四点共圆两个判定定理的证明

四点共圆两个判定定理的证明
四点共圆两个判定定理的证明

四点共圆两个判定定理的证明

1,当∠A=∠C=90·时,可以在答题中仅增加两行说明A、B、C、D四点共圆

连BD,设BD的中点为O′

∵∠A = ∠C =90·

∴AO′ = BO′ = DO′ = CO′

∴A、B、C、D在以O′为圆心,B O′为半径的圆上。

2,当那两个角不是直角时

一、附:已知∠A + ∠C = 180·,则A、B、C、D 四点共圆

证:设△ABD 的外接圆为⊙O

①假设C 在⊙O 内

则∠C >∠C′

又因∠A + ∠C′= 180·

∴∠A + ∠C > 180·与已知矛盾

②假设C 在⊙O 外

则∠C <∠C′

又因∠A + ∠C′= 180·

∴∠A + ∠C < 180·与已知矛盾

综合以上点C在⊙O上

上述证明可压缩为6行:

证:设△ABD 的外接圆为⊙O

假设C 在⊙O 内或外时

则∠C ≠∠C′

又因∠A + ∠C′= 180·

∴∠A + ∠C ≠ 180·与已知矛盾,故假设不成立,即点C 在⊙O上∴A、B、C、D四点共圆

二、附:已知∠A = ∠C ,则A、B、C、D 四点共圆

证:设△ABD 的外接圆为⊙O

①假设C 在⊙O 内

则∠C >∠C′

又因∠A = ∠C′

∴∠A <∠C 与已知矛盾

②假设C 在⊙O 外

则∠C <∠C′

又因∠A = ∠C′

∴∠A >∠C 与已知矛盾

综合以上点C在⊙O上

上述证明可压缩为6行:

证:设△ABD 的外接圆为⊙O

假设C 在⊙O 内或外时

则∠C ≠∠C′

又因∠A = ∠C′

∴∠A ≠∠C 与已知矛盾,故假设不成立,即点C 在⊙O上

∴A、B、C、D四点共圆

正弦定理的证明

附:已知△ABC 其外接圆半径为R,则a/sin∠A = b/sin∠B = c/sin∠C = 2R

证:因BD = c×sin∠A

所以S△ABC = 1/2 ·b·BD = 1/2·bc·sin∠A

同理S△ABC = 1/2·ac·sin∠B = 1/2·ab·sin∠C

所以1/2·bc·sin∠A = 1/2·ac·sin∠B = 1/2·ab·sin∠C

用1/2·abc 除以上述三式得a/sin∠A = b/sin∠B = c/sin∠C

-------------------------------------------------------------------------

因 sin∠A′= a/BA′= a/2R

即a/sin∠A′= 2R

因∠A = ∠A′

所以a/sin∠A = 2R

∴ a/sin∠A = b/sin∠B = c/sin∠C = 2R

《1.3.1圆幂定理》教学案3

《1.3.1圆幂定理》教学案 【教学目标】 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 【教学重难点】 重点:相交弦定理、切割线定理及其推论之间的关系以及应用; 难点:灵活运用圆幂定理解题. 【教学过程】 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等. 定理 圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言:若弦AB、CD交于点P则P A·PB=PC·P D(相交弦定理) 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B.(圆 周角推论2: 同(等)弧所对圆周角相等.) ∴△P AC∽△PDB ∴P A∶PD=PC∶PB,P A·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性.其逆定理也可用于证明四点共圆. 3比较 相交弦定理、切割线定理以及他们的推论统称为圆幂定理.一般用于求线段长度. 4相交弦定理推论 定理 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项. 说明几何语言:若AB是直径,CD垂直AB于点P,则=P A·PB(相交弦定理推论)

切割线定理 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.是圆幂定理的一种. 切割线定理示意图 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=P A·PB(切割线定理) 推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=P A·PB(切割线定理推论)(割线定理) 由上可知:PT2=P A·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=P A·PB 证明:连接AT,BT ∵∠PTB=∠P AT(弦切角定理 ) 切割线定理的证明 ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT2=PB·P A

