变形监测

变形监测
变形监测

1.变形监测:是对被监测的对象或物体(简称变形体)进行测量以确定其空间位置及内部形态随时间的变化特征。变形监测又称变形测量或变形观测。

2.变形监测目的与意义:分析和评价建筑物的安全状态;验证设计参数;反馈设计施工质量;研究正常的变形规律和预报变形的方法

3.变形的分类:1)全球性变形监测研究:地级移动监测,地级板块运动监测,地球旋转速率变化;2)区域性变形监测研究:地球形变监测,城市地面沉降变形监测;3)工程及局部变形监测研究:工程建筑物变形监测,滑坡体,地下开采,开挖引起的变形

4.测绘发展史:1)甚长基线干涉测量2)卫星激光测距3)GNSS 4)卫星重力探测技术(卫星测高,卫星跟踪,卫星重力梯度测量)5)合成空孔径雷达干涉测量6)摄影测量方法7)三维激光扫描仪8)专门测量方法:短距离测量,准直测量,铅直测量,静力液体测量,振动摆动测量,挠度测量,应变测量,倾斜测量;9)常规大地测量:经纬仪测距,全站仪测距,水准仪测量;测量四化:自动化,信息化,智能化,网络化

5.变形监测的主要内容:监测方法(技术),物理量(监测内容),现场巡视,环境量监测,位移监测(沉降监测,水平位移监测,挠度监测,裂缝监测),渗流监测,应力、应变监测(传感器),周边监测

变形监测的精度:根据规范,观测的中误差应小于允许变形值的1/10~1/20

6.变形监测数据处理及灾害预报的一般过程(主要内容)

(一)变形监测的工程设计;工程概况,目的,精度,周期,工程技术规范,选择监测方法和主要监测内容,监测的可行性和先进性,埋点(基准点,工作点,监测点)

(二)数据采集及预处理:监测仪器(传感器)――>物联网――>平差方法,小波分析――>(点的稳定性进行检验;剔除误差数据,去噪;差补,拟合;平滑)1几何分析(大小,形态,位置的分析)2物理解释(建模)(1)回归分析(一元线性回归)x-y;(多元线性回归)x1,x2,x3,->y;(逐步回归分析)(2)灰色系统的分析模型(系统论,信息论,控制论):数据量少,信息安全情况(大数据)――规律(3)时间序列分析模型(时间+变形)(4)小波分析(小波+神经网络;小波+模糊数学;小波+建线算法)(5)HHT(振动信息)(四)变形分析的预报和预警,分析及提出防治措施(破坏及不稳定的允许值)

7.监测方案(监测系统)设计:A设计原则:(1)适地制宜地选择监测方案,人工监测与自动监测相结合;(2)监测仪器精度满足要求,可靠性强,牢固性好;(3)监测点不宜过多(监测点成线分布),布点充分考虑变形体结构重垂力方向或最大挠度方向(经验);(4)监测方案要进行优化和比较验证工作,保证监测方案在技术上有保障,经济上可行,数据可靠,符合实际工程需求B变形监测五固定原则:三点固定(基准点,工作点,变形监测点);观测路线和观测方法固定;仪器和设备固定;观测人员固定;观测条件和环境一致C监测内容:根据监测需要和目的来确定D仪器和方法选择:符合精度要求;适合周围的环境条件;有足够的量程;光学->机械->电子;静态观测和动态观测相结合(RTK)E精度确定:允许变形值0.1~0.05(1)典型精度1mm(2)特殊工程0.1mm(3)滑坡10――50mmF.变形监测点的分类及每类要求1)基准点:埋设再稳固的基岩上或变形区外,尽可能长期保存。每个工程一般应建立3个基准点,以便相互校核,确保坐标系统的一致。当确认基准点稳定可靠时,也可以少于3个,应进行定期观测。2)工作点:埋设再被研究对象附近,要求在观测期间保持点位的稳定,其点位由基准点定期监测。3)变形观测点:埋设再建筑物内部,0 变形呢监测点标石埋设后,应在其稳定后方可开始观测。稳定期一般不宜少于15天。G.变形监测网a依据变形体大小:参考网,绝对网和相对网,平面网和高程网;b经典(传统)大地测量:GPS网,导线网,边角网H.监测周期与频率I.监测的预警(预报):临界值和允许变形量,单位时间内的允许变形量(规范,规程,工程类比)

8.变形网的设计(导线网,边角网(测边网),测角网,混合网,GPS网)(1)设计网的原则:a是独立控制网;b基准点在变形区外,处在变形网边缘;c网形与变形体形状相适应;d重点部位的精度应高些有一些侧重;e由于边长短,尽可能减少测站点和目标点对中误差;f观测部位上应有强制对中装置(2)与普遍工程测量网的区别:a布网的目的不同;b布网的原则不同;c网的多余观测不同;d网的边长短,精度高(几百米到1km,按国家一、二等精度观测)(3)变形监测网的优化:设计质量标准:精度,灵敏度,可靠性,经济性a精度指标:E(L)=AX,D(L)=σ

02Q=σ02P-1

平差结果:X=(A T PA)A T PL

D XX=σ02Q XX=σ03(A T PA)-1

Q XX 或D XX反映全部精度信息,可称为控制网的精度矩阵。

①整体精度

某些特征:行列式,迹,特征性,奇异值,范数;对非负定阵,用λ值判定(3)

A标准:DXX迹,反应点误差大小,迹最小,网优

D标准:

E标准:

S标准:

C标准:

②局部精度:

特征向量(误差椭圆长半轴)方向:

通过和可得到一些精度指标,单个坐标未知点的精度

③准则矩阵点位精度:

b.可靠性指标:

内可靠性:平差或统计检验发现粗差能力;

外可靠性:指未发现的粗差对平差结果的影响①多余观测分量②内部可靠性③外部可靠性

9.变形监测网优化指标:精度,可靠性,灵敏度指标,经济性指标(不同方案测绘的整周预算)

10.优化设计分类:零阶段设计(基准网设计);一阶段设计(结构网设计);二阶段设计(观测值权的分配);三阶段设计(对监测网的优化权配置)

11.变形监测方案编制:(一)编制的原则:1针对不同的工程个项目来选择2监测对象的重要性3应采用先进的技术4观测能连续,可检较5尽量减少仪器数量和监测频率6永久和临时监测衔接性要好7监测不影响工程8根据工程及周围环境确定基准9根据国家行业规范来编制监测方法(二)监测项目的确定:工程地质和水文地质资料,工程规模及施工技术,工程的周围环境(三)监测方案编制:收集资料,踏勘,编制初稿,会同有关部门确定基准,完善方案,报批(四)监测方案应包括内容:工程概况,监测目的和意义,监测项目和测量数量,测点平面图,测点布设剖面图,监测周期与频率确定,仪器设备及选型(性能,技术指标),监测人员情况,监测项目的控制基准,监测资料的整理与分析,监测报告送达的对象及时限,监测中应注意的相关问题(五)编制方案的基础资料:工程设计图,地质勘察报告,地形平面图,管线平面图,建筑结构图,地下主体结构,维护及支持结构图,最新仪器信息,相似工程的经验资料,国家规范、规格及协议12大坝综合变形监测系统:在坝面上布设平面监测点;在廊道内布设激光准直系统;在廊道内布设引张线成测小角法;设正垂线,测挠度;沉降观测测沉降(坝顶);基主物理量观测:渗透压,渗流量

13沉降观测方法:精密水准测量、精密三角高程测量、液体静力水准测量

14.精密水准测量的误差来源有哪些?如何减弱i角误差对沉降观测结果的影响?

误差来源:1)仪器误差:水准仪i角误差;水准尺长与名义尺长不符2)外界环境引起的误差:高压输电线和变电站等强磁场的影响;温度和大气折光影响3)人为引起的误差

方法:减小i角误差的影响,必须严格控制前后视距差和前后视距累计差,又由于i角误差会受温度等影响,减弱其影响的有效方法是减少仪器受辐射热的影响;若i角误差与时间成比例地均匀变化,则可以采用改变观测程序(奇数站—后前前后;偶数站—前后后前)的方法减小i角误差影响。

15.精密三角高程测量

(1)单向观测及精度(4)

(2)中间法及精度(3)对向观测及精度

16.液体静力水准测量误差来源:a.仪器的误差b.温度的影响c.气压差异的影响d.对容器的要求f.对传感器的要求

17.水平位移监测方法:(1)大地测量法:a.三角网的测量法(全站仪)b.精密导线测量法(精密边角导线,精密弦矢导线法)c.交会观测法(2-3个已知点,不易接触观测点)d.GPS(一机多天线监测技术)1)测角交会法

2)测边交会法3)后方交会法

(2)基准线法:a.视准线测量:小角法测量,活动觇牌法测量;b.引张线法测量:有浮托引张线,无浮托引张线;c.垂线测量:正垂线,倒垂线(水平位移,倾斜,挠度);d.激光准直测量(3)专门测量方法:a.测斜仪b.位移计c.裂缝观测计

18.交会法测量方式及注意问题:1)测角交会法:a.交会角最好接近90度(也可在60-120度)b.边长小于300m2)测边交会法:a.交会角60-120度,最好90度;b.测距仔细,以减小测边中误差ma,mb;c.交会边长度a和b力求相等,不宜大于600m3)后方交会法:工作基点和监测点不能在同一个圆周上(危险圆),应至少离开危险圆周半径的20%

19.影响角高程测量精度因素:距离、角度、i角误差、折光系数

工业与民用建筑物的几种变形:变形:水平位移、沉降、倾斜。

20.建筑物沉降监测项目:1)基础沉降2)水平位移3)滑坡监测4)裂缝监测5)内部监测。方法:精密水准法、沉降仪量测法、三角高程。建筑物内部监测包括的内容:①内部位移监测②应力/应变监测:应变计(数据融合)③温度监测④地下水位及渗流监测⑤挠度监测⑥裂缝监测等

21.建筑物倾斜监测的方法有哪些?

