几何综合之全等三角形手拉手模型(二)教学文案

几何综合之全等三角形手拉手模型(二)教学文案
几何综合之全等三角形手拉手模型(二)教学文案

全等三角形之手拉手模型专题

基本图形1、图(1)中,C 点为线段AB 上一点,△ACM,△CBN 是等边三角形,AN 与BM 相等吗?说明理由;

如图( 2) C 点为线段AB 上一点,等边三角形ACM 和等边三角形CBN 在

AB 的异侧,此时AN 与BM 相等吗?说明理由;

如图(3)C 点为线段AB 外一点,△ACM,△CBN 是等边三角形,AN 与BM

相等吗?

说明理由.

分析:题中三问均是对等边三角形性质的考查以及全等三角形的证明,由

已知条件,利用等边三角形的性质可找出对应边及夹角相等,证明全等,

即可得到线段相等.

解:(1)相等.

证明如下:∵△ACM,△CBN 是等边三角形,

∴AC=CM,CN=BC,

又∠ACN=∠MCN+60°∠MCB=∠MCN+60°,

∴∠ACN=∠MCB,

∴△ACN≌△MCB,∴AN=BM.

(2)相等.

证明如下:∵△ACM,△CBN 是等边三角形,

∴AC=CM,CN=BC

又∠ACN=∠MCB,

∴△ACN≌△MCB,

∴AN=BM.

(3)相等.

证明如下:∵△ACM,△CBN 是等边三角形,

∴AC=CM,CN=BC,

又∠ACN=∠MCN+60°∠MCB=∠MCN+60°,

∴∠ACN=∠MCB,

∴△ACN≌△MCB,

∴AN=BM.

点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围

绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三

角形全等是正确解答本题的关键.

变形2、(1)如图1,点C 是线段AB 上一点,分别以AC,BC 为边在AB 的同侧

作等边△ACM 和△CBN,连接AN,BM.分别取BM,AN 的中点E,F,连接

CE,CF,EF.观察并猜想△CEF 的形状,并说明理由.

(2)若将( 1)中的“ 以AC, BC 为边作等边△ ACM 和△CBN”改为“以

AC,BC 为腰在AB 的同侧作等腰△ACM 和△CBN,”如图2,其他条件不变,

那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理

由.

点评:( 1 )先求证△ACN≌△MCB ,得出AN=BM ,∠ANC=∠MBA ,再证

△NFC≌△BEC,得出CE=CF,∠BCE=∠NCF,利用等边三角形的角度60,

得出∠ECF=60°,证得结论成立;

(2)证明过程如上(1)中的结论只有CE=CF,而∠ECF 只等于等腰三角

形的顶角≠60°,得出结论不成立.

解:(1)如图1,△CEF 是等边三角形,

理由:∵等边△ACM 和△CBN,

∴AC=MC,BC=NC,∠ACN=∠MCB,

在△ACN 和△MCB 中

NC=BC

∠ ACN=∠ MCB

AC=MC

∴△ACN≌△MCB(SAS),

∴AN=MB,∠ANC=∠MBA,

在△NFC 和△BEC 中,

NC=BC

∠ FNC=∠ EBC

NF=BE

∴△NFC≌△BEC(SAS),

∴EC=CF,

∵∠BCE+∠ECN=60°,∠BCE=∠NCF,

∴∠ECF=60°,

∴△CEF 是等边三角形;

(2)如图2,不成立,首先∠ACN≠∠MCB,

∴△ACN 与△MCB 不全等.

如果有两个等腰三角形的顶角相等,那么结论也不成立,

证明方法与上面类似,只能得到CE=CF,而∠ECF 只等于等腰三角形的顶角≠60°.

点评:此题综合考查等边三角形的性质与判定,三角形全等的判定与性

质,等腰三角形的性质等知识点.

变形3、如图,在△ABC 中,已知∠DBC=60°,AC>BC,又△ABC′、△BCA′、

△CAB′都是△ABC 形外的等边三角形,而点D 在AC 上,

且BC=DC

(1)证明:△C′BD≌△B′DC;

中考数学专题训练旋转模型几何变换的三种模型手拉手、半角、对角互补

几何变换的三种模型手拉手、半角、对角互补 ?????? ?? ?? ??? ???? ? ????????等腰三角形手拉手模型等腰直角三角形(包含正方形)等边三角形(包含费马点)特殊角旋转变换对角互补模型一般角特殊角角含半角模型一般角 等线段变换(与圆相关) 【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α?<

【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=, ,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60?且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数; (2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.