高等数学证明方法

(3)反证法 这种证法是从反面考虑问题。先假设在已知条件成立的情况下,要证的结论不成立,而后从已知条件出发,运用基本概念和基本定理,通过逻辑推理导出矛盾(或与已知条件矛盾;或与某一已知概念、公式、公理、定理等矛盾;或自相矛盾等),这样则否定假设,从而肯定原结论正确。 例如,证明不是的多项式. 事实上,利用反证法,设是的多项式,不妨记此多项式为次多项式,即,则有 于是次多项式有无穷多个不同实根,这与次多项式最多只有个不同实根相矛盾,由此证明了不是的多项式. 又如,证明不存在(为自然数). 事实上,利用反证法,假设存在且设,则有 又因为 所以有 故 这与产生矛盾,因此不存在. (2)分析法 这种方法基本思路是逆着想。先假设结论正确,运用已有的定义、定理、公式、性质,从后向前一步一步地分析,直至推出已知条件,即由结论找需知,再找需知,……,直至已知。这种“执果溯因”的方法,叫做分析法。 分析法是探求证题途径的重要方法之一。它的优点在于思考过程比较自然,目的明确,较为容易找到证明的思路,但缺点是分析的过程叙述起来往往比较繁琐,因而过程多在草稿纸上进行,不正式写出。在实际解题时,特别对于一些较难的问题,常常先用分析法寻找解题的途径,然后再用综合法叙述解题过程,这种方法也可叫做分析综合法。 例如,设在时连续,且;而在时有单调递增导数,试证在时是单调递增的。 事实上,欲证为单调递增,只需证明就行了,而由于 因此就归结为证明. 利用拉格朗日中值定理及已知条件,有 单调递增 因此在时是单调递增的. 又如,用极限定义证明一数列或函数有已知极限时,多采用分析综合法证明。比如证明,其方法如下: ,欲使不等式成立, 由 所以只需,即成立. 取,于是当时,就有,从而保证了希望的不等式成立. 综合以上分析,就有 ,当时,,根据极限定义,有

圆幂定理及其应用

[文件] sxc3jja0008.doc [科目] 数学 [年级] 初三 [章节] [关键词] 圆/圆幂定理/应用 [标题] 圆幂定理及其应用 [内容] 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方 法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程, 从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一 点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的 切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋 转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和 切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2;

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点考研数学高数定理证明的知识点 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求 会证。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推 举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想 必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导” 和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得 函数在该点的导数为0。 前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直 接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔 定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连 续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。 那么最值和极值是什么关系?这个点需要想清楚,因为直接影响 下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若 最值均取在区间端点,则最值不为极值。那么接下来,分两种情况 讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条 告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值 和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在 开区间上任取一点都能使结论成立。 拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,

若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过 程中体现出来的基本思路,适用于证其它结论。 以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑 在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗 尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子 是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现 场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函 数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值 换成x,再对得到的函数求不定积分。 2015年真题考了一个证明题:证明两个函数乘积的导数公式。 几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的.较为 陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公 式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急 功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可 能从未认真思考过该公式的证明过程,进而在考场上变得很被动。 这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中 未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写 出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则, 因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。 利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有” 的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了 f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把

圆幂定理及其证明#(优选.)

圆幂的定义 假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P点到圆O的幂; 若P点在圆内,则圆幂为R^2-OP^2; 综上所述,圆幂为|OP^2-R^2|。 圆幂恒大于或等于零。 圆幂的由来 过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值) 若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2| 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。 圆幂定理 定理内容 过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有 。[1] 圆幂定理的所有情况 考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有

圆幂定理的证明 图Ⅰ:相交弦定理。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以 。所以有: ,即: 图Ⅱ:割线定理。如图,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以有 ,同上证得 图Ⅲ:切割线定理。如图,连接AC、AD。∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有 易证

微积分基本定理的证明

理学院 School of Sciences 微积分基本定理的证明 Proof of the fundamental theorem of calculus 学生姓名:张智 学生学号:201001164 所在班级:数学101 所在专业:数学与应用数学 指导老师:杨志林