纵横距投影法:当测定偏距e的精度要求不高时,可以采用纵横距投影法;角度前方交会法:当测定偏距e的精度要求较高时,可以采用角度交会法;任意点置镜方向交会法:当建筑物属于非刚体变形,建筑物在施工阶段其楼体上变形点无法置镜时采用;激光垂准法:当需要计算建筑物某轴线的倾斜度时采用。

22.内部监测:(1)监测的部位:分层的沉降观测;分层水平位移观测;界面的观测(2)测斜仪(3)分层沉降仪

23. 挠度观测:(1)定义:建筑物在应力的作用下产生弯曲和扭曲,弯曲变形时横截面形心沿与轴线垂直方向的线位移称为挠度。(2)观测方法:1)高层建筑—前方交会法2)内部有竖直通道的建筑物—垂直观测法3)电子传感设备

24.裂缝观测:1)裂缝的属性:位置,长度,宽度,深度,错距2)方法:测微器法,测缝计,超声波,探地雷达,勘探波

六光纤监测技术(物联网)

传感器--变形--量化;电流--光(光纤)--量力(传感);设计--数据采集方法--数据预处理及分析

25.滤波:对数据中有用信号进行保留,对干扰信号进行压制或消除的作用,称为滤波。

26.变形监测数据处理:变形监测数据→检校→数据预处理→变形分析与预报

27.变形监测数据检校:限差检验,参考点稳定分析法,水准闭合差单测站检验,变形趋势一致性分析,变形与变量的关联性分析

28.数据预处理:观测异常值分析的取舍,监测数据平滑,监测数据滤波(连续)周期性变化,监测数据插值和拟合(剔除数据要补齐漏补数据),监测数据去噪,数据的平差处理(测量数据)

29.监测数据的预处理内容及为什么要进行预处理

内容:监测物理量的转换、监测数据的粗差检查、以及系统误差的检验等。

原因:1)监测数据可能不是我们想要的格式,必须将其转换成我们需要的数据格式2)对任何一个监测系统,其观测数据中或多或少会存在粗差,在变形分析的开始有必要先对观测数据进行预处理,将粗差剔除。

30.监测网数据平差:监测网经典平差(有基准起算数据的平差);秩亏自由网平差(没有起算数据,没有基准点);没有必要起算数据,绝对位置难以确定或难以构成一个完整的控制网,对这种控制网进行平差(秩不是满)

---->间接平差原理(5)

V=AX-L, XTPV=min

法方程:ATPAX=ATPL求未知数X=N-1ATPL,其余平差值

单位权方差值为:

为了求唯一解,可增加约束条件:a,普通秩亏自由网平差X T

X=min;b,拟稳平差(对未知参数分两类)x1 非拟稳点未知数,x2 拟稳点未知数,有x2

T

x2=min ;c,加权秩亏网平差

x T

P X x=min

31.秩亏网秩亏数:水准网1;二维网:测角网4,其他3;三维网:测角网7,其他6

32.变形监测数据去噪(小波分析去噪):基本模型s(n)= f(n)+e(i)监测数据= 变形数据+随机噪声

35.变形监测数据处理:数据取舍;数据滤波;插值和拟合;小波分析;数据平差:自由网平差,秩亏自由网平差,拟稳平差;参考点稳定性判断;数据检验:限差检验,物理规律;统计检验:相关性检验,一致性检验

36.变形分析的任务:是根据具有一定精度的观测资料,经过数学上的合理处理,从而寻找出建筑物变形在空间的分布情况及其在时间上的发展规律性,掌握变形量与各种内、外因素的关系,确定出建筑物变形中正常和异常的范围,防止变形朝不安全的方向发展。

37.变形分析模型:建立变形影响的因素和变化量之间的对应函数关系和过程,叫变形分析模型。

38.回归分析法:从数理统计的理论出发,对建筑物的变形量与各种作用因素的关系,在进行了大量的实验和观测后,寻找它们之间的规律性,这种处理变形监测资料的方法叫回归分析。

39.统计分析方法:通过数理统计的方法来建立回归分析方法:一元线性回归,多元线性回归方法,逐步回归分析方法;通过系统论的方法建立模型:黑箱系统,白箱系统,灰箱系统

40. 时间序列分析模型的特点:具有时间先后顺序的观测数据序列,数据之间具有相关性,具有动态连续观测数据,应具有等时间间隔的观测数据

41.ARMA模型数据序列要求:平稳,正态,零均值〔Xt〕(6)

42.ARMA模型建立的一般步骤1)数据获取与预处理:剔除,检验,插补,趋势性分析,相关性分析等2)模型结构选择:ARMA(n,m)模型类别,模型阶次。Box法运用自相关分析法来判定模型的类别,阶次,DDS法则用统一的模型结构(2n,2n-1)进行处理。3)确定模型结构:(2)

4)计算模型参数:5)模型适用性检验(最优,最佳模型):a误差,新样本检验b灵敏性(周期性,显著性);6)得到模型

43.ARMA的Box建模方法(B-J法):自相关函数和偏自相关函数(7)

44.变形监测数学模型:表示建筑物的变形与产生变形的各因素之间的关系的函数,称为变形监测数学模型。

45.变形监测数学模型分类;统计分析模型、确定性模型、混合模型、灰色系统分析模型、时间序列分析模型、神经网络模型

46.灰色系统:信息不完全的系统成为灰色系统。信息不完全指:系统因素不完全明确;因素关系不完全清楚;系统结构不完全知道;系统作用原理不完全明了。

47.灰色关联分析:1)构造灰色关联因子集2)灰色关联度计算公式3)灰色关联序

48.工程建筑物的变形特点及原因:荷载作用引起的土层压缩变形产生逐渐积累的过程

产生原因:荷载原因,地下水影响,地震,地下开挖,基础结构,土层的性质有关

49.工程建筑物的变形数据处理:基准网分析;各周期数据处理;观测结果的分析:绝对变形量=(与第一次观测数据处理量),相对变形量(周期之间的数据处理量);数据报表;曲线图绘制;编制报告(数据结果分析);变形预测;减少变形措施建议

50.基坑支护方式:地下连续基墙,排桩支护,锚固支护基坑工程施工监测内容及方法:围护桩墙顶水平位移和沉降监测(水平位移采用极坐标法,前方交会法,视准线法,沉降监测采用精密水准测量)、深层水平位移监测(采用测斜仪测量)、基坑回弹监测(采用回弹监测标和深层沉降标监测)、土体分层沉降监测(采用磁性分层沉降仪测量)、支档构件内力监测(使用钢筋计)

51.基坑工程施工技术设计内容:工程概况,监测内容的确定,监测点位的布设,监测仪器仪表的选择和监测方法,精度的确定,监测频率和期限的确定,预警值和报警制度的制定

52.盾构隧道施工监测项目及方法:1)土体介质的监测:包括地表沉降监测(采用精密水准测量方法测量地表标高)、土体沉降和深层位移监测(采用测斜仪测量)、土体回弹测量(采用精密几何水准测量)、土体应力和孔隙水压力测量(通过钻孔埋设应力压力传感器来获取数据)2)周围环境监测:包括相邻房屋和重要结构物的变形监测(采用常规精密水准测量进行沉降监测,采用精度较高的经纬仪进行倾斜监测,裂缝监测有直接监测和间接观察法)、相邻地下管线的监测(布设间接测点和直接测点进行管线垂直沉降监测)3)隧道变形监测:包括隧道沉降和水平位移监测(传统采用水准测量沉降量的同时进行导线测量推算水平位移,先进方法是采用具有先进功能和高精度的自动跟踪全站仪)、隧道断面收敛位移监测(采用先进仪器与软件实现断面自动扫描)、隧道应变和预制管片凹凸接缝处法向应力测量(焊接应变计和应力计等传感器进行处理)

53.开采沉降学三下一上:水体下,铁(公)路下,建(构)筑物下;承压水体上

54.开采沉降学研究主要内容:地表沉陷及移动的规律:下沉,倾斜,曲率,水平移动,水平变形;地表沉陷的预计方法:经验公式法,剖面函数法,影响函数法(概率和统计);控制地表沉陷的措施及方法: 填充开采:离层泥浆方法、条带开采、土地复垦及生态重建

55.地表移动:采空区面积扩大到一定范围,岩层移动影响到地表,使地表发生移动和变形,使地表产生沉陷的这一过程和现象叫地表移动。

56.地表移动的形式:地表移动盆地,裂缝和台阶,塌陷坑

57.非充分采动:当采空区的尺寸小于该地址条件下的临界开采尺寸时,地表任意点的下沉值均未达到该地质条件下应有的最大值。充分采动:当地表移动盆地内只有一个点的下沉达到该地质条件下应有的最大下沉值的采动状态。超充分采动:当地表移动盆地内有多个点的下沉达到该地质条件下应有的最大下沉值的采动状态。

