变形分析与控制

变形分析与控制
变形分析与控制

(一)核心筒整体变形控制

在高层钢框架—钢筋混凝土核心筒混合结构中,由于框—筒竖向构件的材料不同、应力不同以及混凝土的收缩和徐变、施工安装的时间差、结构不同部位的温度差等影响, 将导致竖向构件之间的竖向变形差异, 其中钢构件的压缩大于混凝土构件的压缩。由于同一结构中不同竖向构件的材料特性及应力水平的差异,将导致这种混合体系产生显著的竖向变形差。根据国内外多个工程实测表明:若不包括温度变形,钢筋混凝土柱的弹性变形和徐变、收缩变形之和大约每400m高度可达100mm,徐变和收缩变形之和约为弹性变形的两倍。这些与时间和环境相关的变形将使结构随时间发生显著的内力重分布,也会给非结构构件带来不利影响,还可能影响设备的安装和使用。

为了能尽可能的控制核心筒的整体变形,我们应对各种变形的原因进行分析,找出对应的解决措施。

1、混凝土结构徐变

混凝土在持续荷载作用下会发生徐变变形,徐变的存在会使混凝土结构的强度降低,缩短其使用寿命。混凝土是一种主要用于承受压力的脆性材料,其抗压强度远远高于抗拉强度。混凝土生产徐变的原因,一般认为是由于在长期荷载作用下,水泥石中的凝胶体产生粘性流动,向毛细管内迁移,或者凝胶体中的吸附水或结晶水向内部毛细孔迁移渗透所致。从水泥凝结硬化过程可知,随着水泥的逐渐水化,新的凝胶体逐渐填充毛细孔,使毛细孔的相对体积逐渐减小。在荷载初期或硬化初期,由于未填满的毛细孔较多,凝胶体的迁移较容易,故徐变增长较快。以后由于内部移动和水化的进展,毛细孔逐渐减小,徐变速度愈来愈慢。

徐变是混凝土这种粘弹性材料的重要性质之一。通常对于混凝土结构会因为徐变而使得变形不断增大 ,或者带来预应力损失 ,人们十分熟悉。但是另一方面,徐变会使混凝土的温度或其他收缩变形受约束时产生的应力得到松弛。事实上 ,长期以来结构混凝土因为各种收缩变形受约束而并未引起广泛开裂的重要原因,是早期强度增长较缓慢的混凝土徐变松弛作用显著的结果。以一组数据来说明徐变的作用[1 ]:设混凝土达到温峰后下降幅度为 3 0℃ ,其弹性模为 3 0GPa,线胀系数 1 0× 1 0 -6,如果不存在徐变 ,则引起的拉应力可高达 9MPa ,显然任何普通混凝土都无法承受这样大的应力而产生开裂,由此可见徐变的影响之大。徐变与混凝土强度通常是反向发展的,使普通混凝土原来具备开裂后的自愈能力完全丧失 ,因此一旦混凝土开裂就无法再愈合 ,而且在外界荷载与环境条件 (包括干湿、冷热循环 )作用下继续收缩,使裂缝会进一步连通和扩展。

1.1、徐变产生的机理分析

徐变是指在固定应力或荷载作用下,应变随时间的增长而继续不断发展的一种现象。它是一个复杂的物理和化学过程,将其主要机理分为:

1)在应力作用下、在吸附水层的润滑作用下,水泥胶凝体的滑动或剪切所产生的水泥石的粘稠变形。

2)在应力作用下,山于吸附水层的渗流或层间水转移而导致的紧缩。

3)由于水泥胶凝体对骨架(由骨料和胶体结晶组成)弹性变形的约束作用所引起的滞后弹性变形。

4)由于局部破裂(在应力作用下发生微裂及结晶破坏)以及重新结晶与新的联结而产生的永久变形

1.2、混凝土徐变的影响因素

混凝土的徐变和许多因素有关。水灰比较小或混凝土在水中养护时,同龄期的水泥石中未填满的孔隙较少,故徐变较小。水灰比相同的混凝土,水泥用量愈多,即水泥石相对含量愈大,其徐变愈大。混凝土所用集料弹性模量较大时,徐变较小。此外,徐变与混凝土的弹性模量也有密切关系。一般弹性模量大者,徐变小。混凝土徐变还与集料级配、粗集料最大粒径、养护条件、受荷应力种类、温度等因素有关。根据混凝土徐变的机理,可得出影响混凝土徐变的主要因素:

徐变与混凝土强度通常是反向发展的,使普通混凝土原来具备开裂后的自愈能力完全丧失 ,因此一旦混凝土开裂就无法再愈合 ,而且在外界荷载与环境条件 (包括干湿、冷热循环 )作用下继续收缩 ,使裂缝会进一步连通和扩展。国内水泥这些年来的变化 ,也促使混凝土的徐变能力发生了同样的演变。

徐变变形规律

(1)当应力水平相对较低时(如图),在持续荷载作用下,其变形虽然随着时间的增加而有所增长,但增长速度缓慢,试件在持续荷载作用下历时一个月而未破坏.这可能是由于存在某一应力水平(长期强度),当持续荷载在这一应力水平以下时,构件不会发生徐变破坏。

应力水平为70%时徐变变形曲线

(2)当在较高应力水平时(如图),其变形随时间的增加不断增长,直至构件发生徐变破坏.这类徐变曲线一般可以分为3个阶段:在第1阶段,徐变速率随时间的增长逐渐减小,该阶段是混凝土由瞬时弹性阶段向徐变变形转化的过渡阶段,称为徐变减速阶段;在第2阶段,徐变速率随时间的增加变化很小,徐变曲线接近直线,称之为稳定徐变阶段,混凝土内部的微裂缝在该阶段开始萌生与扩展;到了第3阶段,微裂缝得到进一步扩展并贯通为宏观裂纹,该阶段中的徐变速率随时间的增加不断增大,并最终导致材料破坏,称之为徐变加速阶段。

应力水平为85%时徐变变形曲线

混凝土的收缩和徐变密不可分,两者同时对结构的长期变形产生影响,不能把两者完全孤立开。收缩和徐变作用机理不同,收缩是不依赖于荷载的一种变形,而徐变是依赖于荷载的一种变形,此收缩和徐变要根据其影响机制正确对待。混凝土的收缩和徐变对钢筋混凝土结构的变形影响较大,尤其是收缩会引起比较大的附加变形。

收缩量(X10 )

(月)

混凝土结构收缩曲线图

2、风载影响

本工程塔体高度将达+432米,受到风力、日照、温差等多种动态作用的影响,核心筒顶部处于偏摆运动状态。根据类似工程的监测研究表明,塔心在一个白天的位移轨迹,是一个未闭合的近似椭圆形,预测广州西塔核心筒顶部施工期间的摆幅可能会大于15厘米。其中越到顶部,风力对结构的影响越大。

高层建筑的主要荷载为水平荷载,风荷载是建筑的设计荷载之一,也是高层建筑,高耸建筑的主要荷载之一。风速的脉动以及横向风涡流的频繁将引起结构顺向风和横向风振动,甚至产生扭转耦合振动,失稳,弛振及颤振。当结构的自振周期与风振周期接近一致时,有可能使建筑倒塌。历史上因为风振造成的工程结构坍塌事故实有发生。美国塔科马港湾上的第一座塔科马桥就是在竣工四个月后的1940年11月7日毁于68千米/小时的风振。同地震作用相比,风力作用极其频繁且持续时间比较长,因此风力的影响比地震大的多。高层建筑对风的动力作用比较敏感,建筑物越柔,自振周期越长,风的动力作用也就越显著。如果在强风作用下产生过大的水平位移和振幅,会使建筑物产生一定的损害或者由于风振引起构件的疲劳破坏。为了使高层建筑在风力作用下不会发生倒塌,结构开裂和过大的残余变形,就必须研究高层建筑在风振作用下的变形情况,进而采取合理的风振控制措施。因此研究风对工程结构的作用规律具有重要的现实意义。高层建筑风振变形的研究主要是研究风振对高层建筑物倾斜,水平位移,竖向变形,不同层面间的扭转变形。风振测量的方法,常用的是风洞模拟法和现场直接测量法。为了掌握风振作用下高层建筑物的竖向变形和不同层面的扭转变形,我们可以采用现场直接测量的方法,根据试验获取的数据进行分析,可以对高层建筑在风振作用下的变形规律进行初步的总结,并且在有条件的情况下,建立相应的数学模型,定性定量地分析风振对高层建筑产生的影响。