例题精讲 考点1:手拉手模型:全等和相似 包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等) (2)等边三角形旋转模型图(共顶点旋转等边出伴随全等) (3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等) (4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)

2018年中考常见几何模型分析

中考直通车·数学广州分册 第八章专题拓展 第24讲常见几何模型

【考点解读】 常见几何模型是广州市中考的压轴题常考题型,主要以考察选择、填空最后一题和几何压轴题为主。几何模型类型较多,综合性强,属于中考中重点但同样是难点的一个考点。 【考点分析】 2011年 考查三角形全等和三角形中位线性质,标准的手拉手模型。 2014年 考查三角形全等的判断和性质,根据手拉手模型找出全等三角形,再应用其性质 2016年 本年度模型思想明显,分值占比大,主要考查三角形全等的判定及其性质、图像的旋转,利用模型思想作为解题突破口顺利完成辅助线。 【模型介绍】 手拉手模型: 1、 【条件】 如图两个等边三角形ABD ?与BCE ?,连结 AE 与CD , 【结论】(1)DBC ABE ??? (2)DC AE = (3)AE 与DC 之间的夹角为? 60 (4)AE 与DC 的交点设为H , BH 平分AHC ∠

C D A B F E C D 2、 【条件】如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H 。 【结论】 (1)CDE ADG ???是否成立? (2)AG =CE (3)AG 与CE 之间的夹角为 90 (4)HD 是否平分AHE ∠? 旋转模型: 一、邻角相等对角互补模型 【条件】如图,四边形ABCD 中,AB =AD ,90BAD BCD ?∠=∠= 【结论】45ACB ACD BC CD ? ∠=∠=+= ① ② 二、角含半角模型:全等 角含半角要旋转:构造两次全等 F E D C B A G F E D C B A A C D E A C D E F

中考数学几何专题之手拉手模型(初三数学)

手拉手模型 【课堂导入】 什么是手拉手相似基本图形?与手拉手全等的基本图形类似,手拉手相似要比手拉手全等更具有一般性。 在上面右侧的四个图形中,每一个图形中都存在两对相似三角形,△ADE∽△ABC, △ADB∽△AEC,这两对相似三角形是可以彼此转化的。

【例1】已知:△ABC,△DEF 都是等边三角形,M 是 BC 与 EF 的中点,连接 AD,BE. (1)如图1,当EF 与BC 在同一条直线上时,直接写出 AD 与BE 的数量关系和位置关系; (2)△ABC 固定不动,将图1 中的△DEF 绕点M 顺时针旋转(0o≤≤90o)角,如图2 所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由; 【例2】以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD,其中∠ABO=∠DCO=30°.点E、F、M 分别是AC、CD、DB 的中点,连接FM、EM. ①如图 1,当点D、C 分别在 AO、BO 的延长线上时 F M E M ②如图2,将图1 中的△AOB 绕点O 沿顺时针方向旋转60度角,其 他条件不变,判断 F M的值是否发生变化,并对你的结论进行证明; E M

【例3】如图 1,在△ABC 中,∠ACB=90°,BC=2,∠A=30°,点 E,F 分别是线段 BC, AF=_______. AC 的中点,连结 EF.(1)线段B E 与A F 的位置关系是_______, BE (1)中的结论是(2)如图2,当△CEF 绕点C顺时针旋转α时(0°<α<180°) ,连结A F,BE, 否仍然成立.如果成立,请证明;如果不成立,请说明理由. 【例4】如图 1,在四边形 ABCD 中,点E、F 分别是AB、CD 的中点,过点E 作AB 的垂 线,过点F 作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC. (1)求证:AD=BC. (2)求证:△AGD∽△EGF. (3)如图2,若AD、BC 所在直线互相垂直,求E F A D的值.

专题训练(三) 全等三角形的基本模型

专题训练(三)全等三角形的基本模型 ?模型一平移模型 常见的平移模型: 图3-ZT-1 1.如图3-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E. 图3-ZT-2 2.如图3-ZT-3,点A,B,C,D在同一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF. 图3-ZT-3 ?模型二轴对称模型 常见的轴对称模型: 图3-ZT-4 3.如图3-ZT-5,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由. 图3-ZT-5 4.如图3-ZT-6,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 图3-ZT-6 5.如图3-ZT-7,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF.求证:DE=CF. 图3-ZT-7 6.如图3-ZT-8,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 图3-ZT-8 ?模型三旋转模型 常见的旋转模型: 图3-ZT-9