58.主断面:地表移动盆地内通过地表最大下沉点所做的沿煤层走向或倾向的垂直断面。沿走向的主断面称走向主断面;沿倾向的主断面称走倾向主断面;

59.主断面上布观测线来获取变形和移动值来分析地表移动盆地特征

6 扭曲变形

7 剪切变形1,2直接测出书142(9)

1.下沉

地表点的沉降叫下沉,是地表移动向量的垂直分量,用w 表示,它反映了一个点不同

时间在垂直方向的变化量。用地表某一点n 的m 次与首次观测点的标高差表示:

n n nm (1-4)w = h ?h 0

式中,w n—地表点的下沉,mm;

h n0、h nm—地表n 点首次和m 次观测时的高程,mm。

下沉值正负号的规定:正值表示测点下沉,负值表示测点上升。

2.水平移动

地表下沉盆地中某一点沿某一水平方向的位移叫水平移动,用u 表示。用地表某一点n

的m 次与首次测得的从该点至控制点水平距离差表示:

n nm n 0 (1-5)u =l ?l

式中,u n—地表n 点的水平移动,mm;

l n0、l nm—分别表示首次和m 次观测时地表n 点到观测线控制点R 间的水平距离,

mm。

水平移动值正负号的规定:在倾斜断面上,指向矿层上山方向的为正值,指向矿层下山

方向的为负值;在走向断面上,指向走向方向的移动为正,逆向走向方向的移动为负。

3.倾斜

地表倾斜是指相邻两点在竖直方向的下沉差与其水平距离的比值,它反映了地表移动盆地沿某一方向的坡度,通常以i 表示。

式中,i m-n—m、n 两点的倾斜变形,mm/m;

l m-n—地表m、n 点间的水平距离,m;

w m、w n—分别为地表m、n 点的下沉值,mm。

倾斜的正负号规定:在倾斜断面上,指向上山方向的为正,指向下山方向的为负。在走

向断面上,指向走向方向的为正,逆向走向方向的为负。

4.曲率

曲率是两相邻线段的倾斜差与两线段中点间的水平距离的比值,它反映了观测线断面上

的弯曲程度。通常用k 表示,由下式计算:

式中,i m-n、i n-p—分别表示地表m-n 和n-p 点间的平均斜率,mm/m;

l m-n、l n-p—分别表示地表m-n 和n-p 点间的水平距离,m;

曲率的正负号规定:地表下沉曲线上凸为正,地表下沉曲线上凹为负。

5.水平变形

水平变形是指相邻两点的水平移动差与两点间水平距离的比值,常用ε表示。水平变形

是表示单位长度的线段的拉伸或压缩。可由下式计算:m

式中,u m、u n—分别为m、n 点的水平移动,mm;

l m-n—点m、n 的水平距离,m;

εm-n—点m、n 的水平变形,mm/m。

水平变形的正负号规定:拉伸变形为正,压缩变形为负。

1.下沉曲线(图1-24 中的曲线1)

下沉曲线表示地表移动盆地内下沉的分布规律,用w(x)表示。设主断面方向为x 轴,

下沉的分布规律函数为f(x),则下沉曲线可表示为:

w(x)=f(x)(1-9)

在研究地表移动规律时,首先要确定以下几个特征点:

(1)最大下沉点o 在水平矿层条件下,位于采空区中央正上方,此点的下沉值最大;(2)移动盆地边界点A、B 处的下沉为零,可根据走向边界角作出边界点A、B;

(3)拐点E,即移动盆地主断面上下沉曲线凹凸的分界点,即曲率为零的点。拐点的位

置一般位于采空区边界上方而略偏向采空区一侧。

下沉曲线分布规律:在采空区中央上方o 处地表下沉值最大,从盆地中心向采空区边缘

下沉逐渐减小,在盆地边界点A、B 处下沉为零,下沉曲线以采空区中央对称。

2.倾斜曲线(图1-24 中的曲线2)

倾斜曲线表示地表移动盆地倾斜的变化规律,用i(x)表示。是下沉曲线的一阶导数:(1-10)

i(x) = dw(x)/dx

倾斜曲线分布规律:盆地边界至拐点间倾斜渐增,拐点至最大下沉点间倾斜逐渐减小,

在最大下沉点处倾斜为零。在拐点处倾斜最大,有两个相反的最大倾斜值。

3.曲率曲线(图1-24 中的曲线3)

曲率曲线表示地表移动盆地内曲率的变化规律,用k(x)表示。是倾斜曲线的一阶导

数,下沉曲线的二阶倒数:

(1-11)

k x =(di x)/dx=(d 2w x) /(dx2)

曲率曲线的分布规律:盆地边缘区为正曲率区,盆地中部为负曲率区。曲率曲线有三个

极值,两个相等的最大正曲率和一个最大负曲率,两个最大正曲率位于边界点和拐点之间,最大负曲率位于最大下沉点处。边界点和拐点处曲率为零。

4.水平移动曲线(图1-24 中的曲线4)

水平移动曲线表示地表移动盆地内水平移动分布规律,用u(x)表示。由于水平移动

曲线分布规律与倾斜曲线分布规律相似,可以表示为

u(x) = B ?i(x) = B ?dw(x)/dx

式中,B—为水平移动系数,据有关资料:B=0.13~0.18H。

水平移动曲线的分布规律:与倾斜曲线相似。盆地边界至拐点间水平移动渐增,拐点至

最大下沉点间水平移动逐渐减小,在最大下沉点处水平移动为零。在拐点处水平移动最大,有两个相反的最大水平移动值。移动盆地内各点的水平移动方向都指向盆地中心。

5.水平变形曲线(图1-24 中的曲线5)

水平变形曲线表示地表移动盆地内水平变形分布规律,用ε(x)表示。是水平移动的一

阶导数:(1-13)

水平变形曲线的分布规律:与曲率曲线的分布规律相似;盆地边缘区为拉伸区,盆地中

部为压缩区。水平变形曲线有三个极值,两个相等的正极值和一个负极值,正极值为最大拉

伸值,负极值为最大压缩值。两个最大拉伸值位于边界点和拐点之间,最大压缩值位于最大

下沉点处;边界点和拐点处水平变形为零。

60.边界角(10mm):在充分采动条件下,地表移动盆地边界点到采空区边界连线和水平线在煤柱一侧的夹角称为边界角。(1)走向边界角:(2)下山边界角:(3)上山边界角:(4)急倾斜煤层煤层底板边界角:入0

61.地表移动盆地边界的角值参数:1)边界角(10mm)2)移动角:在充分采动或接近充分采动条件下,地表移动盆地主断面上三个临界变形中最外边的一个临界变形值点至采空区边界的连线与水平线在矿柱一侧的夹角称为移动角。

移动边界i= 3 mm/m,k =0.2 mm/m2,£=2mm/m;3)裂缝角:4)松散层移动角:

62.开采沉陷观测站分布:根据测站地点不同:地表移动观测站,岩层内部观测站,专门观测站。根据布网形式不同:网状观测站、剖面线观测站。

63.地表沉陷的一般规律:地表盆地移动稳定后主断面移动和变形规律,采动过程中地表盆地移动和变形规律,全断面的移动和变形规律,采矿地质条件对地面沉陷的影响,复杂地质采矿条件对地面沉陷的影响

65.超前影响角:将工作面前方地表开始移动的点与当时工作面的连线和水平连线在没煤柱一侧的夹角。起动距:地表开始移动时的工作面推进距离称为起动距(1/4---1/2H0)

66.地表移动持续时间照地表下沉速度对建筑物的影响程度不同划分为:a开始阶段1.67mm/d即50mm/月;b 活跃阶段>1.67mm/d 50mm/月;c 衰退阶段:从1.67mm/d到六个月累积下沉值不超过30mm

67.开采沉陷预计:在计划开采之前,要根据地质条件和采矿条件,使用适当的预计函数和开采函数模型预先计算出此开采影响的岩层和地表移动及变形的工作叫开采沉陷预计。

预计时必要的地质采矿条件:煤层的厚度,煤层倾角,一些采深,采空区走向长度,倾向长度,顶板管理方法,上震岩性,工作面的形状,工作面推进进度,模型参数等

68.开采沉降的预计内需:(1)最大值预计(2)主断面上移动和变形预(3)盆地内任意一点的移动和变形预计(4)岩体内任意一点的移动和变形预计(5)多煤层,多工作面开采(重复开采)

69.开采沉降预计方法分类:(1)建立预计方法的不同a基于空间数据的经验方法b影响函数c理论模拟法:连续介质模型(弹塑性力学理论);非连续介质模型(随机介质理论,破坏力学,弹力学)(2)预计手段不同a解析法,b图解法,c电子模拟计算3)预计采用的函数不同a剖面函数法b影响函数法(ac结合)理论加实际c理论公式法

70.概率积分法:以随机介质理论为理论基础,以概率积分函数为影响函数,建立的地表移动与变形预计方法叫概率积分法。

71.地表移动持续时间:是指在充分采动或接近充分采动情况下,地表下沉值最大的点从开始到稳定所持续的时间。

72.充分采动角:是指在充分采动条件下,在地表移动盆地的主断面上,移动盆地平底的边缘在地表水平线上的投影点和同侧采空区边界连线与煤层在采空区一侧的夹角。

73.最大下沉角:倾斜主断面上,由采空区的中点和地表移动盆地最大下沉点在基岩面上投影点的连线与水平线之间在煤层下山方向一侧的夹角。

74.超前影响:在工作面推进过程中,工作面前方的地表受采动影响而下沉的现象。

75.边坡工程主要项目内容:1)地表位移裂缝2)地下位移裂缝3)地声4)应变5)地下水位,孔隙水压力,河库水位,泉流量6)降雨量,地温,地震。

76.半无限开采主断面上的移动和变形预计图169页(11)地表移动的预计参数:下沉系数q,主要影响半径r和主要影响角正切tan ,拐点偏移距s,水平移动系数b, 开采影响传播角θ。求法:工程类比法和实测法。