受风载影响,西塔外筒钢结构和核心筒部分摆动比较大,为了尽量减少风载对筒体结构变形的影响,我们每12层设置一个测量转化层,并且定周期复核,防止误差累积。具体操作步骤参见工程测量部分主塔楼垂直度控制部分。通过精确的定位,完全可以将风载的影响控制在容许范围内。

3、日照影响

由于日照的影响,混凝土构件和钢构件背面和正面受到的阳光照射不一样,产生的温差导致构件发生变形。温度变化时,若结构中的构件变形受到约束,那么构件的膨胀、收缩不能自由发生,结构构件就有内力,称为温度内力。对于一般的低层建筑物.温度变形和温度内力很小,可忽略。但随着建筑物高度增高、温度内力也越来越大。日照变形观测应在高耸建筑物或单柱(独立高柱)受强阳光照射或辐射的过程中进行,应测定建筑物或单柱上部由于向阳面与背阳面温差引起的偏移量及其变化规律。日照变形观测可根据不同观测条件与要求选用下列方法:

1 当建筑物内部具有竖向通视条件时,应采用激光铅直仪观测法。在测站点上可安置激光铅直仪或激光经纬仪,在观测点上安置接收靶。每次观测,可从接收靶读取或量出顶部观测点的水平位移值和位移方向,亦可借助附于接收靶上的标示光点设施,直接获得各次观测的激光中心轨迹图,然后反转其方向即为实测日照变形曲线图。

2 从建筑物外部观测时,可采用测角前方交会法或方向差交会法。对于单柱的观测,按不同量测条件,可选用经纬仪投点法、测顶部观测点与底部观测点之间的夹角法或极坐标法。按上述方法观测时,从两个测站对观测点的观测应同步进行。所测顶部的水平位移量与位移方向,应以首次测算的观测点坐标值或顶部观测点相对底部观测点的水平位移值作为初始值,与其他各次观测的结果相比较后计算求取。

一般来说,受日照温差影响,晚上日落以后到早上日出以前,向阳面与背阳面温差较小,引起的变形偏位也就比较小,早上10点以后至下午4点以前,由于内外温差较大,核心筒部位变形偏位较大,具体影响曲线如下图:

塔楼顶部受日照影响变形曲线

注: 1 图中顺序号为观测次数编号,括号内数字为时间;

2 曲线图由激光铅直仪直接测出的激光中心轨迹反转而成。

为了减小日照对建筑变形的影响,我们选在0:00~8点之间进行控制测量和投点工作,以尽量减少日照变形对施工的影响和轴线偏差的影响。

4、竖向变形差的解决方案

对于超高层结构的竖向变形差异问题,可以从材料和结构两个方面来拟定解决方案。从问题的本质来讲,控制徐变与收缩应首先从混凝土材料本身着手,调整混凝土的组成材料及配合比,采用合理的养护方法,尽量减小混凝土的徐变和收缩:

(1)降低混凝土中水泥在水化过程中的水化热,提高混凝土和易性,减少水灰比,增加混凝土的密实性和提高混凝土抗拉强度,减少混凝土在施工过程中由于温差过大产生膨胀与收缩应力。

(2)延长混凝土初凝及终凝时间,因为水泥在水化的总发热量是个常数,延长升温与降温时间,不致于使温度梯度产生峰值,使膨胀与收缩的应力达到最高值,裂缝迅速加大。

(3)合理选用混凝土粗细骨料,水灰比,掺适量微膨胀剂,缓凝剂,使结构产生自应力,来提高混凝土的抗拉能力,减少由于热胀冷缩产生结构裂缝及提高抗渗能力。

(4)加强混凝土的养护,采取有效表层保温,保湿措施,使外界气温与混凝土表面温差不宜过大,散热过快,并保持足够水份,使混凝土水化与凝固更完善,减少温度梯度,膨胀与收缩更均匀。(5)严格控制水灰比,水是影响混凝土收缩主要因素,因混凝土中水份大部分蒸发引起混凝土内部形成很多毛细孔,降低混凝土抗拉强度、收缩变形也同时发生,因此采用减水剂、减少水灰比,改善混凝土和易性,从而提高混凝土的抗拉强度,减小混凝土徐变和收缩量。

施工过程中的控制方法也可分之为两类,一类可称为被动适应方法,另一类可称为主动补偿方法。被动方法是先施工徐变量较大的构件,待这些构件完成大部分徐变后再施工与之相连、相邻的构件。以本工程采用的核芯筒_外钢框架体系为例,混凝土芯筒常采用滑模施工,芯筒施工超前周边钢框架的安装和楼盖体系的施工。一般超前的进度为& ’ $& 层。超前进度的多少应考虑施工工期和施工操作面的要求,同时考虑到使芯筒混凝土“提前”完成大部分的徐变。如果为了提高施工的整体进度缩短芯筒与周边钢框架之间时间差,可以采用主动补偿方法。所谓补偿是指周边钢结构柱在下料时考虑到由于弹性压缩及混凝土徐变而产生的竖向变形差,以若干层为一段调整柱的长度,使各层的竖向变形差控制在很小的范围内,不至于给结构造成太大影响。当然,被动方法和主动方法在施工中可以同时使用。

4.1 被动适应

被动方法是先施工徐变量较大的构件,待这些构件完成大部分徐变后再施工与之相连、相邻的构件。以本工程采用的核芯筒_外钢框架体系为例,混凝土核芯筒常采用滑模施工,芯筒施工超前周边钢框架的安装和楼盖体系的施工。一般超前的进度为5-15层。超前进度的多少应考虑施工工期和施工操作面的要求,同时考虑到使芯筒混凝土“提前”完成大部分的徐变。从问题的本质来讲,控制徐变与收缩应首先从混凝土材料本身着手,调整混凝土的组成材料及配合比,采用合理的养护方法,尽量减小混凝土的徐变和收缩。一般认为,混凝土结硬过程中特别是结硬初期,水泥水化凝结作用引起体积的凝缩,以及混凝土内游离水分蒸发逸散引起的干缩,是产生收缩变形的主要原因。注意养护,在湿度大、温度高的环境中结硬则收缩小;体表比直接涉及混凝土中水分蒸发的速度,体表比比值大,水分蒸发慢,收缩小;密实的混凝土收缩小;水泥用量多、水灰比大、收缩就大;用强度高的水泥制成的混凝土收缩较大;骨料的弹性模量高、粒径大,所占体积比大,收缩小。当钢筋混凝土筒体先于钢框架施工时,应考虑施工阶段钢筋混凝土筒体在风力及其他荷载作用下的不利受力状态,型钢混凝土构件应验算在浇筑混凝土之前钢框架在施工荷载及可能的风载作用下的承载力、稳定及位移,并据此确定钢框架安装与浇筑混凝土楼层的间隔层数。混凝土在硬化后和使用过程中,受各种因素影响而产生变形,主要有化学收缩、干湿变形、温度变形和荷载作用下的变形等,这些都是使混凝土产生裂缝的重要原因,直接影响混凝土的强度和耐久性。

4.2 主动补偿

为了提高施工的整体进度缩短芯筒与周边钢框架之间时间差,可以采用主动补偿方法。所谓补偿是指周边钢结构柱在下料时考虑到由于弹性压缩及混凝土徐变而产生的竖向变形差,以若干层为一段调整柱的长度,使各层的竖向变形差控制在很小的范围内,不至于给结构造成太大影响。此外设计者应从结构构造方面来解决竖向变形差异问题,可选择以下方案:

1) 抗为提高侧向刚度,减少水平位移,在某些超高层结构中常设置刚臂(加强层)。由于刚臂具有很大的刚度,在设计时可考虑由它来承担竖向变形差产生的内力,充分地利用了刚臂对结构水平及竖向特性的贡献。

2) 放在结构合适的位置设置柔性节点以适应结构的竖向变形差。设计者可利用这些关键位置的少量柔性连接来“释放”由于混凝土徐变收缩所引起的次应力和次弯矩。承重构件与非承重构件之间的柔性连接可避免承重构件将次应力传给非承重构件。在巨型结构体系中,二级承重构件可通过特殊的节点构造将竖向变形差的影响限制在5--7层,这5--7层可看作一节,每节之间可以在竖向自由伸缩。设计这种仅限制水平位移而不限制竖向位移的节点构造是关键。

3)先放后抗在水平构件与竖向构件的某些连接部位设置后浇带。如在芯筒周圈与楼板的连接处设后浇带,从而有效地减少了在楼板中引起次应力。

4)防对钢筋混凝土结构建筑,调整竖向构件的配筋率、面积体积比、应力强度比,使各竖向构件的徐变、收缩特性基本一致,从而减小竖向变形差。

至于采用哪种设计对策来抵抗或适应变形差,应综合考虑结构的力学性能和经济性。此外,拟定合理的施工方案,严格安排竖向结构构件的施工顺序和施工时间差,对控制结构的竖向变形差异也是非常有效的。当然,被动方法和主动方法在施工中可以同时使用。控制结构竖向变形应从设计、施工、监测三方面结合起来进行。施工前,应尽早确定混凝土的配合比及施工方案,以便对实际配合比的混凝土进行试验,并不断修正混凝土徐变和收缩变形的估算结果。施工过程中宜进行实时监测,对混凝土徐变和收缩的预测值不断进行修正,从而提出处理该变形的施工建议,形成“设计—预测—施工—监测—修正—施工”的控制模式。

变形监测方案

绿园污水处理厂 顶管施工基坑监测方案 编制: 审核: 审定: 二0一五年七月

目录 1.项目概述 (2) 1.1概况 (2) 1.2监测项目 (2) 2.第三方监测原则及技术规程 (2) 2.1监测原则及目的 (2) 2.2技术规程 (2) 3.监测实施程序 (3) 4.监测实施 (3) 4.1基坑围护结构顶部沉降监测 (3) 4.1.1水准控制网的设置 (3) 4.1.2监测点的埋设原则 (5) 4.1.3监测点的安设方法 (5) 4.1.4监测方法及精度控制 (6) 4.1.5沉降观测数据分析及成果表述 (7) 4.2基坑围护结构顶部水平位移监测 (7) 4.2.1水位位移监测控制网的布设形式 (7) 4.2.2水平位移监测控制网布设原则 (8) 4.2.3水平位移测点布置原则 (8) 4.2.4水平位移测点的埋设技术要求 (8) 4.2.5观测技术方法及精度控制 (9) 4.2.6观测数据分析及成果概述 (12) 4.3基坑自身监测频率 (13) 5报警的处理方法 (14) 5.1报警值的设定 (15) 5.2报警的处理办法 (15) 6实施组织计划 (14) 7本工程拟投入的主要仪器设备表 (15) 8人员组织实施 (16)

.项目概述 1.1概况 受0000000厂委托,00000000承担绿园污水处理厂配套管网基坑沉降变形观测工程,管道位于:东湖大街、滏阳路、朝阳大街、长安路、和平路、等路段,管线总长度约12263米,共计92个深基坑,我公司在基坑开挖至回填土完成期间,对基坑坡顶进行水平位移和沉降变形监测。 1.2监测项目 本方案监测项目有:基坑围护结构顶部沉降、水平位移监测。 2.第三方监测原则及技术规程 2.1监测原则及目的 在施工方对基坑支护结构进行实时监测前提下,我方监测在对施工方监测进行校核的基础上,独立地进行监测。 我方遵照委托方提出的要求,在基坑施工期间对基坑支护进行高精度监测,并从岩土工程专业的角度对监测数据、信息进行及时分析,向业主提供监测变形的情况,对异常情况及时提供建议,为施工安全和施工方案优化提供科学依据。 2.2技术规程 《建筑基坑工程监测技术规范》(GB50497-2009) 《建筑变形测量规范》(JGJ8-2007) 《国家一二等水准测量规范》(GB/T12897-2006) 《工程测量规范》(GB50026-2007) 《建筑地基基础设计规范》(GB 50007-2011) 《岩土工程勘察规范》(GB 20021-2001,2009版) 《建筑基坑工程监测技术规范》(GB50497-2009)

变形监测考试资料

变形监测定义 是指对被监测的对象或物体进行测量以确定其空间位置几内部形态随时间的变化特征。 变形监测的目的 1)分析和评价建筑物的安全状态2)验证设计参数3)反馈设计施工4)研究正常的变形监测规律和预报变形的方法 变形监测的意义 对于机械技术设备,则保证设备安全、可靠、高效地运行,为改善产品质量和新产品的设计提供技术数据;对于滑坡,通过监测其随时间的变化过程,可进一步研究引起滑坡的成因,预报大的滑坡灾害;通过对矿山由于矿藏开挖所引起的实际变形观测,可以采用控制开挖量和加固等方法,避免危险性变形的发生,同时可以改变变形预报模型;在地壳构造运动监测方面,主要是大地测量学的任务,但对于近期地壳垂直和水平运动以及断裂带的应力积聚等地球动力学现象、大型特种精密工程以及铁路工程也具有重要的意义。 变形监测的特点 1)周期性重复观测2)精度要求高3)多种观测技术的综合应用4)监测网着重于研究电位的变化 变形监测的主要内容 现场巡视;环境监测;位移监测;渗流监测;应力、应变监测;周边监测 变形监测的精度和周期如何确定,有何依据 精度:1917年国际测量工作者联合会(FIG)第十三届会议上工程测量组提出:如果观测的目的是为了使变形值不超过某一允许数值而确保建筑物的安全,则其观测的中误差应小于允许变形值的1/10~1/20;如果观测的目的是为了研究其变形的过程,则其中误差应比这个数小的多。 周期:变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界影响因素确定。 变形监测系统设计的原则 1)针对性2)完整性3)先进性4)可靠性5)经济性 变形监测系统设计主要内容 1)技术设计书2)有关建筑物自然条件和工艺生产过程的概述3)观测的原则方案4)控制点及监测点的布置方案5)测量的必要精度论证6)测量的方法及仪器7)成果的整理方法及其它要求或建议8)观测进度计划表9)观测人员的编制及预算 变形监测点的分类及每类要求 1)基准点:埋设再稳固的基岩上或变形区外,尽可能长期保存。每个工程一般应建立3个基准点,以便相互校核,确保坐标系统的一致。当确认基准点稳定可靠时,也可以少于3个,应进行定期观测。2)工作点:埋设再被研究对象附近,要求在观测期间保持点位的稳定,其点位由基准点定期监测。3)变形观测点:埋设再建筑物内部,0 变形呢监测点标石埋设后,应在其稳定后方可开始观测。稳定期一般不宜少于15天。 变行监测技术在哪几方面取得了较好的发展? ①自动化监测技术②光纤传感检测技术③CT(计算机层析成像)技术的应用④GPS在变形监中的应用⑤激光技术的应用⑥测量机器人技术⑦渗流热监测技术⑧安全监控专家系统 什么是垂直位移和沉降?建筑物沉降与哪些因素有关? 从词面来说,垂直位移能同时表示建筑物的下沉或上升,而沉降只能表示建筑物的下沉,对大多数建筑物来说特别是施工阶段,由于垂直方向上的变形特征和变形过程主要表现为沉降变化,因此实际应用中通常采用沉降一词。 影响建筑物沉降的因素有:(1)建筑物基础的设计(2)建筑的上部结构(3)施工中地下水的升降 监测方法与技术要求有哪些 视线长度、前后视距差和视线高度;水准测量主要限差;沉降监测点的精度要求。 精密水准测量的误差来源有哪些?如何减弱i角误差对沉降观测结果的影响? 误差来源:1)仪器误差:水准仪i角误差;水准尺长与名义尺长不符2)外界环境引起的误差:高压输电线和变电站等强磁场的影响;温度和大气折光影响3)人为引起的误差 方法:减小i角误差的影响,必须严格控制前后视距差和前后视距累计差,又由于i角误差会受温度等影响,减弱其影响的有效方法是减少仪器受辐射热的影响;若i角误差与时间成比例地均匀变化,则可以采用改变观测程序(奇数站—后前前后;偶数站—前后后前)的方法减小i角误差影响。 精密水准测量监测方法与技术要求有哪些 方法:采用精密水准测量方法进行沉降监测时,从工作基点开始经过若干监测点,形成一个或多个闭合或附合路线,其中以闭合路线为佳,特别困难的监测点可以采用支水准路线往返测量。 要求:视线长度、前后视距差和视线高度;水准测量主要限差;沉降监测点的精度要求。 测点布设原则与方法 建筑物水平位移监测的测点宜按两个层次布设,即由控制点组成控制网,由观测点及所联测的控制点组成扩展网;对单个建筑物上部或构件的位移监测,可将控制点连同观测点按单一层次布设。 水平位移监测常用的观测方法有 1)大地测量法2)基准线法3)专用测量法4)GPS测量法 交会观测方法有几种及什么情况用哪种方法 1)测角交会法:采用测角交会法时,交会角最好接近90°若条件限制,也可设计在60°~120°,工作基点到测点的距离不宜大于300m。2)侧边交会法:r角通常应保持60°~120°,测距仔细,交会边长度a和b应力求相等,一般不大于600m;3)后方交会法 精密导线测量方法 1)边角导线法 2)弦矢导线法 数据处理和分析主要内容 1)粗差检查及处理2)点温度条件检查3)数据可靠性检查。 挠度及挠度观测及方法 定义:测定建筑物受力后挠曲程度的工作称为挠度观测。建筑物在应力的作用下产生弯曲和扭曲,弯曲变形时横截面形心沿与轴线垂

