问题,此外该系统提供直观的3D视图方式显示连续梁实体模型、荷载、作用效应等,并且为用户提供完整的WORD格式报告书。 1.2.系统组成: 系统由计算核心模块、图形处理模块、辅助功能模块三部分组成,其中各模块的说明如下: (A)计算核心模块: 根据用户输入的基本条件,本系统将计算对这些条件进行处理,然后交付计算核心模块,核心模块将会计算作用在连续梁上的荷载、以及各荷载作用下的作用效应等。系统提供方便的计算结果查询,用户可以方便的获得想要的计算结果。 (B)图形处理模块: 本系统提供3D视图方式,并提供强大的图形操作功能,用户可以对图形进行放大、缩小、平移、旋转等操作,用户可以选择实体方式或线框方式显示图形。可以显示的内容包括连续梁模型、作用在连续梁上的荷载、荷载的各作用效应等。用户可以拷贝和打印当前显示图形。本系统提供两种打印模式,一为图片打印模式,这种模式将以位图方式打印显示的图形,比较适合实体的打印,一为线框打印模式,这种模式将以直线方式打印显示的图形,打印较为清晰。 (C)辅助功能模块: 辅助功能模块包括文件的管理、数据的录入、计算结果显示等,报告书输出功能,在报告书输出部分,系统将分类列出输入的条件、计算结果等,报告 网址:https://www.360docs.net/doc/c217940676.html, E-MAIL: webmaster@https://www.360docs.net/doc/c217940676.html, 1

结构力学连续梁程序计算

1.用连续梁程序计算连续梁的内力,作弯矩图. 输入数据: 3 4 2 2 20 4 20 4 20 4 20 60 2 60 3 -12 0 1 2 -30 2 3 1 输出结果: *************连续梁内力计算***************** 单元数= 3 支承类型= 4 节点荷载个数= 2 非节点荷载个数= 2弹性模量= 20.0000 杆长,惯性矩GC(NE),GX(NE) 4.000 20.000 4.000 20.000 4.000 20.000 节点荷载大小,对应未知数序号PJ(I,1),PJ(I,2) 60.000 2.000 60.000 3.000 非结点荷载值,距离,单元号,荷载类型号

-12.000 .000 1.000 2.000 -30.000 2.000 3.000 1.000 :::::::::位移:;:::::::: 结点号= 1 .0000 结点号= 2 .0692 结点号= 3 .0233 结点号= 4 .0000 .................各单元杆端内力.................... 单元号= 1 左端弯矩= 13.833 右端弯矩= 27.667 单元号= 2 左端弯矩= 32.333 右端弯矩= 23.167 单元号= 3 左端弯矩= 36.833 右端弯矩= -7.833 ====================== 计算结束==================== 弯矩图: 2.用连续梁程序计算连续梁的内力,作弯矩图.

22.62 输入数据: 4 2 1 4 20 3 20 3 20 3 20 3 20 30 4 -20 3 1 2 40 1. 5 2 1 -40 1.5 3 1 -20 3 4 2 输出结果: *************连续梁内力计算***************** 单元数= 4 支承类型= 2 节点荷载个数= 1 非节点荷载个数= 4弹性模量= 20.0000 杆长,惯性矩 GC(NE),GX(NE) 3.000 20.000 3.000 20.000 3.000 20.000 3.000 20.000 节点荷载大小,对应未知数序号 PJ(I,1),PJ(I,2) 30.000 4.000 非结点荷载值,距离,单元号,荷载类型号 -20.000 3.000 1.000 2.000 40.000 1.500 2.000 1.000 -40.000 1.500 3.000 1.000

MIDAS例题—4X30连续梁

4×30m连续梁结构分析 对4*30m结构进行分析的第一步工作是对结构进行分析,确定结构的有限元离散,确定各项参数和结构的情况,并在此基础上进行建模和结构计算。 建立斜连续梁结构模型的详细步骤如下。 1. 设定建模环境 2. 设置结构类型 3. 定义材料和截面特性值 4. 建立结构梁单元模型 5. 定义结构组 6. 定义边界组 7.定义荷载组 8.定义移动荷载 9. 定义施工阶段 10. 运行结构分析 11. 查看结果 设计 13. 取一个单元做横向分析