77.倾向主断面的移动和变形预计182页

精密测量与变形监测题目及答案

1、客运专线无渣轨道施工的高程控制网分为哪几级?应采用什么方法测量?其主要精度 指标是什么? 第一级为线路水准基点控制网_:线路水准基点按二等水准测量要求施测。 第二级为CPIII高程控制网—:CP川控制点水准测量可按本规范附录 F.2.1的矩形环单程水准网 或附录F.2.2的往返测水准网构网观测,精度:CPIII控制点水准测量应附合于线路水准基 点,按精密水准测量技术要求施测。CPIII控制点水准测量应对相邻 4个CP川点所构成的水 准闭合环进行环闭合差检核,相邻CP川点的水准环闭合差不得大于 1mm,区段之间衔接时, 前后区段独立平差重叠点高程差值应< 3mm,相邻CPIII点高差中误差不应大于±).5mm 第三级为轨道基准网(_GRN ):电子水准仪中视法,相邻点间相对点位中误差。平面精度w 0.2mm 高程精度w 0.1mm 2、轨道基准网之平面网的直接观测值是什么?如何得到轨道基准点在线路独立坐标系下 的坐标? 直接观测值:CPIII和GRP的站心坐标系的坐标,相邻自由测站之间搭接一定的GRP点, 联系CPIII点进行坐标转换从而转换为和CPIII点统一的坐标系统 3、客运专线无渣轨道施工的平面控制网分为哪几级?各级控制网控制点的密度是一般是怎 么规定的? 第一级为框架控制网(CP0 ):沿线路每50km布置一个CPO点,为GPS三维控制网第二级为基础控制网(_CP I:)在基础框架平面控制网(CP0 )或国家高等级平面控制网的 基础上,沿线路走向布设,按GPS静态相对定位原理建立,为线路平面控制网和轨道控制 网CP川起闭的基准。CPI网点间距为4km 第三级为线路控制网(_CPH):在基础平面控制网(CP I )上沿线路附近布设,CPII网点间距为400~800m,为GPS 三等二维网

变形监测方案

绿园污水处理厂 顶管施工基坑监测方案 编制: 审核: 审定: 二0一五年七月

目录 1.项目概述 (2) 1.1概况 (2) 1.2监测项目 (2) 2.第三方监测原则及技术规程 (2) 2.1监测原则及目的 (2) 2.2技术规程 (2) 3.监测实施程序 (3) 4.监测实施 (3) 4.1基坑围护结构顶部沉降监测 (3) 4.1.1水准控制网的设置 (3) 4.1.2监测点的埋设原则 (5) 4.1.3监测点的安设方法 (5) 4.1.4监测方法及精度控制 (6) 4.1.5沉降观测数据分析及成果表述 (7) 4.2基坑围护结构顶部水平位移监测 (7) 4.2.1水位位移监测控制网的布设形式 (7) 4.2.2水平位移监测控制网布设原则 (8) 4.2.3水平位移测点布置原则 (8) 4.2.4水平位移测点的埋设技术要求 (8) 4.2.5观测技术方法及精度控制 (9) 4.2.6观测数据分析及成果概述 (12) 4.3基坑自身监测频率 (13) 5报警的处理方法 (14) 5.1报警值的设定 (15) 5.2报警的处理办法 (15) 6实施组织计划 (14) 7本工程拟投入的主要仪器设备表 (15) 8人员组织实施 (16)

.项目概述 1.1概况 受0000000厂委托,00000000承担绿园污水处理厂配套管网基坑沉降变形观测工程,管道位于:东湖大街、滏阳路、朝阳大街、长安路、和平路、等路段,管线总长度约12263米,共计92个深基坑,我公司在基坑开挖至回填土完成期间,对基坑坡顶进行水平位移和沉降变形监测。 1.2监测项目 本方案监测项目有:基坑围护结构顶部沉降、水平位移监测。 2.第三方监测原则及技术规程 2.1监测原则及目的 在施工方对基坑支护结构进行实时监测前提下,我方监测在对施工方监测进行校核的基础上,独立地进行监测。 我方遵照委托方提出的要求,在基坑施工期间对基坑支护进行高精度监测,并从岩土工程专业的角度对监测数据、信息进行及时分析,向业主提供监测变形的情况,对异常情况及时提供建议,为施工安全和施工方案优化提供科学依据。 2.2技术规程 《建筑基坑工程监测技术规范》(GB50497-2009) 《建筑变形测量规范》(JGJ8-2007) 《国家一二等水准测量规范》(GB/T12897-2006) 《工程测量规范》(GB50026-2007) 《建筑地基基础设计规范》(GB 50007-2011) 《岩土工程勘察规范》(GB 20021-2001,2009版) 《建筑基坑工程监测技术规范》(GB50497-2009)

变形监测考试资料

变形监测定义 是指对被监测的对象或物体进行测量以确定其空间位置几内部形态随时间的变化特征。 变形监测的目的 1)分析和评价建筑物的安全状态2)验证设计参数3)反馈设计施工4)研究正常的变形监测规律和预报变形的方法 变形监测的意义 对于机械技术设备,则保证设备安全、可靠、高效地运行,为改善产品质量和新产品的设计提供技术数据;对于滑坡,通过监测其随时间的变化过程,可进一步研究引起滑坡的成因,预报大的滑坡灾害;通过对矿山由于矿藏开挖所引起的实际变形观测,可以采用控制开挖量和加固等方法,避免危险性变形的发生,同时可以改变变形预报模型;在地壳构造运动监测方面,主要是大地测量学的任务,但对于近期地壳垂直和水平运动以及断裂带的应力积聚等地球动力学现象、大型特种精密工程以及铁路工程也具有重要的意义。 变形监测的特点 1)周期性重复观测2)精度要求高3)多种观测技术的综合应用4)监测网着重于研究电位的变化 变形监测的主要内容 现场巡视;环境监测;位移监测;渗流监测;应力、应变监测;周边监测 变形监测的精度和周期如何确定,有何依据 精度:1917年国际测量工作者联合会(FIG)第十三届会议上工程测量组提出:如果观测的目的是为了使变形值不超过某一允许数值而确保建筑物的安全,则其观测的中误差应小于允许变形值的1/10~1/20;如果观测的目的是为了研究其变形的过程,则其中误差应比这个数小的多。 周期:变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界影响因素确定。 变形监测系统设计的原则 1)针对性2)完整性3)先进性4)可靠性5)经济性 变形监测系统设计主要内容 1)技术设计书2)有关建筑物自然条件和工艺生产过程的概述3)观测的原则方案4)控制点及监测点的布置方案5)测量的必要精度论证6)测量的方法及仪器7)成果的整理方法及其它要求或建议8)观测进度计划表9)观测人员的编制及预算 变形监测点的分类及每类要求 1)基准点:埋设再稳固的基岩上或变形区外,尽可能长期保存。每个工程一般应建立3个基准点,以便相互校核,确保坐标系统的一致。当确认基准点稳定可靠时,也可以少于3个,应进行定期观测。2)工作点:埋设再被研究对象附近,要求在观测期间保持点位的稳定,其点位由基准点定期监测。3)变形观测点:埋设再建筑物内部,0 变形呢监测点标石埋设后,应在其稳定后方可开始观测。稳定期一般不宜少于15天。 变行监测技术在哪几方面取得了较好的发展? ①自动化监测技术②光纤传感检测技术③CT(计算机层析成像)技术的应用④GPS在变形监中的应用⑤激光技术的应用⑥测量机器人技术⑦渗流热监测技术⑧安全监控专家系统 什么是垂直位移和沉降?建筑物沉降与哪些因素有关? 从词面来说,垂直位移能同时表示建筑物的下沉或上升,而沉降只能表示建筑物的下沉,对大多数建筑物来说特别是施工阶段,由于垂直方向上的变形特征和变形过程主要表现为沉降变化,因此实际应用中通常采用沉降一词。 影响建筑物沉降的因素有:(1)建筑物基础的设计(2)建筑的上部结构(3)施工中地下水的升降 监测方法与技术要求有哪些 视线长度、前后视距差和视线高度;水准测量主要限差;沉降监测点的精度要求。 精密水准测量的误差来源有哪些?如何减弱i角误差对沉降观测结果的影响? 误差来源:1)仪器误差:水准仪i角误差;水准尺长与名义尺长不符2)外界环境引起的误差:高压输电线和变电站等强磁场的影响;温度和大气折光影响3)人为引起的误差 方法:减小i角误差的影响,必须严格控制前后视距差和前后视距累计差,又由于i角误差会受温度等影响,减弱其影响的有效方法是减少仪器受辐射热的影响;若i角误差与时间成比例地均匀变化,则可以采用改变观测程序(奇数站—后前前后;偶数站—前后后前)的方法减小i角误差影响。 精密水准测量监测方法与技术要求有哪些 方法:采用精密水准测量方法进行沉降监测时,从工作基点开始经过若干监测点,形成一个或多个闭合或附合路线,其中以闭合路线为佳,特别困难的监测点可以采用支水准路线往返测量。 要求:视线长度、前后视距差和视线高度;水准测量主要限差;沉降监测点的精度要求。 测点布设原则与方法 建筑物水平位移监测的测点宜按两个层次布设,即由控制点组成控制网,由观测点及所联测的控制点组成扩展网;对单个建筑物上部或构件的位移监测,可将控制点连同观测点按单一层次布设。 水平位移监测常用的观测方法有 1)大地测量法2)基准线法3)专用测量法4)GPS测量法 交会观测方法有几种及什么情况用哪种方法 1)测角交会法:采用测角交会法时,交会角最好接近90°若条件限制,也可设计在60°~120°,工作基点到测点的距离不宜大于300m。2)侧边交会法:r角通常应保持60°~120°,测距仔细,交会边长度a和b应力求相等,一般不大于600m;3)后方交会法 精密导线测量方法 1)边角导线法 2)弦矢导线法 数据处理和分析主要内容 1)粗差检查及处理2)点温度条件检查3)数据可靠性检查。 挠度及挠度观测及方法 定义:测定建筑物受力后挠曲程度的工作称为挠度观测。建筑物在应力的作用下产生弯曲和扭曲,弯曲变形时横截面形心沿与轴线垂