浅谈变形监测平面控制网的建立与精度分析

浅谈变形监测平面控制网的建立与精度分析 发表时间:2019-09-12T11:49:43.813Z 来源:《基层建设》2019年第17期作者:岳小勇[导读] 摘要:如今在人类生活和生产建设中,出现了越来越多的山体、基坑塌陷等的灾害。 青海地理信息产业发展有限公司青海西宁摘要:如今在人类生活和生产建设中,出现了越来越多的山体、基坑塌陷等的灾害。由于多种因素的影响,在一定的时间内发生某种程度的变形,这种变形在一定范围内往往是允许的,但当其超出一定值时,就很可能会变成灾害,而要预防这些灾害的发生,就必须进行变形监测,分析变形产生的原因,总结变形发展的规律。本文主要就变形监测平面控制网的建立与精度进行分析,以供参考和借鉴。 关键字:变形监测;平面控制网;精度;分析引言 变形是自然界历来普遍存在的现象,它是指变形体在各种外力作用下,其形状、大小及位置在时间域和空间域中发生变化。所谓变形监测,就是利用测量仪器与专用仪器和方法对变形体的变形现象进行监视观测的工作,其任务是在确定各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。 1变形监测概述 1.1变形监测的概念 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作,其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道以及地铁等。变形监测的内容应根据变形体的性质和地基情况决定,对水利工程建筑物主要观测水平位移、垂直位移、渗透及裂缝观测,这些内容称为外部观测。为了了解建筑物内部结构的情况,还应对混凝土应力、钢筋应力、温度等进行观测,这些内容常称为内部观测,在进行变形监测数据处理时,特别是对变形原因做物理解释时,必须将内、外观测资料结合起来进行分析。 1.2变形网的特点 第一,工程测量控制网建立时,保证网点之间的相对精度至关重要,而变形监测网的布网目的是为了测定网点的变形,网点之间的相对精度不是最重要的。由于布网目的不同,影响网质量的因素也就不同,比如大气折光和系统误差对工程测量控制网的影响很大,而对变形网的影响不是最重要的。在变形观测中只要保证监测仪器和人员相对不变,计算过程中上述影响可以相互抵消,使变形不会受这些误差的影响;第二,首级网的精度相对较高,基准点一般应建立在变形体以外的稳定区域,特别是网址的起算点一点要建立在基岩基础上,以便于发现其他点位移,工作基点可以布设在变形区;第三,变形网的网址应在现有的人力、物力和财力的基础上尽可能的具有发现监测点位移的精度、灵敏度和可靠性,看其指标能否满足变形监测要求;第四,变形网的边长一般较短,但精度高,一般情况下需要强制归心;变形网要求通视条件好,而不过于要求网形的构成;对变形网来说,多余观测冗余多。 2变形监测系统的组成 2.1自动监测系统 通常情况下,为实现项目监测的自动化,工作基点站应设在隧道侧壁,同时设置四个校核点以校核工作基点。安装于基点站的TCA2003全站仪与监测系统机房建立通讯联系,由机房控制全站仪对校核点和变形点按一定的顺序进行逐点扫描、记录、计算及自校,并将测量结果发送至机房入库存储或并进行整编分析,实现了自动观测、记录、处理、储存、变形量报表编制和监测结果自动远程发送等功能。 2.2徕卡自动全站仪 徕卡TCA系列自动化全站仪,又称“测量机器人”,该仪器精度高,且性能稳定,其内置自动目标识别系统,可以自动搜索目标、精确照准目标、跟踪目标、自动测量、自动记录数据,在几秒内完成一目标点的观测,像机器人一样对多个目标作持续和重复观测,具有计算机远程控制等优异的性能。采用结构变形自动化监测系统进行变形监测,可以实现无人值守及自动进行监测预报,即实现变形监测全自动化,它不仅便捷准确,而且可以减少传统意义上形变观测中的人为观测误差及资料整编分析中可能造成的数据差错。 2.3工作基站及校核点设置 为使各点误差均匀,并使全站仪容易自动寻找目标,工作基站布设于监测点中部,校核点布设在远离变形区以外,最外观测断面以外40m左右的隧道中,先制作全站仪托架,托架安装在隧道侧壁,离道床距离1.2m左右,以便全站仪容易自动寻找目标,监测基准点使用位于东山口站台内的平面、高程控制点。 2.4隧道监测断面布置及监测断面内监测点布置 变形监测点按照设计要求的断面布设,上下行隧道各布置5个监测断面,每个断面在轨道附近的道床上布设两个沉降监测点,中腰位置两侧各布设两个水平位移监测点,即每个监测断面布设6个监测点。各观测点用连接件(人字形钢架)配小规格反射棱镜,用膨胀螺丝及云石胶锚固于监测位置的侧壁及道床的混凝土中,棱镜反射面指向工作基点。布设监测点应严格注意避免设备侵入限界,可以将监测点布设在图中位置。 3变形监测平面控制网的建立与精度分析 3.1监测网的建立 3.1.1平面控制网的建立 首先应根据设计单位和用户对实施监测物的精度要求,结合施工单位的仪器设备,制定平面测量的等级,然后充分考虑工程各部施工放样需要,点位不与工程建筑物发生冲突,使用方便,点位便于长期保存等方面情况下交替进行图上和实地选点,构造网形,确定点位测量的实方案。在点位确定后,可以根据点与点之间的通视情况构成网形,拟定图中的角度和边长观测量,可以用专有的软件进行精度的估算和观测量优化,通常是边角全测网开始优化计算,若计算结果的冗余过大,删掉一些通视条件不好的,边长过长,竖直角过大的边和相应的角度,再进行估算,直至点位精度满足要求,工作量又相对较小。 3.1.2高程控制网

变形监测总结(20200528080747)