摘要 微积分学这门学科在数学发展中的地位是十分重要的,自十七世纪以来,微积分不断完善成为一门学科。而微积分基本定理的则是微积分中最重要的定理,它的建立标志着微积分的完成,成为数学发展史的一个里程碑。因此就有了研究微积分基本定理的必要性。本文从十七世纪到二十世纪以来的科学家如巴罗、牛顿、莱布尼兹、柯西、黎曼、勒贝格等人对微积分基本定理的发展所作出的贡献展开论述。并论述了定理在微积分学理论发展中的应用。如换元公式、分部积分公式、Taylor中值定理的积分证明、连续函数的零点定理的证明,建立了微分中值定理与积分中值定理的联系,在一元函数和多元函数上的推广等等。最后给出定理的几个证明方法。 关键词:微积分基本定理,发展史,定理的应用,定理的证明

ABSTRACT Calculus the subject in the position of the development of mathematics is very important,since seventeenth Century,calculus constantly improved as a discipline.While the fundamental theorem of calculus is the most important theorems in calculus,which establishment marks the complete of the calculus, become a milepost of the development history of mathematics. So it is necessary to study the fundamental theorem of calculus. In this paper,since seventeenth Century to twentieth Century,launches the elaboration from scientists such as Barrow, Newton, Leibniz, Cauchy, Riemann, Lebesgue and others on made the contribution to the development of the fundamental theorem of calculus. And discusses the application of theorem in the development of the calculus theory.Such as the transform formula, integral formula of integration by parts, proof of the Taylor mean value theorem of continuous function, the zero point theorem proof, established the differential mean value theorem and the integral mean value theorem in contact,a unary function and multivariate function on the promotion and so on.Finally gave several proofs of the theorem. Keywords:Fundamental Theorem of Calculus,phylogeny,Application,Proof

《1.3.1圆幂定理》教学案1

《1.3.1圆幂定理》教学案 教学目标 1.知识与技能:(1)理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;(2)学会作两条已知线段的比例中项; 2.过程与方法:师生互动,生生互动,共同探究新知; 3.情感、态度、价值观:通过推论的推导,向学生渗透由一般到特殊的思想方法.教学重、难点 重点:正确理解相交弦定理及其推论 难点:相交弦定理及其推论的熟练运用 教学过程 前面讨论了与圆有关的角之间的关系.下面我们讨论与圆有关的线段的关系及其度量问题.下面沿用从特殊到一般地思路,讨论与圆的相交弦有关的问题. 探究1如图2-20,AB是⊙O的直径,CD⊥AB.AB与CD相交于P,线段P A、PB、PC、P D之间有什么关系? ?=?(老师引导学生完成推导过程) . PA PB PC PD 探究2将图2-20中的AB向上(或向下)平移,使AB不再是直径(图2-21),探究1的结论还成立吗? 连接AD、BC,请同学们自己给出证明. 探究3如果CD与AB不垂直,如图2-22,CD、AB是圆内的任意两条相交弦,探究1的结论还成立吗? 事实上,AB、CD是圆内的任意相交弦时,探究1仍然成立,而证方法不变.请同学们自己给出证明. 由上诉探究和论证,我们有 1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等. 探究4在图2-24中,使割线PB绕P运动到切线的位置(图2-25),线段P A(或PB)、PC、P D之间有什么关系? 2. =?(老师引导学生完成推导过程) PA PC PD

由上诉探究和论证,我们有 3.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 探究5下面对相交弦定理和切割弦定理作进一步分析: 由切割线定理和相交弦定理不难看出,不论点P在圆内或圆外,通过圆的任一条割线交圆于A,B两点,只要点P的位置确定了,则P A? PB都是定值. 设定植为k,则: 当点P在圆外时,如图,由切割线定理,可得 k = P A? PB = PT2= PO2- r2( r表示⊙O的半径 ) 当点P在圆内时,如图,过点P作AB垂直于OP,则: k = P A? PB = P A2= r2 - PO2( r表示⊙O的半径 ) 当点P在圆上时,显然k=0. 由上,我们可以得到: 圆幂定理: 已知⊙(O,r),通过一定点的任意一条割线交圆于A,B两点,则: 当点P在圆外时,k= PO2- r2; 当点P在圆内时,k= r2- PO2; 当点P在⊙O上时,k= 0. 我们称定值k为点P对⊙O的“幂” 【自主检测】 1. 圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为_ ____. 2. 已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若P A·PB=24,OP=5,则⊙O的半径长为_______. 3 . 若P A为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,P A=P C的长为_______. 4. AB、CD是⊙O切线,AB∥CD,⊙O的切线EF和AB、CD分别交于E、F,则∠EOF =______.

