正弦型函数

正弦型函数
正弦型函数

正弦型函数)sin(?+=wx A y

徐丹

湖北省鄂南高级中学

教材:普通高中课程标准实验教科书(人教B 版)必修4

第一章第3节,P44—P50

教学对象:普通中学高中一年级普通班学生 时间:1课时(45分钟)

一、教学目标

1、知识与技能

(1)结合具体实例,了解)sin(?+=wx A y 的实际意义以及振幅、周期、频率、初相、相位的定义;

(2)借助计算机课件,观察探索参数A 、ω、φ对函数图象的影响,并能概括出正弦

型函数各种图象变换的实质和内在规律; (3)会用“五点法”和图象变换得到函数)sin(?+=wx A y 的图象。

2、过程与方法

(1)通过对探索过程的体验,培养学生发现问题、研究问题的能力,以及探究、创

新的能力;

(2)领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认

识的飞跃。

3、情感、态度价值观

(1)让学生感受数学来源于生活以及事物间普遍联系、运动变化的关系。 (2)渗透数形结合的思想;

二、教学重点、难点

1、重点

(1)理解振幅变换、周期变换和相位变换的规律;

(2)熟练地对函数x y sin =进行振幅变换、周期变换和相位变换 2、难点

(1)理解振幅变换、周期变换和相位变换的规律; (2)发现与概括)sin(?+=wx A y 的图象的规律

三、教学用具

多媒体(PPT 和几何画板)、板书 四、教学方法

引导学生结合作图过程理解振幅变换、周期变换和相位变换的规律(启发诱导

式)。本节课采用讲授、学生参与、启发探究、归纳总结相结合的教学方法,运用现代化多媒体教学手段进行教学活动。首先按照由特殊到一般的认知规律,由形及数、数形结合,通过设置问题引导学生观察、分析、归纳,形成规律,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对正弦型函数图像变换的全面的体验和理解。

五、教学过程及内容

(一)引入

以游乐场的观览车为切入点,提出观览车模型,师生 共同分析。

如图1,是大观览车的示意图。设观览车转轮半径 长为R ,转动的角速度为ωrad/s 。点B 表示座椅的初始 位置,OB 与x 轴的夹角为θ。

下面我们一起来看一下观览车转动时的情形(教师 用几何画板演示)。

问题:假设转轮转动t 秒后,点B 到达点B ’位置,

大家想一想,此时B ’点的纵坐标y 与时间t 有什么函 数关系? 生:思考片刻

师:(引导学生共同作答)点B 的运动轨迹为圆,由圆 的相关知识(即圆的参数方程),我们很容易得出:

)sin(θ+=wt R y 图1

讲解:)sin(θ+=wt R y 这类函数是我们今天所要学习的主要内容,我们称这种类型的函数ω??,都是常数,且其中0,,)(sin(≠+=A w A wx A y >)

0通常叫做正弦型函数。它们在物理、工程等学科的研究中经常遇到,如交流电中电流与时间的关系,简谐振动中物体的位移与时间的关系等都可以用这类函数表示。我们主要来讨论这类函数的一些简单性质和图像关系。

【设计意图】以生活中常见的一个实例入手,引入本节的知识内容——正弦型函数,

并且这个例子还有利于学生对正弦型函数周期、频率和相位的理解。

(二)新课讲授

1、简单性质:周期、频率和相位 问题:在刚才的例子中,很容易看出点B 的运动具有周期性,当角速度取定时,

点B 实际上做匀速圆周运动,显然,其周期为?(在上一节“正弦函数的性质”学

习中已经知道函数)sin(?+=wx A y 的周期为w

T π

2=) 生(预想):

w

π2 讲解:在函数)sin(θ+=wt R y 中,点B 旋转一周所需要的时间w

T π

2=

,叫做点B 的转动周期。那么相应地,点B 在一秒内旋转的周数π

21w T f ==

,叫做转动的频率。OB 与x 轴正方向的夹角θ叫做初相,θ+wt 称为相位。 2、图像关系

(1)首先用几何画板向学生展示)sin(?+=wx A y 的图像与各个参数之间的关系(如

下图2),让学生对A 、w 、?对函数图象的影响有一个感性的认识;