第一章 变形的概念:指变形体(根据变形监测区域大小,可将变形监测对象分为三大类:全球性的、区域性的、工程与局部性的,本文统称其为变形体)在各种致变因素 的作用下,其形状、大小及位置在时间域和空间域中的变化。 变形观测的概念:指为了解变形量大小,通过定期测量观测点相对于基准点的变 化量,从历次观测结果比较了解变形随时间与空间的发展情况。这个过程即是变形观测。 产生变形原因:1.自然原因:地震、板块运动、日照、风震 2.人为的原因:(1)地下水的过量抽采(2)地下矿物的开采(3)建筑物的荷载(4)其它因素 变形的危害与控制:变形的危害:1)地面建(构)筑物裂缝、倒塌;2)交通、通讯设施损害管线损害;3)港口设施失效4)桥墩下沉,净空减小,水上交通 受阻5)滨海城市海水侵蚀 6)诱发地震 控制:(1)控制地下水开采;(2)进行地下水回灌,保持地下水位;(3)加固建筑物进行等。 变形观测的目的:确保工程安全运营进行变形分析,建立预报变形的理论和方法 变形观测的主要内容:沉降观测、水平位移观测、裂缝观测、倾斜观测、挠度监 测、滑坡监测等 变形观测的意义:实用上:检查各种工程建筑物及其基础的稳定性,及时掌握变形情况,为安全性诊断提供必要的信息,以便及时发现问题并采取措施 科研上:更好地理解变形机理,验证有关工程设计的理论和地 壳运动假说,进行反馈设计以及建立有效的变形预报模型 变形观测的主要技术方法: 1.常规测量方法 2.GPS的应用3.摄影测量方法 4.特殊测量手段法 5.综合各种技术方法。 变形观测的特点:1.精度要求高 2.重复观测3.数据处理要求高 4.多学科的配合5.责任重大 变形的分类:一般情况,变形可分为静态变形和动态变形两大类。 静态变形主要指变形体随时间的变化而发生的变形,这种变形一般速度较慢,需要较长的时间才能被发觉。 动态变形主要指变形体在外界荷载的作用下发生的变形,这种变形的大小和速度与荷载密切相关,在通常情况下,荷载的作用将使变形即刻发生。 根据变形体的变形特征,变形可分为变形体自身的形变和变形体的刚体位移。 变形体自身形变包括:伸缩、错动、弯曲和扭转四种变形; 刚体位移包含整体平移、整体转动、整体升降和整体倾斜四种变形。 变形观测的精度与观测周期:制定变形监测精度取决于监测目的、允许变形的大小、仪器和方法所能达到的精度。 一般而言,实用目的观测中误差应小于允许变形值的1/10~1/20,科研目的观测中误差应小于允许变形值的1/20~1/100 变形观测的周期:观测周期的概念:相邻两次变形观测的间隔时间 观测周期的确定 基本原则:根据建(构)筑物的特征、变形速率、观测精度要求和工程地质条件 及施工过程等因素综合考虑。 变形观测周期的确定应以能系统反映所测建筑变形的变化过程、且不遗漏其变化时刻为原则,并综合考虑单位时间内变形量的大小、变形特征、观测精度要求及

变形监测知识点

所谓变形监测,就是利用测量与专用仪器和方法对变形体的变形现象进行监视观测的工作。其任务是确定在各种载荷和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。 变形观测:对变形体在运动中的空间和时间域内进行周期性的重复观测,就称为变形观测。根据变形体的研究范围,可将变形监测研究对象划分为这样三类: 1全球性变形研究如监测全球板块运动、地极移动、地球自转速率变化、地潮等; 2区域性变形研究如地壳形变监测、城市地面沉降等; 3工程和局部性变形研究如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。 变形监测的内容 1)工业与民用建筑物:主要包括基础的沉陷观测与建筑物本身的变形观测 2)水工建筑物:对于土坝,其观测项目主要为水平位移、垂直位移、渗透以及裂缝观测。3)地面沉降:对于建立在江河下游冲积层上的城市,由于工业用水需要大量地吸取地下水,而影响地下土层的结构,将使地面发生沉降现象。对于地下采矿地区,由于在地下大量的采掘,也会使地表发生沉降现象 变形监测的目的和意义:具有实用上的意义,主要是掌握各种建筑物和地质构造的稳定性,为安全性诊断提供必要信息,及时发现问题,以便采取措施;具有科学上的意义,包括更好地理解变形的机理,验证有关工程设计的理论和地壳运动的假说,进行反馈设计,以及建立有效的变形预报模型。 变形监测技术的未来发展趋势: 1)多种传感器、数字近景摄影、全自动跟踪全站仪和GPS的应用,将向实时、连续、高效率、自动化、动态监测系统的方向发展; 2)变形监测的时空采样率会得到大大提高,变形监测自动化可为变形分析提供极为丰富的数据信息; 3)高度可靠、实用、先进的监测仪器和自动化系统,要求在恶劣环境下长期稳定可靠地运行; 4)实现远程在线实时监控,在大坝、桥梁、边坡体等工程中将发挥巨大作用,网络监控是推进重大工程安全监控管理的必由之路。 1.什么是监测网平差的基准,平差基准有哪三种类型? 固定基准位于变形体之外,在各观测周期中认为是不变的,以作为测定变形点绝 对位移的参考点。在监测网平差中,我们通常将变形参考系称为基准,监测网平 差时必须考虑网点位置及其位移的参考基准。如果基准不统一,形变量中就会混 入基准误差;如果基准定义不当,也会给形变分析带来困难。 监测网平差的基准固定基准—经典平差,重心基准—自由网平差,局部重心基准—拟稳平差监测点位布置:必须安全、可靠,布局合理,突出重点,并能满足监测设计及精度要求,便于长期监测。 沉降观测工作点的布设:1)沉降监测工作点应布设在最有代表性的部位,还要考虑到建筑物基础的地质条件,建筑物特征,建筑物内部应力分布状况等。2)工作点应与建筑物连接牢固,使工作点的高程变化能真正反映建筑物的沉降变化情况。3)工作点的点位应便于观