水工监测工变形观测考试卷模拟考试题.docx

《变形观测》 考试时间:120分钟 考试总分:100分 遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。 1、表示2个以上监测量的测值和测点位置之间关系的图形是()。( ) A.相关图 B.过程线图 C.分布图 D.散点图 2、对某项目进行仪器监测的频次,通常情况下由多到少的排列顺序正确的是()。( ) A.施工期、初蓄期、运行期 B.施工期、运行期、初蓄期 C.初蓄期、运行期、施工期 D.初蓄期、施工期、运行期 3、下列水平位移监测技术中,不是采用基准线的是()。( ) A.垂线法 B.视准线法 C.导线法 D.引张线法 4、下列关于视准线法的说法不正确的是()。( ) A.观测墩上应设置强制对中底盘 B.一条视准线只能监测一个测点 C.对于重力坝,视准线的长度不宜超过300m D.受大气折光的影响,精度一般较低 姓名:________________ 班级:________________ 学号:________________ --------------------密----------------------------------封 ----------------------------------------------线---------------------- ---

5、激光准直法是用于监测()。() A.纵向水平位移 B.横向水平位移 C.垂直位移 D.深层水平位移 6、()可为其他水平位移观测方法提供基准点变形值。() A.引张线 B.倒垂线 C.激光准直 D.正垂线 7、下列关于水准法的说法错误的是()。() A.水准点分为水准基点、起测基点和位移标点 B.对特大型混凝土坝,常需建立精密水准网系统,并力求构成闭合环线 C.工作基点一般采用国家水准点 D.一般在每个坝段都布置一个测点 8、()适用于坝基、边坡等部位岩体不同深度的变形监测。() A.沉降仪 B.几何水准 C.静力水准 D.多点位移计 9、测缝计是用于监测裂缝()。() A.长度 B.深度 C.走向 D.开合度 10、正常的沉陷过程线是()。() A.初期斜率较小,后期逐渐增大 B.初期斜率较大,后期逐渐平缓 C.以上两种都是 D.以上两种都不是

变形监测试题资料

1、冲击矿压大多数发生在巷道,采场则很少。 2、齐梁式支护是指悬梁端与工作面相齐,支柱排成直线状。 3、在煤层与直接顶之间有时存在厚度小于0.3~0.5 m、极易垮落的软弱岩层,称为伪顶。它随采随冒,一般为炭质页岩、泥质页岩等。 4、随着煤层倾角增加,工作面顶板下沉量将逐渐变小。 5、直接顶的第一次大面积垮落称为(直接顶初次垮落)。 6、两帮移近量是指巷道沿腰线水平的减少值。 7、护巷煤柱保持稳定的基本条件是:煤柱两侧产生塑性变形后,在煤柱中央存在一定宽度的弹性核,弹性核的宽度应不小于煤柱高度的2倍。 8、当围岩表面和深部的相对变形量超过锚固剂的极限变形量以后,工作锚固力丧失。但由于已破坏的锚固剂仍具有残存粘结强度,钻孔围岩、破坏的锚固剂、锚杆杆体之间存在摩擦力,称为残余锚固力。 9、放顶煤开采的实质是实现工作面煤炭和顶部煤炭同时采出,依靠矿山压力作用,使其自行破碎和冒落,且自行流动和放出。 10、冲击矿压大多数发生在巷道,采场则很少。 11.顶板下沉量一般指煤壁到采空区边缘裸露的顶底板相对移近量。 12、巷道一侧为煤体,另一侧为保护煤柱,如保护煤柱一侧的采面已经采完且采动影响已稳定后,掘进的巷道称为煤体—煤柱巷道。 13、在煤层与直接顶之间有时存在厚度小于0.3~0.5 m、极易垮落的软弱岩层,称为伪顶。它随采随冒,一般为炭质页岩、泥质页岩等。 14、随着煤层倾角增加,工作面顶板下沉量将逐渐变小。 15、巷道一侧为煤体,另一侧为保护煤柱,如保护煤柱一侧的采面已经采完且采动影响已稳定后,掘进的巷道称为煤体—煤柱巷道。 16、两帮移近量是指巷道沿腰线水平的减少值。 17、护巷煤柱保持稳定的基本条件是:煤柱两侧产生塑性变形后,在煤柱中央存在一定宽度的弹性核,弹性核的宽度应不小于煤柱高度的2倍。 18、当围岩表面和深部的相对变形量超过锚固剂的极限变形量以后,工作锚固力丧失。但由于已破坏的锚固剂仍具有残存粘结强度,钻孔围岩、破坏的锚固剂、锚杆杆体之间存在摩擦力,称为残余锚固力。 19、放顶煤开采的实质是实现工作面煤炭和顶部煤炭同时采出,依靠矿山压力作用,使其自行破碎和冒落,且自行流动和放出。 20、顶板下沉量一般指煤壁到采空区边缘裸露的顶底板相对移近量。 21、一般把直接位于煤层上方的一层或几层性质相近的岩层称为(直接顶)。 22、在煤层与直接顶之间有时存在厚度小于0.3~0.5 m、极易垮落的软弱岩层,称为(伪顶)。 23、通常把位于直接顶之上(有时直接位于煤层之上)对采场矿山压力直接造成影响的厚而坚硬的岩层称为(老顶)。 24、工作面的围岩,一般指(直接顶、老顶机直接底)的岩层。 25、位于煤层下方的岩层称为(底板)。 26、(齐梁式支护)是指悬梁端与工作面相齐,支柱排成直线状。 27、影响采场矿山压力显现的主要因素是(围岩性质)。 28、顶板下沉量一般指煤壁到采空区边缘裸露的顶底板相对移近量。 29、巷道一侧为煤体,另一侧为保护煤柱,如保护煤柱一侧的采面已经采完且采动影响已稳

变形测量试题

A 变形监测考试复习题 一:名词解释 1.测点观测:观测点相对工作基点的变形观测 2.变形网:由基点和工作基点组成的网 2.垂直位移:变形体在垂直方向上的变形(沉降沉陷) 3.观测点:在变形体上具有代表性的点。 4.变形分析:对野外观测所得到的数据进行科学的整理分析,找出真正变形信息和规律的过程。 二:简答题 1.变形观测必要精度是如何确定的,试举例说明。 解:对变形观测的必要精度的需要还要与现实可能性位移量的大小变形发展趋势季节变化以及建筑变形的特点等因素有关。为了监测建筑物的安全,观测中误差应小于允许变形值的1/10~1/20;为科研目的,观测中误差不超过允许变形值的1/20~1/100。我国把允许倾斜值的1/20作为观测精度指标。 2.如何提高沉降观测过程中观测精度。 a 提高观测仪器精度定时检查仪器 b固定观测人员仪器,选择最佳时间环境观测 c固定水准视线要和以前观测路线相同 d 沉降观测依据的基准点基点和被观测物上沉降观测点点位要稳

定所观测的环境要一致观测路线程序和方法要固定 e 按照国家规范严格执行 3.基准线法测定水平位移的基本原理。 解:以变形体的主轴线或是平行主轴线为基准线,过基准线的竖直平面为基准面。每个观测点相对于基准面的变形就是水平位移。 三:问答题 1,双金属标作为基点的工作原理? 解:双金属标作为工作基点的原理是一般是铝是钢的线膨胀系数的两倍关系作为双金属标的钢管和铝管当双金属标温度变化时当其长度相同并处在同一环境下,钢的变形量大,铝的变形量小,通过这一差值来计算双金属标相对于根部基岩的变化来求得双金属标的绝对高度,作为测量或监测的稳定起算点。 2.无定向角导线测定水平位移基本原理? 解:根据导线边长变化和导线的转折角观测值来计算监测点的变形量。以曲线形的工程为例,在不同高程的变形体上设观测点,两端设工作基点;与常规的控制测量一样,如果要提高精度可以隔点测量,因为是无定向角导线,因此仅有边条件。观测出来的边长等于已知边长。