2017考研:高数常考的四大定理证明

2017考研:高数常考的四大定理证明 一、求导公式的证明 2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 二、微分中值定理的证明 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。 费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。 闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同

高等数学公式定理整理

高等数学公式定理整理 1.01版 本定理,公式整理仅用于参考,具体学习请多做题目以增进对知识的掌握。 蓝色为定理 红色为公式 三角函数恒等公式: 两角和差 tan αanα·ta +tan βanβ)-(tan α=β)-tan(αtan αanα·ta -(1tan βa +(tan α= β)+tan(αcos αosα·s ±sin αinα·c =β)±sin(αsin αinα·s +cos αosα·c =β)-cos(αβsin αsin βcos αcos )βαcos(?-?=+ 和差化积 ] 2 β) -(α]sin[2β)+(α-2sin[=cos β-cos α]2β) -(α]cos[2β)+(α2cos[=cos β+cos α] 2β) -(α]sin[2β)+(α2cos[=sin β-sin α] 2β)-(α]cos[2β)+(α2sin[=sin β+sin α

积化和差 β)] -cos(α-β)+[cos(α2 1 -=sin αinα·s β)]-cos(α+β)+[cos(α21 =cos αosα·c β)] -sin(α-β)+[sin(α21 =cos αosα·s β)] -sin(α+β)+[sin(α21 =sin αinα·c 倍角公式(部分):很重要! α tan -1α tan 2= tan2αα2sin -1=1-α2cos =αsin -αcos =α2cos cot αo +(tan α2 = 2sin αsinα·=sin2α22222 一、函数 函数的特性: 1.有界性: 假设函数在D 上有定义,如果存在正数M ,使得对于任何的x ∈D 都满足|f(x)|≤M 。则称f (x )是D 的有界函数。 如果正数M 不存在,则称这个函数是D 上的无界函数。 2.单调性 设f (x )的定义域为D ,区间I D 。X1,x2∈I ,那么,如果x1x2,那么就是单调减少函数。 3.奇偶性

圆幂定理(垂直弦定理)偏难

【例题求解】 【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= . (市中考题) 思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例; (3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来. 【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C . 415 D .5 16 (全国初中数学联赛题) 思路点拨 连AC ,CE ,由条件可得多等线段,为切割线定理的运用创设条件.

注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键. 【例3】如图,△ABC接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B. (1)求证:PA是⊙O的切线; (2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值. (北京市海淀区中考题) 思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的程. 【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE (省竞赛题) 思路点拨由切割线定理得EG2=EF·EP,要证明EG=D E,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明. 注:圆中的多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁. 需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几各种类型的问题

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

证明微积分基本公式

定义(定积分) 设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点 a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b 把闭区间[a ,b ]划分成n 个小区间 [x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ] 记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式 n n i i n i i i x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑= 称为函数f (x )在区间[a ,b ]上的积分和。记各小区间的最大长度为d = max{Δx i },如果对于区间 [a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为 ∑?=→=n i i i d b a x x f x x f 10Δ)(lim d )( 其中?为积分号,[a , b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。 上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定: (1)当a = b 时,规定0d )(=?a a x x f ; (2)当a > b 时,规定??-=a b b a x x f x x f d )(d )(。 可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。 定理1(可积的必要条件) 如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。 定理2(可积的充分条件) 1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。 2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。 3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。 引理(微分中值定理) 设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式 f (b ) ? f (a ) = f'(ξ)(b ? a ) 以上结论称为微分中值定理,等式称为微分中值公式。 设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。试利用微分中值定理和定积分的定义证明微积分基本公式 )()()(d )(a F b F x F x x f b a b a -==? 这个公式又称为牛顿-莱布尼茨公式。 证明:

圆的相关定理及其几何证明(含答案)

圆的相关定理及其几何证明 典题探究 例1:如图,圆是的外接圆,过点C 作圆的切线交的延长线于点.若 O ABC ?O BA D ,,则线段的长是 ;圆的半径是 . CD =2AB AC ==AD O 例2:如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E (E 在A ,O 之间),EF BC ^,垂 足为F .若6AB =,5CF CB × =,则AE =