地铁隧道结构变形监测控制网及其数据处理

地铁隧道结构变形监测控制网及其数据处理 发表时间:2017-10-30T09:25:06.667Z 来源:《基层建设》2017年第20期作者:汪英宏王守横 [导读] 摘要:地铁隧道结构复杂,在长期使用过程中会受到各种因素的影响,因此,做好变形监测非常重要。 上海市机械施工集团有限公司大连地铁216标段项目经理部辽宁大连 116037 摘要:地铁隧道结构复杂,在长期使用过程中会受到各种因素的影响,因此,做好变形监测非常重要。本文将进行分析,以供参考。关键词:地铁隧道;变形监测;原因;措施 1.前言 对于地铁隧道结构变形的监测,不能采用传统的变形监测控制网布设方法,在施工过程中根据施工要求对工艺参数进行控制,为保证结果的准确度,必须进行基准点的稳定性检验。 2.地铁隧道变形原因 2.1轨道结构变形 地铁隧道变形包括轨道结构变形和隧道结构变形两种形式。其中轨道结构变形的主要原因是列车荷载长期对轨道产生反复作用,使轨道发生几何偏差进而影响轨道的平整性和顺畅性。除列车荷载作用外,隧道周边建设施工的卸载、负荷、加载也会引起道床的不均匀沉降。这种沉降同样会影响轨道的平整度及顺畅。对于铁路来说,地铁运行车辆重量较轻、速度低,轨道和车辆行走部分的变形一般不会引起地铁事故,但轨道变形造成的不平顺可能会导致列车发生不正常振动。这会降低列车运行的稳定性,减少用户的舒适度,更重要的是会加快轨道结构部件的损坏速度,从而间接影响列车的行车安全。 2.2隧道结构变形 地铁隧道结构变形发生在施工阶段和运营阶段,在施工阶段,地铁暗挖隧道工程是在岩土体内部进行的。在开挖过程中对地下岩土的扰动是不可避免的,这就破坏了地下岩土体原有的平衡条件。隧道开挖时地层初期受到的影响较小,发生的也是微型形变,随着开挖的不断深入,变形会极剧增大然后又趋于缓慢。因此,在隧道开挖过程中应对隧道的拱顶下沉量和地表的下沉量进行监测,以便于对隧道结构的稳定性和开挖工程的安全性提供分析依据。地铁隧道开挖引起的地层变形是一个漫长而缓慢的过程,无论是浅埋暗挖法还是盾构法在工程完工投入使用后都会不同程度的发生整体下沉的现象,尤其是工程处于软土层中时下沉现象更加明显。 3.地铁隧道变形监测技术 3.1传统监测技术 传统监测技术是利用水准测量仪的检测功能对隧道结构的变形情况进行监测,主要对隧道变形区域的断面进行监测。该法在实际使用过程中存在一系列不足: 首先,该法无法使用先进的远程测量技术。在监测过程中不得不打断监测区内的列车运行。 其次,地铁隧道内可视性差,空间受到限制,运行环境复杂,给监测的安全性和监测质量造成了不利影响。 最后,监测点数量受限,若设置监测点过多,不仅会增大工作量还会延长监测周期的长度,无法准确的反映出变形的真实情况;若设置监测点过少,无法根据有限的数据得到较为精准的变形趋势,这对后期的隧道结构的变形负荷分析是极为不利的。传统的监测技术已经无法适应现代社会的需求新型的监测技术急需被研发使用。 3.2高程监测控制网 在地铁进行跨河水准测量、测量机器人三角高程法测量、GPS 测高三种方法进行施测。 3.2.1跨河水准测量跨河水准观测采用威特 N3 及配套的铟瓦水准尺,施测前仪器 i 角检校为+1.2s。跨河水准测量严格按《国家一、二等水准测量规范》要求选定与布设场地,使仪器及标尺点构成平行四边形。作业方法、视线距水面的高度、时间段数、测回数、组数及仪器检查等按规范要求执行。按二等跨河水准观测精度施测 8个测回,高差中数中误差为±1.48mm。 3.2.2 测量机器人三角高程法测量采用徕卡 TCA2003 机器人完成,在 b1、b2 设置仪器,对向观测 12 个测回,测回间隔 5min。每测回量取 2 次仪高和棱镜高,量取至毫米。高差中数中误差为±1.00mm。 3.2.3 GPS 高程测量b1、b2大地四边形进行 GPS 联测,GPS 网解算的 b1、b2大地高的高差为-0.3403。 3.2.4 三种方法的成果比较高程监测控制网采用跨河水准测量、测量机器人三角高程法测量、GPS 测高三种方法进行施测结果进行对比。 4.基于组合后验方差检验法的灵敏度 4.1灵敏度的概念及其目的 通常情况下对基准点的稳定性进行判断是在测量结束后的内业处理过程中,删除一些不稳定的点带来人力物力和时间的浪费,在当今世界寻求的应是高效节能的方法,若是在观测现场测量人员或者测量机器人根据观测数据能感知到基准点的不稳定性,就可以给外业监测提供指导,提前对基准点进行筛选,甚至给基准网的布设提供意见,使得地铁隧道结构变形监测网和后期数据处理得到优化。 然而对同一个点的多次观测结果存在差异可能是误差影响也可能是基准点不稳定引起,要是知道到底出现多大的变动时可以认为是基准点发生了移动,那进行现场监测时就能对基准点的稳定性进行判断,不需要等到进行完内业处理才能得到答案。当观测值出现一定程度变化的时候,这种方法就能够有效的检测出结果。 4.2组合后验方差检验法灵敏度的探测 为模拟基准点的变动,对观测数据进行人为的改动。从众多基准点中任意选取3个,分别对方位角、天顶距和距离三个观测量进行测试,当角度偏差大于3秒小于6秒时对该点的稳定性应持怀疑态度,而大于6秒时该点稳定性就一定不可靠,当距离的测量偏差大于5mm时该点的稳定性同样不可靠。计算所得的组合后验方差检验法的灵敏度在实际工程实例中可以作为重要的比较参考值,通过比较监测数值间的差值,实现监测现场简单、快速判定基准点的稳定性。 5.隧道变形监控的系统建立 5.1系统数据库结构 变形监测数据库用于存储监测点属性、监测成果等数据信息,是数据管理系统的基础。因此,合理的数据库结构不仅是数据库设计的

变形监测网数据处理16页word

目录 1 绪论 (1) 1.1变形监测的目的和意义 0 1.2GPS在变形监测中的应用 0 1.3本文的主要研究内容 (1) 1.3.1 变形监测网参考系的选择 (1) 1.3.2 变形监测网点位稳定性分析 (1) 1.3.3 GPS监测网数据处理的一般模型 (2) 2 变形监测网数据处理的基本理论 0 2.1监测网的优化设计 0 2.2监测网的质量分析 0 2.2.1 精度 (4) 2.2.2 可靠性 (1) 2.2.3 经济性 (1) 2.2.4 灵敏度 (1) 2.3监测网的参考系 (5) 2.3.1 监测网的分类 (5) 2.3.2 监测网的平差方法 (2) 3 GPS监测网数据处理的一般模型 0

3.1外业观测成果检核 0 3.1.1 同步边观测数据的检核 0 3.1.2 同步环闭合差的检核 (1) 3.1.3 异步环闭合差的检核 (1) 3.2GPS监测网平差的基本模型 (1) 3.2.1 GPS基线向量网平差的方法分类 (1) 3.2.2 GPS网空间无约束平差模型 (1) 3.2.3 自由网平差成果的转换 (2) 3.3GPS监测网多期数据的基准统一 (2) 3.3.1 各期基线解算的基准分析 (2) 3.3.2 分期平差时基准的统一 (2) 4 总结与展望........................ 错误!未定义书签。 4.1结论 0 4.2进一步工作的研究方向 0 参考文献 (13) 摘要 变形在一定范围内被认为是允许的,但如果变形超过允许值,则可能引发灾害。因此,科学、准确、及时地分析和预报自然物及工程建筑物的变形状况,具有十分重要的意义。变形监测首先要确定监测对象的相对或绝对位移量,即变形的几何分析,本文主要针对变形几何分析的相关内容进行研究。 1、系统归纳了变形监测网的经典平差、秩亏平差以及拟稳平差的理论和计算过程,以某一沉降监测网数据为例,分别采用上述三种平差方法进行计算,结果表明采用不同的平

沉降变形观测网测量作业指导书

沉降变形观测网测量作业指导书 1 适用范围 本作业指导书适应高速铁路沉降变形观测网测量。 2 作业准备 2.1 资料准备 图纸审核、资料收集、建立沉降观测网平面布置示意图。 2.2 现场核对 现场核对基准点、工作基点及线下工程构筑物相对位置,明确路基、桥梁、涵洞、隧道、过渡段等构筑物观测点里程。 2.3 仪器配置 2.3.1 标称精度不低于2″、2mm+2ppmm的全站仪。 2.3.2 不低于DS05级的精密电子水准仪。 2.4 测量人员配备 每4~5km设沉降变形监测网,测量小组一个,小组成员4人, 其中测量工程师1名,测量工3名。 2.5 测量人员培训 测量人员上岗前均经过培训,主要测量人员要持有铁路建设测量工程师或线下工程沉降变形观测及评估业务培训结业证书,持证上岗。 2.6仪器设备检定和日常检校 所有测量仪器、设备均有法定计量检定证书,并在有效期内。

测量仪器有使用前及使用过程中均要进行检校。 1 3 主要技术要求号)3.1 客运专线铁路无碴轨道铺设条件评估技术指南(铁建设[2006]158 及196 号《高速铁路工程测量规范》(TB 10601—2009)]3.2 铁建设[2009 条文说明《客运专线铁路变形观测评估技术手册》(工管技[2009]77 号文)3.3 )(GB50026-2007《工程测量规范》3.4 GB/T12897-2006()3.5 《国家一、二等水准测量规范》 (JGJ/T8-2007)3.6 《建筑沉降变形测量规程》[2007]85《客运专线无砟轨道铁路工程施工质量验收暂行标准》(铁建设3.7 号)。贵广铁路公司《贵广铁路无砟轨道线下工程变形观测技术交底会议纪3.8 期要》2010年第13贵广铁路设计文件3.9 3.10 铁道部相关规定。 4 测量程序及工艺流程 4.1 测量程序 测量准备观测网布设观测网测量观测网复测与维护 4.2 测量工艺流程 2