概要: 在城市桥梁建设由于受到地形、美观等诸多方面的限制,连续梁结构成为其中应用的最多的桥梁形式。同时,随着现代科技的发展,连续梁结构也变得越来越轻盈,更能满足城市对桥梁的景观要求。 本文中的例子采用一座4×30m的连续梁结构(如图1所示)。 1、桥梁基本数据 桥梁跨径布置:4×30m=120; 桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+2.5m(人行道)+(栏杆)=20.5m; 主梁高度:1.6m;支座处实体段为1.8m; 行车道数:双向四车道+2人行道 桥梁横坡:机动车道向外%,人行道向内%; 施工方法:满堂支架施工; 图1 1/2全桥立面图和1.6m标准断面

2、主要材料及其参数 混凝土各项力学指标见表1 表1 低松弛钢绞线(主要用于钢筋混凝土预应力构件) 直径:15.24mm 弹性模量:195000 MPa 标准强度:1860 MPa 抗拉强度设计值:1260 MPa 抗压强度设计值: 390 MPa 张拉控制应力:1395 MPa 热膨胀系数: 普通钢筋 采用R235、HRB335钢筋,直径:8~32mm 弹性模量:R235 210000 MPa / HRB335 200000 MPa 标准强度:R235 235 MPa / HRB335 335 MPa 热膨胀系数: 3、设计荷载取值: 恒载: 一期恒载包括主梁材料重量,混凝土容重取25 KN/m 3。 二期恒载:人行道、护栏及桥面铺装等(该桥梁上不通过电信管道、水管等)。 其中: 桥面铺装:采用10cm的沥青混凝土铺装层;沥青混凝土安每立方24kN计算,则计算铺装宽度为15m,桥面每米铺装沥青混凝土重量为:×24×15=m;

抗剪扭计算

目录 一、概述 (1) 二、主要材料 (1) (一)混凝土 (1) (二)普通钢筋 (1) (三)预应力钢材 (1) (四)锚具 (2) (五)支座 (2) 三、主桥结构描述 (2) (一)主桥箱梁构造 (2) (二)预应力体系 (2) 四、结构计算 (2) (一)主要规范标准 (2) (二)计算方法概述 (3) (三)计算条件及参数说明 (4) (四)施工阶段划分及各施工阶段应力状态 (4) (五)承载能力极限状态验算 (6) (六)箱梁抗剪扭承载力验算 (6) (七)正常使用极限状态验算 (8) 五、总结 (12)

一、概述 H匝道H03~H06号墩上部结构为(3×25)m的等截面预应力混凝土连续箱梁,单幅桥宽9m,位于半径为250m的圆曲线上。桥面横断面组成为: 0.5m(单层栏杆)+7.0m(行车道)+0.5m(单层栏杆)=8m 桥梁设计主要技术标准如下: 结构重要系数:1.1 设计计算行车速度:60Km/h; 设计荷载:城-A级;公路-Ⅰ级荷载进行验算 地震烈度:抗震设防烈度7度,地震动峰值加速度系数为0.10g。 二、主要材料 (一)混凝土 箱梁采用C50混凝土;桥面铺装为10厘米沥青混凝土+APP防水卷材+6cmC40钢筋混凝土。 (二)普通钢筋 普通钢筋采用HRB335和R235级钢筋,其技术标准应符合《GB1499-1998》及《GB13013-91》的规定。 (三)预应力钢材 箱梁纵向预应力钢束采用高强度低松驰7股捻制预应力钢绞线,公称直径为15.20毫米,公称面积139mm2,标准强度1860MPa,弹性模量为

1.95×105MPa。 (四)锚具 纵向束锚固采用OVM系列锚具,并配以相应的锚垫板及螺旋筋。千斤顶采用锚具生产厂家指定型号。预应力管道采用塑料波纹管。(五)支座 4D2号墩外偏20cm采用墩梁固接不设支座,4D1、4D5号墩采用GJZF4 450×650×93型板式橡胶支座,4D3、4D4处采用GPZ(KZ)7DX抗震型盆式橡胶支座。 三、主桥结构描述 (一)主桥箱梁构造 上部结构采用直腹板的预应力混凝土箱梁,箱梁为单箱单室断面。箱梁顶宽8米,底宽4米,悬臂长2米。箱梁梁高为1.5米,跨中顶板厚0.25米,底板厚0.20米,腹板厚0.5米。 (二)预应力体系 纵向预应力采用15-φs15.2的预应力钢束,采用两端张拉,一端锚具变形钢束回缩值0.006米,锚下张拉控制应力为0.72倍的钢绞线标准强度值。预应力管道采用塑料波纹管,孔道摩阻系数取为0.25,偏差系数取为0.0015。 四、结构计算 (一)主要规范标准

相关文档
最新文档