7.如图3-ZT-10,已知AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE. 图3-ZT-10 ?模型四一线三等角模型 图3-ZT-11 8.如图3-ZT-12,B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B. (1)求证:BC=DE; (2)若∠A=40°,求∠BCD的度数. 图3-ZT-12 ?模型五综合模型 平移+对称模型:平移+旋转模型: 图3-ZT-13 图3-ZT-14 9.如图3-ZT-15,点B,F,C,E在同一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF. 3-ZT-15 10.如图3-ZT-16,AB=BC,BD=CE,AB⊥BC,CE⊥BC.求证:AD⊥BE. 图3-ZT-16 详解详析

初中数学九大几何模型-初中几何九大模型-初中九大几何模型

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 O B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2

【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED 二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC= ∠BOA O A B C D E O A B C D E 图 1 图 2 O C O C D E O A B C D E O C D

(2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

全等三角形常见的几何模型图文稿

全等三角形常见的几何 模型 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

1、绕点型(手拉手模型) (1)自旋转:???????,造中心对称遇中点旋全等 遇等腰旋顶角,造旋转,造等腰直角 旋遇,造等边三角形 旋遇自旋转构造方法0000 018090906060 (2)共旋转(典型的手拉手模型) 例1、在直线ABC 的同一侧作两个等边三角形△ABD 和 △ BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) A E=DC (3) A E 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) B H 平分∠AHC (7) G F ∥AC 变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) A E=DC (3) A E 与DC 的夹角为60。 (4) A E 与DC 的交点设为H,BH 平分∠AHC 变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC (3)AE 与DC 的夹角为60。 (4)AE 与DC 的交点设为H,BH 平分∠AHC

3、(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CB N,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由. (2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例4、例题讲解: 1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使∠DAF=60°,连接CF. (1)如图1,当点D在边BC上时,求证:①BD=CF②AC=CF+CD. (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由; (3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD 之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 例1、如图,正方形ABCD的边长为1,AB,AD上各存在一点P、Q,若△APQ的周长为2, 求PCQ 的度数。

全等三角形地经典模型(一)

作弊? 漫画释义 三角形9级 全等三角形的经典模型(二) 三角形8级 全等三角形的经典模型(一) 三角形7级 倍长中线与截长补短 满分晋级 3 全等三角形的 经典模型(一)

D C B A 45°45° C B A 等腰直角三角形数学模型思路: ⑴利用特殊边特殊角证题(AC=BC 或904545??°,,).如图1; ⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2; ⑶补全为正方形.如图3,4. 图1 图2 图3 图4 思路导航 知识互联网 题型一:等腰直角三角形模型

A B C O M N A B C O M N 【例1】 已知:如图所示,Rt △ABC 中,AB =AC ,90BAC ∠=°,O 为BC 的中点, ⑴写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系(不要 求证明) ⑵如果点M 、N 分别在线段AC 、AB 上移动,且在移动中保持 AN =CM .试判断△OMN 的形状,并证明你的结论. ⑶如果点M 、N 分别在线段CA 、AB 的延长线上移动,且在移动中保 持AN =CM ,试判断⑵中结论是否依然成立,如果是请给出证明. 【解析】 ⑴OA =OB =OC ⑵连接OA , ∵OA =OC 45∠=∠=BAO C ° AN =CM ∴△ANO ≌△CMO ∴ON =OM ∴∠=∠NOA MOC ∴90∠+∠=∠+∠=?NOA BON MOC BON ∴90∠=?NOM ∴△OMN 是等腰直角三角形 ⑶△ONM 依然为等腰直角三角形, 证明:∵∠BAC =90°,AB =AC ,O 为BC 中点 ∴∠BAO =∠OAC =∠ABC =∠ACB =45°, ∴AO =BO =OC , ∵在△ANO 和△CMO 中, AN CM BAO C AO CO =?? ∠=∠??=? ∴△ANO ≌△CMO (SAS ) ∴ON =OM ,∠AON =∠COM , 又∵∠COM -∠AOM =90°, ∴△OMN 为等腰直角三角形. 【例2】 两个全等的含30o ,60o 角的三角板ADE 和三角板ABC ,如 图所示放置,,,E A C 三点在一条直线上,连接BD ,取BD 的 中点M ,连接ME ,MC .试判断EMC △的形状,并说明理由. 【解析】EMC △是等腰直角三角形. 典题精练 A B C O M N M E D C B A

初中几何经典模型总结(手拉手模型)