变形监测技术方案

变形监测技术方案 根据《高速铁路工程测量规范》的有关规定,为满足对无碴轨道线下基础工程变形评估的需要,确定无碴轨道的铺设时机,应对本线桥梁、路基、隧道等线下工程进行变形监测。开展桥梁变形监测和分析研究,对确保桥梁施工质量和安全运营、延长桥梁的使用寿命、验证工程设计与施工的效果具有重要意义。铜陵长江公铁两用大桥的变形监测包括桥梁基础、承台、墩身以及梁体的水平位移和垂直位移监测等内容,其中,桥梁基础变形监测可在施工期间由施工单位完成,本方案重点针对工程施工及验收期间桥梁承台、墩身及梁体的变形监测,其主要任务是指导桥梁基础和无碴轨道安装施工。 监测方案设计的总体思路是:依照“先整体后局部,先控制后变形”的原则进行,即首先逐次布测变形监测的基准控制网、工作基点,再在基准点或工作基点上观测桥梁承台和墩身等的沉降和水平位移。当观测条件较好时,尽可能少设或不设工作基点,直接利用基准点测量变形观测点,以降低工作量和提高变形测量精度。 监测方案包括监测精度设计、基准网及工作基点布测、观测点布设、监测周期及频次的确定、观测方法的选择、监测数据的采集、处理、分析及整理等内容。根据桥梁结构特点、地形地质条件和变形特征,本工程变形监测将以垂直位移监测为主,水平位移监测视工程需要和施工实际情况而定。 监测精度设计和监测方法选择 依据《高速铁路工程测量规范》进行本项目变形监测的精度设计,包括垂直位移监测基准网及其观测点精度设计、水平位移监测基准网及其观测点精度设计。 (1) 垂直位移监测精度设计 垂直位移监测是本工程的重点,根据《高速铁路工程测量规范》制定其精度要求。表2-1、2-2分别为垂直位移监测网和垂直位移观测点的精度要求。 表2-1 垂直位移监测网精度要求 表2-2 垂直位移观测点精度要求

变形监测平面控制网的建立与精度估算

变形监测平面控制网的建立与精度估算 发表时间:2018-09-12T14:39:26.213Z 来源:《建筑学研究前沿》2018年第11期作者:朱兴军 [导读] 变形监测是一项非常复杂的工作,而需要结合某些专业学科如工程测量、地质。 青海省第一测绘院青海西宁 810000 摘要:变形监测网的优化设计是在一定的条件下设计出能满足某些规定的标准如精度、可靠性、灵敏度和经费的最优监测网,通过优化设计能满足工程的特点,合理选择仪器设备,使变形监测有意义。鉴于此,文章通过实例分析,重点就变形监测平面控制网的建立与精度估算进行研究分析,以供参考和借鉴。 关键词:变形监测网;控制网;精度估算;分析 引言 变形监测是一项非常复杂的工作,而需要结合某些专业学科如工程测量、地质、水文等才能恰当的解释及对变形原因具有正确的结论,它在工程建设及保障人民生命财产安全方面具有很大的意义。对测量角度而言,工程变形监测是一项具有较高精度的要求,所以从设计、设备的选择、监测的方法、监测数据的处理与分析等不能忽略各个阶段,尤其是监测网的数据处理与分析造成变形的原因。1变形监测平面控制网概述 1.1变形监测常用手段 进行变形监测的手段主要有大地测量、摄影测量、GPS测量以及特殊的测量手段。当使用大地测量方法和摄影测量方法时往往需要建立平面与高程控制网,并在观测对象上及周围布置一系列的观测点,通过对控制网和观测点的重复测量,获得观测数据,最后确定变形大小和规律,这种用于变形测量的控制网,称为变形控制网,简称变形网。 1.2变形监测网特点分析 相对比其它类型的控制网,变形网的特点如下:第一,工程测量控制网建立时,保证网点之间的相对精度至关重要。而变形监测网的布网目的是为了测定网点的变形,网点之间的相对精度不是最重要的。由于布网的目的不同,影响网质量的因素也就不同,比如大气折光和系统误差对工程测量控制网的影响很大,而对变形网的影响不是最重要的。在变形观测中只要保证监测仪器和人员相对不变,计算过程中上述影响可以相互抵消,使变形不受这些误差影响;第二,首级网的精度相对较高,基准点一般应建立在变形体以外的稳定区域,特别是网址的起算点一点要建立在基岩基础上,以便于发现其他点位移,工作基点可以布设在变形区;第三,变形网的网址应在现有的人力、物力、财力的基础上尽可能的具有发现监测点位移的精度、灵敏度和可靠性,看其指标能否满足变形监测相应的要求;第四,变形网的边长一般较短,但精度高,一般情况下需要强制归心;变形网要求通视条件好,而不过于要求网形的构成;对变形网来说,多余观测冗余多。 1.3变形监测网优化设计指标 变形监测网方案被设计好还是不好对以后的变形监测工作、数据质量、观测结果等具有较大的影响,方案设计需要符合要求、对工程建筑具有实用性、经济性才好。为得到好方案设计,应该使用网优化设计的知识,网优化不但能灵活调整方案设计,而且能保证目的的要求。 2变形监测平面控制网的建立与精度估算分析 2.1平面控制网的建立 首先应根据设计单位和用户对实施监测物的精度要求,结合施工单位的仪器设备,制定平面测量的等级,然后充分考虑工程各部施工放样需要,点位不与工程建筑物发生冲突,使用方便,点位便于长期保存等方面情况下交替进行图上和实地选点,构造网形,确定点位测量的实方案。另外,点位确定后可以根据点与点之间的通视情况构成网形,拟定图中的角度和边长观测量,进而可以用专有的软件进行精度的估算和观测量优化,通常是边角全测网开始优化计算,若计算结果的冗余过大,删掉一些通视条件不好的,边长过长,竖直角过大的边和相应的角度,再进行估算,直至点位精度满足要求,工作量又相对较小。 2.2高程控制网 首先根据设计单位对两点之间差异沉降量出发,制定相对沉降量的观测中误差,进而确定观测等级。比如说两点间差异沉降量的允许值为,差异沉降量的观测中误差取1/10 ,两点间的差异是两点的高差之差,而高差是高程之差,所以任意观测点高程中误差是1/20 。确定观测等级之后进行选点布网,确定实施方案和观测仪器。另外,高程基准点应选在变形体以外的稳定区域,特别是网的起算点一定要建在基岩基础上,确保其稳定性,消除基准点对变形点观测精度的影响,以便发现观测点的垂直位移。 3实例分析 为了建立某核电站扩建项目的次级控制网,并对其主要建筑进行变形监测,建立了首级控制网。为了验证点位的稳定,再进行初测之后又进行了复,初测时采用T3经纬仪和高精度的测距仪,复测时采用徕卡TC2003全站仪,进行边角全测,严密平差,详细如下:3.1外业观测 本次首级测量控制网的外业观测,采用莱卡TC2003全站仪进行边角联测,外业观测仪器采用强制对中,并按国家三等控制网要求进行施测,基本上与上次观测方法相同,具体如下:第一,测角。水平角采用全圆方向观测法观测4测回,各方向值取4测回的平均值;垂直角用全站仪测1测回,测角的各项技术要求按相关测量规范执行;第二,测边。用全站仪测量,边长正倒镜各2测回,为了消除系统误差,边长往返观测。在测距的同时,测定温度、气压、相对湿度。每测回的斜距进行气象、倾斜、归化等改正,得到该边的最终水平距离观测值。 3.2观测数据处理 首级测量控制网数据处理,采用严密平差软件进行严密平差处理,其坐标系与首次一致,具体的精度见下平差结果。表1闭合导线平差结果