例3:如图已知与圆相切于,半径,交于,若, PA O A OC OP ⊥AC PO B 1OC =,则 , . 2OP =PA ==PB 例4:如图,从圆外一点引圆的切线和割线,已知, O P O PA PBC 30BPA ∠=?,, 则 ,圆的半径等于 11BC =1PB =PA =O 演练方阵 A 档(巩固专练) 1.如图,已知直线PD 切⊙O 于点D ,直线PO 交⊙O 于点E,F.若,则⊙O 的21PF PD =+=半径为 ; . EFD ∠=A B C O P

D C B P A O

C B A 5.如图所示,以直角三角形的直角边为直径作⊙,交斜边于点,过点 ABC AC O AB D 作⊙的切线,交边于点.则 . D O BC E =BC BE 6.如图,直线AM 与圆相切于点M, ABC 与ADE 是圆的两条割线,且BD ⊥AD ,连接MD 、EC 。则下面结论中,错误的结论是( ) A .∠ECA = 90o B .∠CEM=∠DMA+∠DBA C .AM 2 = AD·AE D .AD·D E = AB·BC 7.如图,切圆O 于点,为圆O 的直径,交圆O 于点,为的中点,AB A AC BC D E CD 且则__________;__________. 5,6,BD AC ==CD =AE =

高等数学公式、定理 最全版

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式: 函数 sin cos tg ctg 角A -α-sinαcosα-tgα-ctgα 90°-αcosαsinαctgαtgα 90°+αcosα-sinα-ctgα-tgα 180°-αsinα-cosα-tgα-ctgα 180°+α-sinα-cosαtgαctgα 270°-α-cosα-sinαctgαtgα 270°+α-cosαsinα-ctgα-tgα 360°-α-sinαcosα-tgα-ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:

·倍角公式: ·半角公式: ·正弦定理:·余弦定理: ·反三角函数性质: 高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用: 曲率: 定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用: 方向导数与梯度: 多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:

斯托克斯公式——曲线积分与曲面积分的关系:常数项级数: 级数审敛法: 绝对收敛与条件收敛: 幂级数: 函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数: 周期为的周期函数的傅立叶级数:

微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程: 二阶常系数齐次线性微分方程及其解法: (*)式的通解 两个不相等实根 两个相等实根 一对共轭复根 高等数学定理大全 第一章 函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一*)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界*)如果数列{xn}收敛,那么数列{xn}一定有

圆幂定理及其证明

圆幂定理 圆幂的定义:一点P 对半径R 的圆O 的幂定义如下:22 OP R - 所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。 圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。 (1) 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 如图,AB 、CD 为圆O 的两条任意弦。相交于点P ,连接AD 、BC ,则∠D=∠B , ∠A=∠C 。所以△APD ∽△BPC 。所以 AP PD AP BP PC PD PC BP =??=? (2) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点 的两条线段长的比例中项。 如图,PT 为圆切线,PAB 为割线。连接TA ,TB ,则∠PTA=∠B (弦切角等于同弧圆周角)所以△PTA ∽△PBT ,所以 2PT PA PT PA PB PB PT =?=? (3) 割线定理:从圆外一点P 引两条割线与圆分别交于 A.B.C.D 则有 PA·PB=PC·PD 。 这个证明就比较简单了。可以过P 做圆的切线,也可以连接CB 和AD 。证相似。

存在:PA PB PC PD ?=? 进一步升华(推论): 过任意在圆O 外的一点P 引一条直线L1与一条过圆心的直线L2,L1与圆交于 A 、 B (可重合,即切线),L2与圆交于 C 、 D 。则PA·PB=PC·PD 。若圆半径为r ,则 2222()()||PC PD PO R PO R PO R PO R ?=-?+=-=-(一定要加绝对值,原因见下)为定值。这个值称为点P 到圆O 的幂。(事实上所有的过P 点与圆相交的直线都满足这个值) 若点P 在圆内,类似可得定值为2222||R PO PO R -=- 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。(这就是“圆幂”的由来)