初中几何经典模型总结(手拉手模型) 模型可以让同学更快的进入到几何之中,产生兴趣。也是近来学习初中几何不可或缺的一种重要方法。下面给大家介绍一种经典几何模型---手拉手模型,这也是历年数学中考常考的几何压轴题型之一。手拉手模型的概念:1、手的判别:判断左右:将等腰三角形顶角顶点朝上,正对读者,读者左边为左手顶点,右边为右手顶点。2、手拉手模型的定义:定义: 两个顶角相等且有共顶点的等腰三角形形成的图形。(左手拉左手,右手拉右手)例如:3、手拉手模型的重要结论三个固定结论:结论1:△ABC≌△AB'C'(SAS)BC=B'C'(左手拉左手等于右手拉右手)结论2:∠BOB'=∠BAB'(用四点共圆证明)结论3: AO平分∠BOC'(用四点共圆证明)例题解析:类型一共顶点的等腰直角三角形中的手拉手例1:已知:如图△ABC和△ADE都是等腰直角三角形, ∠BAC=∠DAE=90°.求证:BD=CE.分析: 要证BD=CE可转化为证明△BAE≌△CAD,由已知可证 AB=AC,AE=AD,∠BAC=∠EAD=90°,因为∠BAC ∠CAE=∠EAD ∠CAE,即可证∠BAE=∠CAD,符合SAS,即得证.解答:证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC ∠CAE=∠EAD ∠CAE,即∠BAE=∠CAD,在△BAE与△CAD中,

AB=AC,∠BAE=∠CAD,AE=AD∴△BAE≌△CAD(SAS), ∴BD=CE.类型二共顶点的等边三角形中的手拉手例2:图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形。(1)如图1,求证:AD=CE;(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°;②求证:CF BF=AF.分析:(1)如图1,利用等边三角形性质得:BD=BE,AB=BC,∠ABC=∠DBE=60°,再证∠ABD=∠CBE,根据SAS 证明△ABD≌△CBE得出结论;(2)①如图2,利用(1)中的全等得:∠BCE=∠DAB,根据两次运用外角定理可得结论; ②如图3,作辅助线,截取FG=CF,连接CG,证明△CFG 是等边三角形,并证明△ACG≌△BCF,由线段的和得出结论.解答:证明:(1)如图1,∵△ABC与△BED都是等边三角形,∴BD=BE,AB=BC,∠ABC=∠DBE=60°,∴∠ABC ∠CBD=∠DBE ∠CBD,即∠ABD=∠CBE,在△ABD和△CBE 中,AB=AC∠ABD=∠CBEBD=BE,∴△ABD≌△CBE(SAS),∴AD=CE,(2)①如图2,由(1)得:△ABD≌△CBE, ∴∠BCE=∠DAB,∵∠ABC=∠BCE ∠CEB=60°,∴∠ABC=∠DAB ∠CEB=60°,∵∠CFA=∠DAB ∠CEB,∴∠CFA=60°,②如图3,在AF上取一点G,使FG=CF,连接CG,∵∠AFC=60°, ∴△CGF是等边三角形,∴∠GCF=60°,CG=CF,∴∠GCB ∠BCE=60°,∵∠ACB=60°,∴∠ACG ∠GCB=60°, ∴∠ACG=∠BCE,∵AC=BC,∴△ACG≌△BCF,∴AG=BF,

初中几何专项——手拉手模型

E A D B C E A D B C E D C B A 图3图21图 O H G A B C D M P D E C B A 手拉手模型 模型 手拉手 如图,△ABC 是等腰三角形、△ADE 是等腰三角形,AB=AC ,AD=AE ,∠BAC=∠DAE= 。 结论:△BAD ≌△CAE 。 模型分析 手拉手模型常和旋转结合,在考试中作为几何综合题目出现。 模型实例 例1.如图,△ADC 与△GDB 都为等腰直角三角形,连接AG 、CB ,相交于点H ,问:(1)AG 与CB 是否相等? (2)AG 与CB 之间的夹角为多少度? 3.在线段AE 同侧作等边△CDE (∠ACE<120°),点P 与点M 分别是线段BE 和AD 的中点。 求证:△CPM 是等边三角形。

F E C B A H D E C B A 1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在 BC上,且AE=CF。 (1)求证:BE=BF; (2)若∠CAE=30°,求∠ACF度数。 2.如图,△ABD与△BCE都为等边三角形,连接AE与CD,延长AE交CD于点 H.证明: (1)AE=DC; (2)∠AHD=60°; (3)连接HB,HB平分∠AHC。

B A D C P E 3图B D A E C 图21 图P D E C B A 3.将等腰Rt △ABC 和等腰Rt △ADE 按图①方式放置,∠A=90°,AD 边与AB 边重合,AB=2AD=4。将△ADE 绕点A 逆时针方向旋转一个角度α(0°<α>180°),BD 的延长线交CE 于P 。 (1)如图②,证明:BD=CE ,BD ⊥CE ; (2)如图③,在旋转的过程中,当AD ⊥BD 时,求出CP 的长。

几何辅助线之手拉手模型初

手拉手模型教学目标: 1:理解手拉手模型的概念,并掌握其特点 2:掌握手拉手模型的应用 知识梳理: 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;; 导角核心: 2、等腰直角三角形 条件:△OAB,△OCD均为等腰直角三角形 结论:;; 导角核心: 3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;;

核心图形: 核心条件:;; 典型例题: 例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC; (3)AE与DC的夹角为60°;(4)△AGB≌△DFB; (5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC 例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC 例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?