图2

【设计意图】逐一改变每个参数的值,让学生有一个基本的印象,即w 影响函数的

周期,A 影响最值,?使图像平移,并且不改变图像的形状和大小。

接下来,用控制变量法逐一讨论参数A 、ω、φ对函数图象影响的本质和规律。 (2)具体探讨参数w ,研究)0(sin >=w wx y 与x y sin =的关系

例1:在同一坐标系中作函数x y sin =、x y 2sin =及x y 2

1

sin

=的简图。 问题:复习画正弦函数简图的方法及基本步骤? 师:引导学生回忆,“五点作图法”的步骤,即确定周期,五个特殊点,列表,

描点连线,图像平移。

生:用“五点法”作出三个函数的简图。

师:寻看学生画简图的情况,待学生基本画完后,用PPT 课件逐一展示三个函

数“五点法”作图的过程。最后在同一坐标系中呈现三个函数在各自一个周期内的图像(如下图3)。

【设计意图】通过作图,使学生加深对“五点作图法”的理解。

图3

其实x y 2sin =和x y 2

1

sin

=的图像都可以由x y sin =的图像得到,教师用PPT 展示这个过程。并在几何画板中画一条与y 轴垂直的直线(虚线),与三个函数图像相交于A 、B 、C 三点(如图4),平行移动虚线的位置,让学生观察A 、B 、C 三点横、纵坐标间的关系。

y

图4

问题:A 、B 、C 的坐标有什么关系?

生:(预想)A 、B 、C 三点的纵坐标始终相同,A 点的横坐标是B 点横坐标的

2

1

,C 点的横坐标是B 点横坐标的两倍。

问题:由此,我们可以将x y sin =的图像做一个怎样的变换能得到x y 2sin =

和x y 2

1

sin

=的图像呢?并进一步讨论总结出wx y sin =与x y sin =图像间的关系。

生:分组讨论。

【设计意图】鼓励学生大胆猜想,使学生将直观问题抽象化,揭示本质,培养学生思维的深刻性,并培养学生由特殊到一般的解决问题的方法和归纳概括的能力。

师:学生基本讨论结束后,让一些小组发表意见,教师根据小组发言做适当点评。

教师小结:对于同一个y 值,x y 2sin =图像上点的横坐标始终是x y sin =上

点的横坐标的

2

1,x y 21

sin =上点的横坐标始终是x y sin =上点的横坐标的两倍。

所以,函数x y 2sin =的图象可以看作是把x y sin =上所有的点的纵坐标不变,横坐标缩短为原来的

2

1而得到;而函数x y 21sin =的图象可以看作是把x y sin =上所

有的点的纵坐标不变,横坐标伸长为原来的两倍而得到。

由此可得到:一般地,函数)10(sin ≠>=w w wx y 且其中的图象,可以看作是把)(sin R x x y ∈=上所有的点的横坐标缩短(当1>w 时)或伸长(当10<

w

1

倍(纵坐标不变)而得到——周期变换。 思考练习:如何由x y 4sin =的图像得到x y sin =的图像? 【设计意图】考查学生能否对周期变换进行灵活应用。

(3)具体探讨参数A ,研究x A y sin =与x y sin =的关系(方法基本与(2)相同)

y

例2:在同一坐标系中作函数x y sin =、x y sin 2=及x y sin 2

1

=

的简图。 生:用“五点法”作出三个函数的简图。

师:寻看学生画简图的情况,待学生基本画完后,用PPT 课件直接呈现三个函数在同一坐标系中在各自一个周期内的图像(如下图5)。

图5

【设计意图】进一步使学生强化“五点法”作图的原理与步骤。

师:请同学们观察这三个函数的值域以及最大、最小值,看看它们与A 有什么关系?

学生回答(问题很简单,学生应该都能回答)。 教师引导归纳:

一般地,函数x A y sin =值域是[]

A A ,-,最大值是A ,最小值是A -。A 的大小反映曲线x A y sin =波动幅度的大小,因此A 也称为振幅。

师:其实x y sin 2=和x y sin 2

1

=

的图像都可以由x y sin =的图像得到,教师用PPT 展示这个过程。并在几何画板中画一条与x 轴垂直的直线(虚线),与三个函数图像相交于A 、B 、C 三点(如图6),平行移动虚线的位置,让学生观察A 、B 、C 三点

问题:A 、B 、C 的坐标有什么关系?

y

x

生:(预想)A 、B 、C 三点的横坐标始终相同,A 点的纵坐标是B 点纵坐标的

2

1

,C 点的纵坐标是B 点纵坐标的两倍。

问题:由此,我们可以将x y sin =的图像做一个怎样的变换能得到x y sin 2=

和x y sin 2

1

=

的图像呢?并进一步讨论总结出x A y sin =与x y sin =图像间的关系。

生:分组讨论。

【设计意图】鼓励学生大胆猜想,使学生将直观问题抽象化,揭示本质,培养学生思维的深刻性,并培养学生由特殊到一般的解决问题的方法和归纳概括的能力。 师:学生基本讨论结束后,让一些小组发表意见,教师根据小组发言做适当点评。 教师归纳小结:

一般地,函数x A y sin =(A>0, A ≠1)的图象可以看作是函数x y sin =的图象上所有的点的纵坐标伸长 (当A>1时)或缩短(当0

(4)具体探讨参数?,研究)sin(?+=x y 与x y sin =的关系

例3:在同一坐标系中作函数x y sin =、)2

sin(π

+

=x y 及)2

sin(π

-

=x y 的简图。

生:用“五点法”作出三个函数的简图。

师:寻看学生画简图的情况,待学生基本画完后,用PPT 课件直接呈现三个函数在同一坐标系中在各自一个周期内的图像(如下图7)。

图7

同样,)2

sin(π

+

=x y 和)2

sin(π

-

=x y 的图像都可以由x y sin =的图像得到,

教师用PPT 展示这个过程。并在几何画板中画一条与y 轴垂直的直线(虚线),取与三个函数图像相交的四个点A 、B 、C 、D (如图8),平行移动虚线的位置,让学生观察四个点横、纵坐标间的关系,并观察线段BA 和线段CD 的长度变化。

图8

显然,A 、B 、C 、D 四个点的纵坐标始终相同,A 与B 的横坐标之差始终不变,即线段BA 和线段CD 的长度始终不变。 由此,我们可以把)2

sin(π

+=x y 的图像看作是把正弦曲线x y sin =上所有的

点向左平移

2

π个单位长度而得到;同样,)2sin(π

-=x y 的图像看作是把正弦曲线

x y sin =上所有的点向右平移2

π

个单位长度而得到。

教师归纳小结:

一般地,把函数x y sin =的图象上所有的点(当0>? 时)向左或(当0

例4:作函数)4

2sin(21π

+=

x y 的简图。 生:先用“五点法”作出该函数的简图。

学生基本画完后,然后教师用PPT 展示该函数“五点法”作图的过程(如下):

x

y

②描点连线:

最后把函数)42sin(21π+=

x y 在区间??

?

???-87,8ππ上的图像分别向左、右平移,每次平移π个单位长度,则得该函数在R 上的图像。

【设计意图】用“五点法”画函数)sin(?+=wx A y 的简图是学生需要掌握的一个知

识点,通过本例的学习,使学生熟悉和加深对“五点作图法”的理解。

问题:通过图像变换,如何由正弦曲线得到)4

2sin(21π

+=

x y 的图像? 学生先独立思考,之后教师让学生讲出自己的想法,并根据学生回答情况进行

适当讲解。

教师归纳:需要对x y sin =进行相应的周期变换、振幅变换和相位变换。并且需要注意不同的变换顺序会导致不同的周期变换和相位变换。可以先把正弦曲线上

的所有点向左平移

4

π个单位长度,得到)4sin(π

+=x y 的图像,再把后者所有点的

横坐标缩短到原来的21(纵坐标不变),得到)4

2sin(π

+=x y 的图像,再把所得图

像上的所有点的纵坐标缩短到原来的2

1

(横坐标不变),就能得到函数

)4

2sin(21π

+=x y 的图像。(注:若先进行了周期变换,则进行相位变换时,只需

向左平移8

π

个单位长度)

思考总结:通过图像变换,如何由正弦曲线得到)sin(?+=wx A y 的图像?

【设计意图】使学生将直观问题抽象化,培养学生由特殊到一般的解决问题的方法和

归纳概括的能力。

3、巩固训练

(1)把函数)6sin(π

-

=x y 的图象上所有点( ),可以得到)6

21sin(π

-=x y 函数的图象。

A 、横坐标伸长到原来的2倍,纵坐标不变。

B 、横坐标缩短到原来的

2

1

倍,纵坐标不变。 C 、纵坐标伸长到原来的2倍,横坐标不变。

D 、纵坐标缩短到原来的2

1

倍,横坐标不变。 (2)为了得到函数)3

22sin(π

-=x y 的图象,只需把函数x y 2sin =的图象上所有点( )

A 、向左平移

3π个单位长度 B 、向右平移3π

个单位长度 C 、向左平移32π个单位长度 D 、向右平移3

个单位长度

(3)把函数x y sin =图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到

函数A:____的图像,再把函数A 的图象上所有点向右平移

2

π

个单位,得到函数____的图象。

4、归纳小结及布置作业 小结:

(1)正弦型函数)sin(?+=wx A y 的周期、频率、相位、振幅

(2)wx y sin =、x A y sin =、)sin(?+=x y 以及)sin(?+=wx A y 与x y sin = 的关系(相对应的周期变换、振幅变换和相位变换) 生:可以谈谈对本节课的收获

【设计意图】关注学生的自主体验。 作业:

课本P49第1、2题写在作业本上;P50第1、2、3题写在书上。

六、板书设计

1.3.1-3 正弦型函数)sin(?+=wx A y (A ≠0,w >0) 一、简单性质 周期:w T π2=

频率:π

21w T f == 相位:?+wx 初相:?