浅谈变形监测平面控制网的建立与精度分析

浅谈变形监测平面控制网的建立与精度分析 发表时间:2019-09-12T11:49:43.813Z 来源:《基层建设》2019年第17期作者:岳小勇[导读] 摘要:如今在人类生活和生产建设中,出现了越来越多的山体、基坑塌陷等的灾害。 青海地理信息产业发展有限公司青海西宁摘要:如今在人类生活和生产建设中,出现了越来越多的山体、基坑塌陷等的灾害。由于多种因素的影响,在一定的时间内发生某种程度的变形,这种变形在一定范围内往往是允许的,但当其超出一定值时,就很可能会变成灾害,而要预防这些灾害的发生,就必须进行变形监测,分析变形产生的原因,总结变形发展的规律。本文主要就变形监测平面控制网的建立与精度进行分析,以供参考和借鉴。 关键字:变形监测;平面控制网;精度;分析引言 变形是自然界历来普遍存在的现象,它是指变形体在各种外力作用下,其形状、大小及位置在时间域和空间域中发生变化。所谓变形监测,就是利用测量仪器与专用仪器和方法对变形体的变形现象进行监视观测的工作,其任务是在确定各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。 1变形监测概述 1.1变形监测的概念 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作,其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道以及地铁等。变形监测的内容应根据变形体的性质和地基情况决定,对水利工程建筑物主要观测水平位移、垂直位移、渗透及裂缝观测,这些内容称为外部观测。为了了解建筑物内部结构的情况,还应对混凝土应力、钢筋应力、温度等进行观测,这些内容常称为内部观测,在进行变形监测数据处理时,特别是对变形原因做物理解释时,必须将内、外观测资料结合起来进行分析。 1.2变形网的特点 第一,工程测量控制网建立时,保证网点之间的相对精度至关重要,而变形监测网的布网目的是为了测定网点的变形,网点之间的相对精度不是最重要的。由于布网目的不同,影响网质量的因素也就不同,比如大气折光和系统误差对工程测量控制网的影响很大,而对变形网的影响不是最重要的。在变形观测中只要保证监测仪器和人员相对不变,计算过程中上述影响可以相互抵消,使变形不会受这些误差的影响;第二,首级网的精度相对较高,基准点一般应建立在变形体以外的稳定区域,特别是网址的起算点一点要建立在基岩基础上,以便于发现其他点位移,工作基点可以布设在变形区;第三,变形网的网址应在现有的人力、物力和财力的基础上尽可能的具有发现监测点位移的精度、灵敏度和可靠性,看其指标能否满足变形监测要求;第四,变形网的边长一般较短,但精度高,一般情况下需要强制归心;变形网要求通视条件好,而不过于要求网形的构成;对变形网来说,多余观测冗余多。 2变形监测系统的组成 2.1自动监测系统 通常情况下,为实现项目监测的自动化,工作基点站应设在隧道侧壁,同时设置四个校核点以校核工作基点。安装于基点站的TCA2003全站仪与监测系统机房建立通讯联系,由机房控制全站仪对校核点和变形点按一定的顺序进行逐点扫描、记录、计算及自校,并将测量结果发送至机房入库存储或并进行整编分析,实现了自动观测、记录、处理、储存、变形量报表编制和监测结果自动远程发送等功能。 2.2徕卡自动全站仪 徕卡TCA系列自动化全站仪,又称“测量机器人”,该仪器精度高,且性能稳定,其内置自动目标识别系统,可以自动搜索目标、精确照准目标、跟踪目标、自动测量、自动记录数据,在几秒内完成一目标点的观测,像机器人一样对多个目标作持续和重复观测,具有计算机远程控制等优异的性能。采用结构变形自动化监测系统进行变形监测,可以实现无人值守及自动进行监测预报,即实现变形监测全自动化,它不仅便捷准确,而且可以减少传统意义上形变观测中的人为观测误差及资料整编分析中可能造成的数据差错。 2.3工作基站及校核点设置 为使各点误差均匀,并使全站仪容易自动寻找目标,工作基站布设于监测点中部,校核点布设在远离变形区以外,最外观测断面以外40m左右的隧道中,先制作全站仪托架,托架安装在隧道侧壁,离道床距离1.2m左右,以便全站仪容易自动寻找目标,监测基准点使用位于东山口站台内的平面、高程控制点。 2.4隧道监测断面布置及监测断面内监测点布置 变形监测点按照设计要求的断面布设,上下行隧道各布置5个监测断面,每个断面在轨道附近的道床上布设两个沉降监测点,中腰位置两侧各布设两个水平位移监测点,即每个监测断面布设6个监测点。各观测点用连接件(人字形钢架)配小规格反射棱镜,用膨胀螺丝及云石胶锚固于监测位置的侧壁及道床的混凝土中,棱镜反射面指向工作基点。布设监测点应严格注意避免设备侵入限界,可以将监测点布设在图中位置。 3变形监测平面控制网的建立与精度分析 3.1监测网的建立 3.1.1平面控制网的建立 首先应根据设计单位和用户对实施监测物的精度要求,结合施工单位的仪器设备,制定平面测量的等级,然后充分考虑工程各部施工放样需要,点位不与工程建筑物发生冲突,使用方便,点位便于长期保存等方面情况下交替进行图上和实地选点,构造网形,确定点位测量的实方案。在点位确定后,可以根据点与点之间的通视情况构成网形,拟定图中的角度和边长观测量,可以用专有的软件进行精度的估算和观测量优化,通常是边角全测网开始优化计算,若计算结果的冗余过大,删掉一些通视条件不好的,边长过长,竖直角过大的边和相应的角度,再进行估算,直至点位精度满足要求,工作量又相对较小。 3.1.2高程控制网

变形监测技术要求

针对目前变形监测项目应符合以下规范要求 基坑开挖对临近轻轨高架结构的影响主要集中在以下方面:一是坑外土体的位移;二是既有高架桥与基坑相对位置的关系;三是轻轨高架上下部的结构关系;四是轻轨高架的结构基础和埋深情况。五是轻轨高架自身的结构自重和轻轨高架中动载荷的控制与变化情况等。基坑周边轻轨高架在基坑开挖中的变形情况是复杂的,变形的原因是多元的,变形的效果是动态的。在实践工程中,基坑开挖将要造成土体的不均匀沉降和水平方向的位移,不仅要做好岩土工程计算,制定可行性基坑开挖方案,同时还要做好变形监测工作,防止各种因素对轻轨高架桥产生的影响。对于建筑基坑施工对周边轻轨高架的变形影响,高程和平面控制可参考规范二级要求。 变形监测应设置平面和高程基准点,要求设置在变形区域以外,位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的情况而定,在建筑基坑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。 1、沉降观测的高程基准点不应少于3个,应与工作基点形成闭合环或附合线路。高程基准点和工作基点布设应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀或破坏的地方,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍。当使用静力水准测量方法测量沉降时,用于联测观测点的工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助

点传递高程。实际工作中采用精度不低于1mm级水准仪配合铟瓦尺或条码尺进行水准测量,观测方式其中高程控制测量、工作基点联测及首次观测值应采用往返测或单程双测站法,其他各次沉降观测点可采用单程观测或单程双测站法。起始点高程宜采用测区原有高程系统。较小规模的监测项目可假定高程系统,较大规模的项目宜与国家水准网联测。二级水准视线长度应≤50m,前后视距差≤2.0m,前后视距差累积≤3.0m,视线高度(下丝)≥0.3m。用数字水准仪观测时最短视线长度不宜小于3m,最低水平视线高度不应低于0.6m。限差要求往返较差及附合或环线闭合差≤1.0√n(mm),单程双测站所测高差较差≤0.7√n(mm),检测已测段高差之差≤1.5√n(mm)。n为测站数。用于运营阶段的结构、轨道和道床的垂直沉降监测点高程中误差±0.5mm,相邻监测点高程中误差±0.3mm。同一项目在不同周期进行变形监测应采用相同的观测路线和观测方法,使用相同的仪器和设备,并应固定观测人员。首次观测应独立观测2次取平均值作为初始值。监测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大沉降时可加密监测频率;连续一个月沉降趋势趋于稳定状态(无沉降差,纯属仪器误差)的情况下,可要求减少监测频率。在项目开始前和结束后应对使用的水准仪、水准标尺进行检验,二级水准观测仪器i角不得大于15”。水准仪i角的测定办法,如图所示:

变形监测知识点

所谓变形监测,就是利用测量与专用仪器和方法对变形体的变形现象进行监视观测的工作。其任务是确定在各种载荷和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。 变形观测:对变形体在运动中的空间和时间域内进行周期性的重复观测,就称为变形观测。根据变形体的研究范围,可将变形监测研究对象划分为这样三类: 1全球性变形研究如监测全球板块运动、地极移动、地球自转速率变化、地潮等; 2区域性变形研究如地壳形变监测、城市地面沉降等; 3工程和局部性变形研究如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。 变形监测的内容 1)工业与民用建筑物:主要包括基础的沉陷观测与建筑物本身的变形观测 2)水工建筑物:对于土坝,其观测项目主要为水平位移、垂直位移、渗透以及裂缝观测。3)地面沉降:对于建立在江河下游冲积层上的城市,由于工业用水需要大量地吸取地下水,而影响地下土层的结构,将使地面发生沉降现象。对于地下采矿地区,由于在地下大量的采掘,也会使地表发生沉降现象 变形监测的目的和意义:具有实用上的意义,主要是掌握各种建筑物和地质构造的稳定性,为安全性诊断提供必要信息,及时发现问题,以便采取措施;具有科学上的意义,包括更好地理解变形的机理,验证有关工程设计的理论和地壳运动的假说,进行反馈设计,以及建立有效的变形预报模型。 变形监测技术的未来发展趋势: 1)多种传感器、数字近景摄影、全自动跟踪全站仪和GPS的应用,将向实时、连续、高效率、自动化、动态监测系统的方向发展; 2)变形监测的时空采样率会得到大大提高,变形监测自动化可为变形分析提供极为丰富的数据信息; 3)高度可靠、实用、先进的监测仪器和自动化系统,要求在恶劣环境下长期稳定可靠地运行; 4)实现远程在线实时监控,在大坝、桥梁、边坡体等工程中将发挥巨大作用,网络监控是推进重大工程安全监控管理的必由之路。 1.什么是监测网平差的基准,平差基准有哪三种类型? 固定基准位于变形体之外,在各观测周期中认为是不变的,以作为测定变形点绝 对位移的参考点。在监测网平差中,我们通常将变形参考系称为基准,监测网平 差时必须考虑网点位置及其位移的参考基准。如果基准不统一,形变量中就会混 入基准误差;如果基准定义不当,也会给形变分析带来困难。 监测网平差的基准固定基准—经典平差,重心基准—自由网平差,局部重心基准—拟稳平差监测点位布置:必须安全、可靠,布局合理,突出重点,并能满足监测设计及精度要求,便于长期监测。 沉降观测工作点的布设:1)沉降监测工作点应布设在最有代表性的部位,还要考虑到建筑物基础的地质条件,建筑物特征,建筑物内部应力分布状况等。2)工作点应与建筑物连接牢固,使工作点的高程变化能真正反映建筑物的沉降变化情况。3)工作点的点位应便于观

量测专业考试试卷 70分

量测专业考试试卷70分 1.单项选择题(每题1分,共40分) (1)洞室收敛变形监测可以采用的仪器有() 渗压计 收敛计 应变计 应力计 (2)GPS网在设计和测量时,网中最小异步环的边数应不大于( )条 6 5 4 3 (3)GPS平面控制网采用2个及以上已知点坐标进行二维约束平差后,所获坐标是( ) 1954年北京坐标系的坐标 1980年国家大地坐标系的坐标 独立坐标系的坐标 与已知点坐标系统一致的坐标

(4)水准测量中,使前后视距尽量相等,可以减弱水准仪( )对所测高差的影响 照准误差 估读误差 i角误差 偶然误差 (5)工程外部变形监测中,离变形区较近但相对稳定的点被称为( ) 标志点 变形点 工作基点 基准点 (6)用水准仪的望远镜瞄准标尺时,发现有视差,则其产生的原因是( ) 观测员视力差 外界光线弱 望远镜视准轴不水平 目标影像与十字平面不重合

(7)传统的大比例尺地形图测图法中的经纬仪测图法采用的主要原理是( ) 直角坐标法 极坐标法 角度交会法 距离交会法 (8)在导线测量中,导线全长闭合差fD的产生原因为( ) 水平角测量误差 边长测量误差 水平角与边长测量均有误差 坐标增量计算误差 (9)GPS网的平差处理规定:基线概算中,起算点坐标的误差应保证在( )m以内 10 15 20 25 (10)坝基渗流监测横断面的个数一般不少于( )个,并宜顺流线方

向布置 4 3 2 1 (11)正垂线下端悬挂重锤是为了( ) 使线体长度不变 使线体平面位置不变 使线体始终处于铅垂状态 使线体靠近变形体 (12)采用单向测距三角高程测量进行垂直位移监测,要解决的关键问题是如何( ) 测量距离 量取仪器高 量取目标高 确定大气垂直折光系数 (13)导线网的最弱边是指( )

地铁隧道结构变形监测控制网及其数据处理

地铁隧道结构变形监测控制网及其数据处理 发表时间:2017-10-30T09:25:06.667Z 来源:《基层建设》2017年第20期作者:汪英宏王守横 [导读] 摘要:地铁隧道结构复杂,在长期使用过程中会受到各种因素的影响,因此,做好变形监测非常重要。 上海市机械施工集团有限公司大连地铁216标段项目经理部辽宁大连 116037 摘要:地铁隧道结构复杂,在长期使用过程中会受到各种因素的影响,因此,做好变形监测非常重要。本文将进行分析,以供参考。关键词:地铁隧道;变形监测;原因;措施 1.前言 对于地铁隧道结构变形的监测,不能采用传统的变形监测控制网布设方法,在施工过程中根据施工要求对工艺参数进行控制,为保证结果的准确度,必须进行基准点的稳定性检验。 2.地铁隧道变形原因 2.1轨道结构变形 地铁隧道变形包括轨道结构变形和隧道结构变形两种形式。其中轨道结构变形的主要原因是列车荷载长期对轨道产生反复作用,使轨道发生几何偏差进而影响轨道的平整性和顺畅性。除列车荷载作用外,隧道周边建设施工的卸载、负荷、加载也会引起道床的不均匀沉降。这种沉降同样会影响轨道的平整度及顺畅。对于铁路来说,地铁运行车辆重量较轻、速度低,轨道和车辆行走部分的变形一般不会引起地铁事故,但轨道变形造成的不平顺可能会导致列车发生不正常振动。这会降低列车运行的稳定性,减少用户的舒适度,更重要的是会加快轨道结构部件的损坏速度,从而间接影响列车的行车安全。 2.2隧道结构变形 地铁隧道结构变形发生在施工阶段和运营阶段,在施工阶段,地铁暗挖隧道工程是在岩土体内部进行的。在开挖过程中对地下岩土的扰动是不可避免的,这就破坏了地下岩土体原有的平衡条件。隧道开挖时地层初期受到的影响较小,发生的也是微型形变,随着开挖的不断深入,变形会极剧增大然后又趋于缓慢。因此,在隧道开挖过程中应对隧道的拱顶下沉量和地表的下沉量进行监测,以便于对隧道结构的稳定性和开挖工程的安全性提供分析依据。地铁隧道开挖引起的地层变形是一个漫长而缓慢的过程,无论是浅埋暗挖法还是盾构法在工程完工投入使用后都会不同程度的发生整体下沉的现象,尤其是工程处于软土层中时下沉现象更加明显。 3.地铁隧道变形监测技术 3.1传统监测技术 传统监测技术是利用水准测量仪的检测功能对隧道结构的变形情况进行监测,主要对隧道变形区域的断面进行监测。该法在实际使用过程中存在一系列不足: 首先,该法无法使用先进的远程测量技术。在监测过程中不得不打断监测区内的列车运行。 其次,地铁隧道内可视性差,空间受到限制,运行环境复杂,给监测的安全性和监测质量造成了不利影响。 最后,监测点数量受限,若设置监测点过多,不仅会增大工作量还会延长监测周期的长度,无法准确的反映出变形的真实情况;若设置监测点过少,无法根据有限的数据得到较为精准的变形趋势,这对后期的隧道结构的变形负荷分析是极为不利的。传统的监测技术已经无法适应现代社会的需求新型的监测技术急需被研发使用。 3.2高程监测控制网 在地铁进行跨河水准测量、测量机器人三角高程法测量、GPS 测高三种方法进行施测。 3.2.1跨河水准测量跨河水准观测采用威特 N3 及配套的铟瓦水准尺,施测前仪器 i 角检校为+1.2s。跨河水准测量严格按《国家一、二等水准测量规范》要求选定与布设场地,使仪器及标尺点构成平行四边形。作业方法、视线距水面的高度、时间段数、测回数、组数及仪器检查等按规范要求执行。按二等跨河水准观测精度施测 8个测回,高差中数中误差为±1.48mm。 3.2.2 测量机器人三角高程法测量采用徕卡 TCA2003 机器人完成,在 b1、b2 设置仪器,对向观测 12 个测回,测回间隔 5min。每测回量取 2 次仪高和棱镜高,量取至毫米。高差中数中误差为±1.00mm。 3.2.3 GPS 高程测量b1、b2大地四边形进行 GPS 联测,GPS 网解算的 b1、b2大地高的高差为-0.3403。 3.2.4 三种方法的成果比较高程监测控制网采用跨河水准测量、测量机器人三角高程法测量、GPS 测高三种方法进行施测结果进行对比。 4.基于组合后验方差检验法的灵敏度 4.1灵敏度的概念及其目的 通常情况下对基准点的稳定性进行判断是在测量结束后的内业处理过程中,删除一些不稳定的点带来人力物力和时间的浪费,在当今世界寻求的应是高效节能的方法,若是在观测现场测量人员或者测量机器人根据观测数据能感知到基准点的不稳定性,就可以给外业监测提供指导,提前对基准点进行筛选,甚至给基准网的布设提供意见,使得地铁隧道结构变形监测网和后期数据处理得到优化。 然而对同一个点的多次观测结果存在差异可能是误差影响也可能是基准点不稳定引起,要是知道到底出现多大的变动时可以认为是基准点发生了移动,那进行现场监测时就能对基准点的稳定性进行判断,不需要等到进行完内业处理才能得到答案。当观测值出现一定程度变化的时候,这种方法就能够有效的检测出结果。 4.2组合后验方差检验法灵敏度的探测 为模拟基准点的变动,对观测数据进行人为的改动。从众多基准点中任意选取3个,分别对方位角、天顶距和距离三个观测量进行测试,当角度偏差大于3秒小于6秒时对该点的稳定性应持怀疑态度,而大于6秒时该点稳定性就一定不可靠,当距离的测量偏差大于5mm时该点的稳定性同样不可靠。计算所得的组合后验方差检验法的灵敏度在实际工程实例中可以作为重要的比较参考值,通过比较监测数值间的差值,实现监测现场简单、快速判定基准点的稳定性。 5.隧道变形监控的系统建立 5.1系统数据库结构 变形监测数据库用于存储监测点属性、监测成果等数据信息,是数据管理系统的基础。因此,合理的数据库结构不仅是数据库设计的