最新变形观测复习资料

1.变形体在各种荷载作用下,其形状、大小、位置在时域和空域中的变化。 2.变形体:一般包括工程建筑物、技术设备以及其他自然或人工对象。 3.变形监测:利用测量及其它专用仪器和方法对变形体的变形现象进行监视、观测的工作。 4.变形监测的目的与意义:1)分析和评价建筑物的安全状态;2)验证设计参数;3)反馈施工质量;4)研究正常的变形规律和预报变形的方法。 5.变形监测的特点:1)周期性重复观测;2)精度要求高;3)多种测绘技术的综合应用;4)监测网着重研究点位的变化。 6.建筑变形的原因:1)外部原因:建筑物自重、动荷载、振动或风力;2)内部原因:地质勘察不充分、设计错误、施工质量差、施工方法不当。 7.周期的确定原则:应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界影响因素确定。 8.变形监测点的分类:1)基准点:变形监测系统的基本控制点,是测定工作点和变形点的依据。分为水平位移基准点和沉降监测点。2)工作点(工作基点):是基准点和变形观测点之间起联系作用的点。3)变形观测点:直接埋设在变形体上能反映建筑物变形特征的测量点。 10.变形监测网的布设原则:1)变形监测控制网的起算点或终点要有稳定的点位,应布设在牢靠的非变形区,为了减少观测点误差的积累,距观测区又不能过远。2)为了便于迅速获得观测成果,变形监测控制网的图形结构应尽可能的简单。3)在确保变形监测控制网具有足够精度的条件下,控制网应尽量布设一次全面网;在特殊条件下,才允许分层控制。4)实测原则:测量仪器、设备和测量方法的选择,要量力而行,不能超越现有的经济、技术条件,不能提出过高的要求。5)控制网设计时,应尽量采用先进技术,尽可能多地获取建筑物变形数据,特别是绝对位移数据和时间信息。控制点便于长期保存。6)变形监测控制网应与建筑施工采用相同的坐标系统。 11.水准点的布设:1)即要考虑点的稳定性,又要考虑误差积累;2)尽量埋设在基岩上或深埋于冻土内或深埋于原状土内,决不允许埋设在人工土内。 12.沉降观测工作点的布设:1)沉降监测工作点应布设在最有代表性的部位,还要考虑到建筑物基础的地质条件,建筑物特征,建筑物内部应力分布状况等。2)工作点应与建筑物连接牢固,使工作点的高程变化能真正反映建筑物的沉降变化情况。3)工作点的点位应便于观测。 13.沉降监测技术:是采用合理的仪器和方法测量建筑物在垂直方向上高程的变化量。监测方法:精密水准测量;三角高程测量;液体静力水准测量。 14.液体静力水准测量也称为连通管测量,是利用相互连通的且静力平衡时的液面进行高程传递的测量方法。 15.水平位移产生的原因:主要是建筑物及其基础受到水平应力的影响而产生的地基的水平移动。 16.水平位移观测的意义:适时监测建筑物的水平位移量,能有效地监控建筑物的安全状况,并可根据实际情况采取适当的加固措施。 17.测点布设:建筑物水平位移监测的测点宜按两个层次布设,即由控制点组成控制网、由观测点及所联测的控制点组成扩展网;对于单个建筑物上部或构件的位移监测,可将控制点连同观测点按单一层次布设。 18.水平位移控制点的型式及埋设要求:对特级、一级及有需要的二级、三级位移观测的控制点,应建造观测墩或埋设专门观测标石,并应根据使用仪器和照准标志的类型,顾及观测精度要求,配备强制对中装置。用于位移监测的基准点(控制点)应稳定可靠,能够长期保存,且建立在便于观测的稳妥的地方。位移监测点(观测点)应与变形体密切结合,且能代

变形监测数据处理

变形监测数据处理 第一章引论 变形是自然界的普遍现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时空域中的变化。 变形监测,就是利用测量与专用仪器和方法对变形体的变形现象进行监视观测的工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。 变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体,它包括自然的和人工的构筑物。根据变形体的研究范围,可将变形监测研究对象划分为这样三类: 1.全球性变形研究,如监测全球板块运动、地极移动、地球自转速率变化、地潮等; 2.区域性变形研究,如地壳形变监测、城市地面沉降等; 3.工程和局部性变形研究,如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。 变形监测的内容,应根据变形体的性质与地基情况来定。 1)工业与民用建筑物:主要包括基础的沉陷观测与建筑物本身的变形观测。就其基础而言,主要观测内容是建筑物的均匀沉陷与不均匀沉陷。对于建筑物本身来说,则主要是观测倾斜与裂缝。对于高层和高耸建筑物,还应对其动态变形(主要为振动的幅值、频率和扭转)进行观测。对于工业企业、科学试验设施与军事设施中的各种工艺设备、导轨等,其主要观测内容是水平位移和垂直位移。 2)水工建筑物:对于土坝,其观测项目主要为水平位移、垂直位移、渗透以及裂缝观测。对于混凝土坝,以混凝土重力坝为例,由于水压力、外界温度变化、坝体自重等因素的作用,其主要观测项目主要为垂直位移(从而可以求得基础与坝体的转动)、水平位移(从而可以求得坝体的扭曲)以及伸缩缝的观测,这些内容通常称为外部变形观测。此外,为了了解混凝土坝结构内部的情况,还应对混凝土应力、钢筋应力、温度等进行观测,这些内容通常称为内部观测。 3)地面沉降:对于建立在江河下游冲积层上的城市,由于工业用水需要大量地吸取地下水,而影响地下土层的结构,将使地面发生沉降现象。对于地下采矿地区,由于在地下大量的采掘,也会使地表发生沉降现象。这种沉降现象严重的城市地区,暴雨以后将发生大面积的积水,影响仓库的使用与居民的生活。有时甚至造成地下管线的破坏,危及建筑物的安全。因此,必须定期地进行观测,掌握其沉降与回升的规律,以便采取防护措施。对于这些地区主要应进行地表沉降观测。 变形监测所研究的理论和方法主要涉及到这样三个方面:变形信息的获取;变形信息的分析与解释;以及变形预报。 对于工程建筑物,变形监测的意义重点表现在:确保安全、验证设计、灾害防治。

沉降变形监测网建立及测量技术要求

沉降变形监测网建立及测量技术要求 1、沉降监测网的建立、精度要求等应符合《客运专线无碴轨道铁路工程测量技术暂行规定》的要求; 2、沉降监测网应在施工高程控制网的基础上进行加密建立,按二等水准测量的精度和测量方法要求进行施测。 3、高程基准网点间距一般不宜大于200m,以便于对沿线桥梁和路基等建筑物或构筑物进行沉降观测。隧道沉降观测高程基准网点应根据观测断面的布设情况合理设置。 4、观测前,对所使用的仪器和设备,应进行检验校正,并保留检验记录。 5、在沉降观测基准网建立后,应对水准基点做好保护工作,发现丢桩或桩位有移动现象,应尽快恢复和补测桩点。另外,应定期对沉降观测基准网进行复测,提出复测成果,复测周期不大于6个月。 6、应使用精度不低于DSZ1的自动安平水准仪或DS1的气泡式水准仪,水准标尺应采用与之配套的带有两排分划的线条式铟瓦合金标尺,水准仪和水准标尺各项技术指标应符合《国家一、二等水准测量规范》(GB 12897-91)有关规定,在沉降观测前和沉降观测过程中的规定时间段应对仪器和标尺进行标定。 7、沉降观测置镜点、观测路线、观测人员、观测设备一般应固定,在成像清晰稳定的条件下进行观测,不得在日出

后及日出前约半小时及其他不宜观测的天气情况下作业;作业中应经常对水准仪及水准尺的水准器和i角进行检查;在同一测站观测时,不得两次调焦,以确保观测成果的质量。 8、每一设计单元的工程变形测量任务完成以后要及时进行测量成果整理,主要应提交下列沉降观测成果资料:(1)施测方案; (2)观测基准点与观测点平面布置图; (3)仪器检验与校正资料; (4)观测记录手簿; (5)平差计算及测量成果表; (6)沉降变形图表及沉降曲线。

相关文档
最新文档