二、图像关系

(1)wx y sin =与x y sin =图像的关系——周期变换 (2)x A y sin =与x y sin =图像的关系——振幅、振幅变换 (3))sin(?+=x y 与x y sin =图像的关系——相位变换 (4))sin(?+=wx A y 与x y sin =图像的关系

11知识讲解_正弦函数、余弦函数的性质_基础

正弦函数、余弦函数的性质 【学习目标】 1.了解周期函数、周期、最小正周期的定义; 2.理解正弦函数、余弦函数在区间]2,0[π上的性质(如单调性、周期性、最大值和最小值以及与x 轴的交点等). 【要点梳理】 要点一:周期函数的定义 函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期. 要点诠释: 1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足 )()(x f T x f =+都不能说T 是)(x f y =的一个周期. 2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期. 要点二:正弦函数、余弦函数的图象和性质 (1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域. (2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求

sin()y x =-的单调递增区间时, 应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先 求定义域. 要点三:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>的性质. 函数sin()y A x ω?=+与函数cos()y A x ω?=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到: (1)定义域:R (2)值域:[],A A - (3)单调区间:求形如sin()y A x ω?=+与函数cos()(,0)y A x A ω?ω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ω?+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由 )(2 22 2Z k k x k ∈+ ≤+≤- π π?ωπ π解出x 的范围所得区间即为增区间,由 )(2 3222Z k k x k ∈+≤+≤+ππ?ωππ解出x 的范围,所得区间即为减区间. (4)奇偶性:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>不一定具备奇偶性.对于函数sin()y A x ω?=+,当()k k z ?π=∈时为奇函数,当()2 k k z π ?π=±∈时为偶函数; 对于函数cos()y A x ω?=+,当()k k z ?π=∈时为偶函数,当()2 k k z π ?π=±∈时为奇函数. 要点诠释: 判断函数sin()y A x ω?=+,cos()y A x ω?=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件. (5)周期:函数sin()y A x ω?=+及函数cos()y A x ω?=+的周期与解析式中自变量x 的系数有关,其周期为2T π ω = . (6)对称轴和对称中心 与正弦函数sin y x =比较可知,当()2 x k k z π ω?π+=± ∈时,函数sin()y A x ω?=+取得最大值(或 最小值),因此函数sin()y A x ω?=+的对称轴由()2 x k k z π ω?π+=± ∈解出,其对称中心的横坐标 ()x k k z ω?π+=∈,即对称中心为,0()k k z π?ω-?? ∈ ??? .同理,cos()y A x ω?=+的对称轴由

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

中职数学基础模块5.3.1正弦函数的图象和性质教学设计教案人教版

课时教学设计首页(试用) 授课时间:年月日

☆补充设计☆ 第页(总页)

(4)单调性 正弦函数在闭区间 n n [—2 + 2 k n 2 + 2 k n (kE Z)上是 增函数;在闭区间 l n 3 n 「—[2 + 2 k n, —+ 2 k n (kE Z)上是减函数. 例2求使函数y= 2+ sin x取最大值和最小值的x的集合,并求这个 函数的最大值、最小值和周期. 练习:教材P154,练习A组第1、2 题. 例3 不求值,比较下列各对正弦值 的大小: (1)si n(― 18 )与sin( —:n O ); (2)sin 严与sin 宁. 奇函数图象关于坐标原点对称. (4)随着单位圆中正弦线的变 化,体会正弦函数的单调性?学生总结 正弦函数的单调性. 师:在正弦函数图象上,函数单 调性是如何体现出来的? 生:正弦函数在[—n + 2k n n 2 + 2kn](k迂Z)上,图象是上升的, 在[2 + 2k n, + 2k n](k^Z)上, 图象是下降的. 教师将例2结合函数图象讲 解,在练习后小结:函数y= 2+ sin x, y= 2—sin x 的图象与y = sin x 的关 系,求它们最大值、最小值的规律. 教师将例3结合正弦函数图象 讲解如何比较函数值的大小,然 后再引导学生一起写出解题步骤. 利用两个例题, 使学生更好地理解函数 性质的应用,进一步渗 透数形结合的思想. 课时教学设计尾页(试用) ☆补充设计☆ 板书设计 1?“五点法”作图; : 2 ?正弦函数的图象和性质