变形监测数据处理课程教案第一章

《变形监测数据处理》课程教案 班级 测绘工程 0841-08420-1021 科目变形监测课程类型专业课学时数 4 教学内容第一章绪论 教学目的通过本章的学习,要求学生掌握变形监测的内容、目的与意义,熟悉变形监测技术及其发展,变形分析的的内涵及其研究进展。 重点变形监测的主要内容及其目的 难点本章无难点 教学方法课堂讲授 教学进程 第一讲变形监测的内容、目的与意义(2学时) 第二讲变形监测技术及其发展;变形分析的的内涵及其研究进展(2学时) 课后总结各种工程建筑物、构筑物变形监测的主要内容 变形监测三个方面的目的及三个方面的意义。 熟悉常见的几种变形监测技术,了解变形监测分析的内涵。 作业无 第一章变形监测数据处理 主要参考书: 1.陈永奇,吴子安,吴中如.变形监测分析与预报.北京:测绘出版社,1998 2.吴子安.工程建筑物变形观测数据处理.北京:测绘出版社,1989 3.陈永奇.变形观测数据处理.北京:测绘出版社,1988 4.吴中如.水工建筑物安全监控理论及其应用.北京:高等教育出版社,2003 5.吴中如,顾冲时.大坝原型反分析及其应用.南京:江苏科学技术出版社,2000 6.夏才初,潘国荣.土木工程监测技术.北京:中国建筑工业出版社,2001 7.王尚庆.长江三峡滑坡监测预报.北京:地质出版社,1999

8.李珍照.大坝安全监测.北京:中国电力出版社,1997 9.岳建平等.变形监测技术与应用. 国防工业出版社 2007 10.何秀凤.变形监测新方法及其应用.科学出版社 2007 11.伊晓东等.变形监测技术及应用.黄河水利出版社,2007 12.白迪谋.工程建筑物变形观测和变形分析.西南交通大学出版社,2002 13.朱建军等.变形测量的理论与方法.中南大学出版社,2004 14.唐孟雄等.深基坑工程变形控制.中国建筑工业出版社,2006 15.黄声享等.小浪底水利枢纽外部变形规律研究. 测绘出版社,2008.12 规范: 1.中华人民共和国行业标准.建筑变形测量规范(JGJ8-2007). 北京:中国建筑工业 出版社,2008 2.中华人民共和国水利行业标准. 混凝土大坝安全监测技术规范(DL/T 5178-2003). 北京:中国水利水电出版社, 2004 1.1 变形监测的内容、目的与意义 本节要求了解并掌握三方面的内容:变形监测的基本概念;变形监测的内容;变形监 测的目的和意义。 1.1.1 变形监测的基本概念 变形的概念:变形是自然界的普遍现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时空域中的变化。变形体的变形在一定范围内被认为是允许的,如果超出允许值,则可能引发灾害。自然界的变形危害现象时刻都在我们周边发生着,如地震、滑坡、岩崩、 地表沉陷、火山爆发、溃坝、桥梁与建筑物的倒塌等。 变形监测的概念:所谓变形监测,就是利用测量与专用仪器和方法对变形体的变形现象 进行监视观测的工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。变形监测工作是人们通过变形现象获得科学认识、检验理论和假设的必要手段。 变形体的范畴:变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体, 它包括自然的和人工的构筑物。根据变形体的研究范围,可将变形监测研究对象划分为这样 三类: ?全球性变形研究,如监测全球板块运动、地极移动、地球自转速率变化、地潮等; ?区域性变形研究,如地壳形变监测、城市地面沉降等; ?工程和局部性变形研究,如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。

变形监测网数据处理16页word

目录 1 绪论 (1) 1.1变形监测的目的和意义 0 1.2GPS在变形监测中的应用 0 1.3本文的主要研究内容 (1) 1.3.1 变形监测网参考系的选择 (1) 1.3.2 变形监测网点位稳定性分析 (1) 1.3.3 GPS监测网数据处理的一般模型 (2) 2 变形监测网数据处理的基本理论 0 2.1监测网的优化设计 0 2.2监测网的质量分析 0 2.2.1 精度 (4) 2.2.2 可靠性 (1) 2.2.3 经济性 (1) 2.2.4 灵敏度 (1) 2.3监测网的参考系 (5) 2.3.1 监测网的分类 (5) 2.3.2 监测网的平差方法 (2) 3 GPS监测网数据处理的一般模型 0

3.1外业观测成果检核 0 3.1.1 同步边观测数据的检核 0 3.1.2 同步环闭合差的检核 (1) 3.1.3 异步环闭合差的检核 (1) 3.2GPS监测网平差的基本模型 (1) 3.2.1 GPS基线向量网平差的方法分类 (1) 3.2.2 GPS网空间无约束平差模型 (1) 3.2.3 自由网平差成果的转换 (2) 3.3GPS监测网多期数据的基准统一 (2) 3.3.1 各期基线解算的基准分析 (2) 3.3.2 分期平差时基准的统一 (2) 4 总结与展望........................ 错误!未定义书签。 4.1结论 0 4.2进一步工作的研究方向 0 参考文献 (13) 摘要 变形在一定范围内被认为是允许的,但如果变形超过允许值,则可能引发灾害。因此,科学、准确、及时地分析和预报自然物及工程建筑物的变形状况,具有十分重要的意义。变形监测首先要确定监测对象的相对或绝对位移量,即变形的几何分析,本文主要针对变形几何分析的相关内容进行研究。 1、系统归纳了变形监测网的经典平差、秩亏平差以及拟稳平差的理论和计算过程,以某一沉降监测网数据为例,分别采用上述三种平差方法进行计算,结果表明采用不同的平

变形测量试题

一、名词解释 1、变形:由于某种原因改变了原几何形状 2、变形监测:从基准点出发,定期地测量观测点相对于基准点的变化量,从历次观测结果比较中了解变形随时间发展的情况。 3、测量机器人:是一种能代替人进行自动搜索跟踪辨识和精确照准目标并获取角度距离三维坐标以及影响等信息的智能型电子全站仪。 4、基坑回弹观测:深埋大型基础在基坑开挖后,由于基坑上面的荷重卸除,基坑底面隆起,测定基坑开挖后的回弹量。 5、挠度:在建筑物的垂直面内各不同高程点相对于底点水平位移。 6、变形体:大到整个地球,小到一个工程建筑物的块体,包括自然和人工的构筑物。 7、岩层垮落:矿层采出后,4采空区周边附近上方岩层便弯曲而产生拉伸变形。 8、冒落带:采用全部垮落法管理顶板时,直接顶板的破坏范围。 9、断裂带:冒落带以上到弯曲带之间。 10、弯曲带:断裂带以上直到地表都属于这一带。 11、底板采动导水破坏带:煤层采出后,使煤层底板压力重新分布,并使底板和,向采空区移动,导致底板岩体在采空区边界附近出现破坏。 12、底板岩层隆起:底板岩层较软时,矿层采出后,矿层采出后,底板在垂直方向减压而水平方向受压,导致底板向采空区方向隆起。 13、充分采动:地下开采后,地表出现的下沉值达到了该地质采矿条件下应有的最大下沉值 14、非充分采动:当采空区的长度和宽度小于开采深度的1.4倍时,地表不出现应有的最大下沉值,则地表移动盆地呈碗形。 15、移动角:主断面上,采空区边界和地表危险移动边界的连线,与水平线所夹之锐角 16、起动距:地表开始移动时工作面的推进距离 17、超前影响角:工作面前方地表开始移动的点与当时工作面的连线,与水平线在煤柱一侧的夹角 18、开采影响传播角:在充分采动或接近采动的情况下,计算采边界与下沉曲线拐点的连线与水平线之间的下山方向所夹的角 19、地表移动持续时间:在充分采动或接近充分采动的情况下,下沉值最大的地表点从移动开始到移动稳定时持续的时间 20、最大下沉速度滞后距:当地表达到充分采动后,在地表下沉速度曲线上,最大下沉速度总是滞后于回采工作面一个固定距离。 21、连续变形:当地表移动过程在时间和空间上具有连续渐变的性质,且不出现台阶状大裂缝,漏斗塌陷坑等突变现象 22、边界角:在主断面上,地表盆地边界点和采区边界的连线与水平线在煤柱一侧所夹的锐角 23、下沉系数:反映充分采动条件下地表最大下沉值与采厚关系的一个量度 24、主要影响角正切:连续主要影响范围边界点与开采边界的直线与水平线所成的夹角 25、水平移动系数:充分采动时最大水平移动值与最大下沉值之比 26、拐点移动距:拐点不在回采段边界的上方,而向采空区或煤柱方向偏移一定距离 27、采动系数:衡量在走向和倾向上地表能否达到充分采动程度的系数

相关文档
最新文档