例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE? 例6:两个等腰三角形ABD与BCE,其中AB=BD,CB=EB,∠ABD=∠CBE,连接AE与CD. 问(1)△ABE≌△DBC是否成立? (2)AE是否与CD相等?(3)AE与CD之间的夹角为多少度? (4)HB是否平分∠AHC? 例7:如图,分别以△ABC 的边AB、AC 同时向外作等腰直角三角形,其中 AB =AE , AC =AD,∠BAE =∠CAD=90°,点G为BC中点,点F 为BE 中点,点H 为CD中点。探 索GF 与GH 的位置及数量关系并说明理由。 例8:如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD 于点E. (1)如图1,猜想∠QEP=_______°; (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明; (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

中考数学专题训练几何题中用旋转构造“手拉手”模型

中考专题复习——几何题用旋转构造“手拉手”模型 一、教学目标: 1.了解并熟悉“手拉手模型”,归纳掌握其基本特征. 2.借助“手拉手模型”,利用旋转构造全等解决相关问题. 3.举一反三,解决求定值,定角,最值等一类问题. 二、教学重难点: 1.挖掘和构造“手拉手模型”,学会用旋转构造全等. 2.用旋转构造全等的解题方法最优化选择. 三、教学过程: 1.复习旧知 师:如图,△ABD ,△BCE 为等边三角形,从中你能得出哪些结论? 生:(1)△ABE ≌△DBC (2)△ABG ≌△DBF (3)△CFB ≌△EGB (4)△BFG 为等边三角形 (5)△AGB ∽△DGH (6)∠DHA =60°(7)H ,G ,F ,B 四点共圆 (8)BH 平分∠AHC …… 师:我们再来重点研究△ABE 与△DBC ,这两个全等的三角形除了对应边相等,对应角相等外,还有什么共同特征呢? 生:它们有同一个字母B ,即同一个顶点B . 师:我们也可以把△DBC 看作由△ABE 经过怎样的图形运动得到? 生:绕点B 逆时针旋转60°得到. 2.引入新课 师:其实我们可以给这两个全等的三角形赋予一个模型,叫“手拉手模型”,谁可以将这个模型的特征再做进一步的简化归纳呢? 生:对应边相等. 师:我们可以称之为“等线段”. 生:有同一个顶点. 师:我们可以称之为“共顶点”. 师:等线段,共顶点的两个全等三角形,我们一般可以考虑哪一种图形运动? 生:旋转. 师: “手拉手模型”可以归纳为:等线段,共顶点,一般用旋转. H G F E D C B A

3.小题热身 图1 图2 图3 1.如图1,△BAD中,∠BAD=45°,AB=AD,AE⊥BD于E,BC⊥AD于C,则AF=____BE.2.如图2,△ABC和△BED均为等边三角形,ADE三点共线,若BE=2,CE=4,则AE=______.3.如图3,正方形ABCD中,∠EAF=45°,BE=3,DF=5,则EF=_______. 师:我们来看第1,第2题,这里面有“手拉手模型”吗?请你找出其中的“等线段,共顶点”.生:题1中,等线段是AC,BC,共顶点是C,△ACF绕点C逆时针旋转90°得△BCD.题2中,等线段是AB,BC,共顶点是B,△ABD绕点D顺时针旋转60°得△CBE. 师:我们再来看第3题,这里有“手拉手模型”吗? 生:没有. 师:那其中有没有“等线段,共顶点”呢? 生:等线段是AD,AB,共顶点是A. 师:我们可否利用旋转来构造“手拉手模型”呢? 生:将AE旋转,绕点A逆时针旋转90°. 师:为什么是逆时针旋转90°,你是如何思考的? 生:我准备构造一个和△ABE全等的三角形,AB绕点A逆时针旋转90°即为AD,那么将AE逆时针旋转90°可得AG,连接GD,证明全等. 师:说的不错,谁能再来归纳一下,借助“手拉手模型”,用旋转构造全等的方法吗? 生:先找有没有“等线段,共顶点”,再找其中一条“共顶点”的线段,将其旋转. 师:旋转角度如何确定,方向怎么选择? 生:选择其中一个三角形,将“共顶点”的线段旋转.旋转角为两条“等线段”间的夹角.方向应与所选择的起始“等线段”旋转到另一条“等线段”时的方向一致. 师:非常棒,可以说,你已经掌握了这节课的精髓.但是,很多题目中只是隐含了“手拉手模型”的一些条件,剩余的需要我们自己去构造,可以如何构造呢? 步骤1:先找有没有“等线段,共顶点”. 步骤2:选择其中一个三角形,将其中经过“共顶点”的线段旋转.