四点共圆练习题

作业16 1、锐角ABC ?的三条高AD 、BE 、CF 交于H ,在A 、B 、C 、D 、E 、F 、H 七个点中.能组成四点共圆的组数是( ) A 、4组 B 、5组 C 、6组 D 、7组 2、已知点)02(,A ,)53(,B ,直线l 过点B 与y 轴交于点)0(c ,C ,若 O 、A 、B 、C 四点共圆,则c 的值为( ) A 、 522 B 、5 28 C 、17 D 、无法求出 3.如图, AB 是⊙O 的直径, 弦CD ⊥AB, P 是弧CAD 上一点(不与C 、D 重合) . (1) 求证:∠CPD =∠COB ; (2) 若点P 在劣弧CD 上(不与C 、D 重合), ∠CPD 与∠COB 的数量关系是否发生变化?若不变, 请画图并证明;若变化, 请写出新的关系式并画图证明. 4、如图,在平行四边形ABCD 中,BAD ∠为钝角,且BC AE ⊥,CD AF ⊥. (1)求证:A 、E 、C 、F 四点共圆; (2)设线段BD 与(1 )中的圆交于M 、N .求证:ND BM =. 5、如图所示, I 为ABC ?的内心,求证:BIC ?的外心O 与A 、B 、C 四点共圆. B

B A 6.如图, ⊙O 的内接△ABC 的外角∠AC B 的平分线交⊙O 于E, EF ⊥BD 于F. (1) 探索EO 与AB 的位置关系, 并予以证明; (2) 当△AB C 的形状发生改变时, AC CF BF +的值是否发生改变?若不变, 请求出该值;若改变, 请求出其变化范围. 7.如图,已知AB 是⊙O 的直径,D 是弧AB 上一点,C 是弧AD 的中点,AD 、BC 相交于E ,CF ⊥AB ,F 为垂足,CF 交AD 于G ,求证:CG=EG. 8、如图,已知ABC ?中的两条角平分线AD 和CE 相交于H ,?=∠60B ,F 在AC 上,且AF AE =. (1)证明:B ,D ,H ,E 四点共圆; (2)证明:CE 平分DEF ∠. B

实用文库汇编之4个圆幂定理及其证明

作者:于椅上 作品编号:785632589421G 101 创作日期:2020年12月20日 实用文库汇编之相交弦定理 如图,⊙P中,弦AB,CD相交于点P,则AP·BP=CP·PD 证明: 连结AC,BD,由圆周角定理 的推论,得∠A=∠D,∠C=∠B。 ∴△PAC∽△PDB,∴PA∶PD=PC∶PB,PA·PB=PC·PD 注:其逆定理可作为证明圆的内接三角形的方法. A D C 切割线定理 如图,ABT是⊙O的一条割线,TC是⊙O的一条切线,切点为C,则TC2=TA·TB 证明:连接AC、BC P

∵弦切角∠TCB对弧BC,圆周角∠A对弧BC ∴由弦切角定理,得∠TCB=∠A 又∠ATC=∠BTC ∴△ACT∽△CBT ∴AT:CT=CT:BT, 也就是CT2=A T·BT 弦切角定义: 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角 弦切角定理: 弦切角等于它所夹的弧所对的圆周角. 定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. (弦切角就是切线与弦所夹的角)弦切角定理证明 证明:设圆心为O,连接OC,OB,OA。过点A作TP的平行线交B C于D, 则∠TCB=∠CDA ∵∠TCB=90-∠OCD ∵∠BOC=180-2∠OCD ∴,∠BOC=2∠TCB 切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。 如图中,切线长AC=AB。 ∵∠ABO=∠ACO=90° BO=CO=半径 AO=AO公共边 ∴RtΔABO≌RtΔACO(HL) ∴AB=AC ∠AOB=∠AOC ∠OAB=∠OAC 割线定理 如图,直线ABP和CDT是自点P引的⊙O的两条割线,则PA·PB=PC·PD 证明:连接AD、BC ∵∠A和∠C都对弧BD ∴由圆周角定理,得∠A=∠C 又∵∠APD=∠CPB ∴△ADP∽△CBP ∴AP:CP=DP:BP, 也就是AP·BP=CP·DP

相关文档
最新文档