专项练习(二) 全等三角形的基本模型

专项练习(二)全等三角形的基本模型?基本模型一平移模型 常见的平移模型: 图2-ZT-1 1.如图2-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=D B. 求证:∠A=∠E. 图2-ZT-2 2.如图2-ZT-3,点A,B,C,D在一条直线上,AB=CD,AE∥BF,CE∥DF. 求证:AE=BF. 图2-ZT-3 ?基本模型二轴对称模型 常见的轴对称模型: 图2-ZT-4 3.如图2-ZT-5,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由. 图2-ZT-5 4.如图2-ZT-6,BD⊥AC于点D,CE⊥AB于点E,AD=AE. 求证:BE=CD. 图2-ZT-6 5.如图2-ZT-7,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF. 求证:DE=CF. 图2-ZT-7 6.如图2-ZT-8,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 图2-ZT-8

?基本模型三旋转模型 常见的旋转模型: 图2-ZT-9 7.如图2-ZT-10,O是线段AB和线段CD的中点.求证:(1)△A OD≌△BOC; (2)AD∥BC. 图2-ZT-10 8.:如图2-ZT-11,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE. 图2-ZT-11 ?基本模型四一线三等角模型 图2-ZT-12 9.如图2-ZT-13,B,C,E三点在同一条直线上,AC∥DE,AC =CE,∠ACD=∠B. (1)求证:BC=DE; (2)假设∠A=40°,求∠BCD的度数. 图2-ZT-13 ?基本模型五综合模型 平移+对称模型: 图2-ZT -14 10.如图2-ZT-15,点B,F,C,E在一条直线上,FB=CE,AB ∥ED,AC∥FD.求证:AC=DF. 图2-ZT-15 平移+旋转模型: 图2-ZT-16 11.:如图2-ZT-17,AB=BC,BD=EC,AB⊥BC,EC⊥BC.求证:AD⊥BE. 图2-ZT-17 详解详析

全等三角形证明中的基本模型

把一个图形经过平移、翻折、旋转后,它们的位置虽然变化了,但是形状、大小都没有改变,即平移、翻折、旋转前后的图形全等. 我们把平移、翻折(轴对称)、旋转称为几何变换. 这一讲我们就来学习基本变换下的全等三角形. 常见平移模型 【引例】如图,A E F B 、、、四点在一条直线上,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =. 求证:CF DE = 模块一 平移型全等 知识导航 知识互联网 夯实基础 全等中的基本模型 F E D C B A

【解析】 ∵AC CE ⊥,BD DF ⊥ ∴90ACE BDF ∠=∠=? 在Rt ACE △和Rt BDF △中 AC BD AE BF =?? =? ∴()Rt Rt HL ACE BDF △≌△ ∴CE DF =,AEC BFD ∠=∠ ∴CEF DFE ∠=∠ 在CEF △和DFE △中 CE DF CEF DFE EF FE =?? ∠=∠??=? ∴CEF DFE △≌△ ∴CF DE = 【例1】 如图1,A 、B 、C 、D 在同一直线上,AB CD =,DE AF ∥,且.DE AF = 求证:AFC DEB △≌△ 如果将BD 沿着AC 边的方向平行移动,图2,B 点与C 点重合时;图3,B 点在C 点右侧时,其余条件不变,结论是否成立,如果成立,请选择一种情况请予证明;如果不成立,请说明理由. 图1 F E D C B A 图2 F E D (C ) B A 图3 F E D C B A 常见轴对称模型 知识导航 模块二 对称型全等 能力提升

【例2】 ⑴如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( ) A.3对 B.4对 C.5对 D.6对 ⑵如图,ABE △和ADC △是ABC △分别沿着AB ,AC 翻折到同一平面内形成的.若1:2:315:2:1∠∠∠=,则4∠=________. 【例3】 如图,AB AC =,D 、E 分别是AB 、AC 的中点,AM CD ⊥于M ,AN BE ⊥于N . 求证:AM AN =. 常见旋转模型: 夯实基础 能力提升 知识导航 模块三 旋转型全等 E D N M C B A 43 2 1 E D C B A D O F E C B A

几何辅助线之手拉手模型(初三)

手拉手模型 教学目标: 1:理解手拉手模型的概念,并掌握其特点 2:掌握手拉手模型的应用 知识梳理: 1、等边三角形 条件:△OAB,△OCD均为等边三角形 结论:;; 导角核心: 2、等腰直角三角形

条件:△OAB,△OCD均为等腰直角三角形 结论:;; 导角核心: 3、任意等腰三角形 条件:△OAB,△OCD均为等腰三角形,且∠AOB = ∠COD 结论:;; 核心图形: 核心条件:;;

典型例题: 例1:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)△AGB≌△DFB; (5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥AC 例2:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC A 例3:如果两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°; (4)AE与DC的交点设为H,BH平分∠AHC

例4:如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H 问:(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE? F 例5:如图两个等腰直角三角形ADC与EDG,连接AG,CE,二者相交于H.问(1)△ADG≌△CDE是否成立?(2)AG是否与CE相等? (3)AG与CE之间的夹角为多少度?(4)HD是否平分∠AHE?

最新全等三角形经典模型总结

全等三角形相關模型總結 一、角平分線模型 (一)角平分線の性質模型 輔助線:過點G作GE⊥射線AC A、例題 1、如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那麼點D到直線AB の距離是cm. 2、如圖,已知,∠1=∠2,∠3=∠4,求證:AP平分∠BAC. B、模型鞏固 1、如圖,在四邊形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.

(二)角平分線+垂線,等腰三角形必呈現 A、例題 輔助線:延長ED交射線OB於F 輔助線:過點E作EF∥射線OB 例1、如圖,在△ABC中,∠ABC=3∠C,AD是∠BACの平分線,BE⊥AD於F . 求證: 1 () 2 BE AC AB =-.

例2、如圖,在△ABC中,∠BACの角平分線AD交BC於點D,且AB=AD,作CM⊥AD交 ADの延長線於M. 求證: 1 () 2 AM AB AC =+. (三)角分線,分兩邊,對稱全等要記全 兩個圖形飛輔助線都是在射線ON上取點B,使OB=OA,從而使△OAC≌△OBC . A、例題 1、如圖,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC於P,BQ平分∠ABC 交AC於Q,求證:AB+BP=BQ+AQ .

2、如圖,在△ABC中,AD是∠BACの外角平分線,P是AD上異於點Aの任意一點,試比較PB+PC與AB+ACの大小,並說明理由.

B、模型鞏固 1、在△ABC中,AB>AC,AD是∠BACの平分線,P是線段AD上任意一點(不與A重合). 求證:AB-AC>PB-PC . 2、如圖,△ABC中,AB=AC,∠A=100°,∠Bの平分線交AC於D, 求證:AD+BD=BC . 3、如圖,△ABC中,BC=AC,∠C=90°,∠Aの平分線交BC於D, 求證:AC+CD=AB .

中考数学几何专题——手拉手模型一

手拉手模型 一、手拉手模型 1.手的判别:人站在等腰三角形顶角的位置,张开双臂,左手边的腰为左手,右手边的腰为右手。 2.手拉手模型的定义: 两个等顶角的等腰三角形组成的图形,且顶角的顶点为公共顶点。(顶角相等、等腰三角形、共顶点) 条件模型结论特殊结论 △ABC与△CDE是等腰三角形,且 ∠ACB=∠DCE (1) D ACD@D BC E (SSS) (2)AD=BE (左手拉左手,右手拉右手) (3)DBHA=DBCA (4)HC平分DAHE △ABC与△CDE是等腰直角三角形,且∠ACB=∠DCE=90°(5)S D BCD=S D ACE (6) BD2+AE2=AB2+DE2 正方形ACBP与正方形CEQD是正方形

△ABC 与△CDE是等 边三角形(5)D ACM@D BCN D DCM@D ECN (6) CM=CN (7)D CMN是等边三角形 (8)MN∥AE,CD∥AB, CB∥DE (9) BH+CH=AH DH+CH=EH 二、手拉手模型的变形:(两三角形相似,且对应角共顶点) 条件模型结论 D BAC∽D DAE,且DDAE=DBAC (1)D BAD∽D CAE(两边对应成比例且夹角相等) (2) BD CE = BA CA (3) DBHC=DBAC 【巩固练习】 1、如图所示,若△ABC、△ADE都是正三角形,试比较线段BD与线段CE的大小.

2、如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是() 3、如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题: (1)说明四边形ADEF是什么四边形? (2)当△ABC满足什么条件时,四边形ADEF是矩形? (3)当△ABC满足什么条件时,四边形ADEF是菱形? (4)当△ABC满足什么条件时,四边形ADEF是正方形? (5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在? 4、问题情境: 如图1,已知△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC=2,CD=CE=1,点D在

全等三角形常见的几何模型

1、绕点型(手拉手模型) (1)自旋转:?????? ?,造中心对称遇中点旋 全等遇等腰旋顶角,造旋转 ,造等腰直角 旋遇,造等边三角形旋遇自旋转构造方法00 00018090906060 (2 )共旋转(典型的手拉手模型) 例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC ( 3) AE 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △ EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC 变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。 (4) AE 与DC 的交点设为H,BH 平分∠AHC

变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC (3)AE 与DC 的夹角为60。 (4)AE 与DC 的交点设为H,BH 平分∠AHC (1)如图1,点C 是线段 AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△ACM 和△CBN ,连接AN ,BM .分别取BM ,AN 的中点E ,F ,连接CE ,CF ,EF .观察并猜想△CEF 的形状,并说明理由. (2)若将(1)中的“以AC ,BC 为边作等边△ACM 和△CBN”改为“以AC ,BC 为腰在AB 的同侧作等腰△ACM 和△CBN ,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例4、例题讲解: 1. 已知△ ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF. (1) 如图1,当点D 在边BC 上时,求证:① BD=CF ? ②AC=CF+CD. (2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由; (3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。

八年级假期复习几何基本模型之-手拉手模型

几何基本模型之手拉手模型 1.如图,△ ADC与△ GDB都为等腰直角三角形, 连接相等?(2)AG与CB之间的夹角为多少 度? AG CB相交于点H,问:(1)AG与CB是否 2.如图,直线AB的同一侧作△ ABD^R^ BCE都为等边三角形,连接AE CD二者交点为H。求证: (1)△ABE^A DBC ( 2) AE=DC (3)Z DHA=60 ; ( 4)A AGB^A DFB ( 5)A EGB^A CFB (6)连接GF, GF// AC ( 7)连接HB HB平分Z AHC 3?如图,△ ABD与△ BCE都为等边三角形,连接AE与CD延长AE交CD于点 H .证明:(1)AE=DC(2)Z AHD=60 ; (3)连接HB HB平分Z AHC 模型手拉手 E D ADE是等腰三角 形, 例题:如图,△ ABC是等腰三角形、△AB=AC AD=AE Z BAC2 DAE求证:△BAD^A CAE 模型练习 n D C B

4 . 在线段AE 同侧作等边△ CDE (/ACEV120 ),点P 与点M 分别是线段BE 和AD 的中点。 求证:△ CPM 是等边三角形。 5 .如图:BE 丄AC , CF 丄 AB , BM=AC , CN=AB 。求证:(1) AM=AN ; ( 2) AM 丄AN 。 6.如图, 已知等边三角形 ABC 中,点D, E , F 分别为边AB AC BC 的中点,M 为直线BC 上一动 点,△ DMF 为等边三角形(点M 的位置改变时,△ DMr 也随之整体移动). (1) 如图①,当点 M 在点B 左侧时,请你判断 EN 与 MF 有怎样的数量关系?点 F 是否在直线NE 上?都请直接 写出结论,不必证明或说明由; (2) 如图②,当点 M 在 BC 上时,其它条件不变,(1)的结论中EN 与 MF 的数量关系是否仍然 成 立?若成立,请利用图②证明;若不成立,请说明理由; (3) 若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断( 1)的结论中EN 与 MF 的数 量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由. A D

全等三角形经典模型总结

全等三角形相关模型总结 一、角平分线模型 (一)角平分线的性质模型 辅助线:过点G作GE⊥射线AC A、例题 1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB 的距离是cm. 2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC. B、模型巩固 1、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.

(二)角平分线+垂线,等腰三角形必呈现 A、例题 辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB 例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F . 求证: 1 () 2 BE AC AB =-. 例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交 AD的延长线于M. 求证: 1 () 2 AM AB AC =+.

(三)角分线,分两边,对称全等要记全 两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC . A、例题 1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC 交AC于Q,求证:AB+BP=BQ+AQ . 2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.

B、模型巩固 1、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD上任意一点(不与A重合). 求证:AB-AC>PB-PC . 2、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D, 求证:AD+BD=BC . 3、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D, 求证:AC+CD=AB .

相关文档
最新文档