作业设计教材P154,练习A组第3、4、5题, 练习B组. 教学后记

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

高一数学1.3.1正弦函数的图像与性质学案2

辽宁省农村实验中学高一数学《1.3.1 正弦函数的图像与性质》学案(2) 一、学习目标 重点:正弦型函数的图象特征与性质. 难点:y=A sin(ωx+φ)与y=sin x之间的图象变换规律及正弦型函数的单调区间等性质. 二、知识归纳 1.正弦型函数y=Asin(ωx+φ)( A>0,ω>0)周期T= ,频率f= ,初相, 相位,振幅,值域 2.三角函数的图象变换 (1)y=A sin x(A>0)的图象可由y=sin x图象上各点的横坐标不变,纵坐标 (A>1)或 (00)或向 (φ<0)平行移动|φ|个单位长度而得到. (3)y=sinωx) 的图象可由y=sin x图象如何变换得到? (4)y=A sin(ωx+φ) 的图象可由y=sin x图象如何变换得到? 三、例题讲解: 例 1. 函数y=a sin x+b的最大值为2,最小值为-1,则a=________,b=________. 例2 下图所示为函数y=A sin(ωx+φ)的图象的一段,试确定函数y=A sin(ωx+φ)的解析式. 变式1.如图所示为函数y=A sin(ωx+φ)的图象,其中A>0,ω>0,求该函数的解析式. 变式2:(2009·海南、宁夏)已知函数y=sin(ωx+φ)(ω>0,-π≤φ<π)的图象如图所示,则φ=________.

例3.方程x =sin x 在x ∈[-π,π]上实根的个数为( ) A .1 B .2 C .3 D .4 例4.已知函数f (x )=3sin(x 2+π6)+3 (1)用五点法画出它在一个周期内的闭区间上的图象; (2)求f (x )的单调递减区间、对称轴、值域; (3)求出使f (x )取最大值时x 的取值集合. 变式.已知函数f (x )=2sin(2x +π6 )+a +1(其中a 为常数).(1)求f (x )的单调区间; (2)若x ∈[0,π2 ]时,f (x )的最大值为4,求a 的值;(3)求出使f (x )取最大值时x 的取值集合. 课后习题: 一选择 1.函数y =5sin ? ????25 x +π6的最小正周期是( ) A.25π B.52π C .5π D.π6

正弦余弦函数的性质定义值域

正弦函数、余弦函数的性质 ——定义域与值域 目的:要求学生掌握正、余弦函数的定义域与值域,尤其能灵活运用有界性 求函数的最值和值域。 过程: 一、复习:正弦和余弦函数图象的作法 二、研究性质: 1.定义域:y=sinx, y=cosx 的定义域为R 2.值域: 1?引导回忆单位圆中的三角函数线,结论:|sinx|≤1, |cosx|≤1 (有界性) 再看正弦函数线(图象)验证上述结论 ∴y=sinx, y=cosx 的值域为[-1,1] 2?对于y=sinx 当且仅当x=2k π+ 2 π k ∈Z 时 y max =1 当且仅当时x=2k π-2 π k ∈Z 时 y min =-1 对于y=cosx 当且仅当x=2k π k ∈Z 时 y max =1 当且仅当x=2k π+π k ∈Z 时 y min =-1 3.观察R 上的y=sinx,和y=cosx 的图象可知 当2k π0 当(2k-1)π0 当2k π+ 2π

正弦型函数的性质和图象教案

重庆市渝中区职业教育中心 数学课程教案 教师 周名昆 第 1 页 第 1 页 共 2 页 [课 题] 5.8函数)sin(?ω+=x A y 的性质和图象 [课 时] 第一课时 [课 型] 新授课 [目 标] 1. 了解正弦型函数的解析表达式中各个符号的实际背景意义; 2. 理解正弦型函数的图象与正弦函数的图象之间的关系; 3. 能够根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [重 点]根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [难 点] 理解正弦型函数的图象与正弦函数的图象之间的关系 [教 法] 讲授法、启发式教学法 [教 具] 教材、实物展示台、多媒体投影 [教学过程] 一、复习引入 1正弦函数在区间[-π,π]上的图象(五点法作出) 2正弦型函数引出:见教材实例 二、新课讲授 1正弦型函数)sin(?ω+=x A y 中各个字母的意义 1)A ——振幅 2)ω——频率(弧度/秒) 3)?——初相 4)??+t ——t 时刻的相位 2正弦型函数的性质:A 、T A ——最值 T ——最小正周期(? π2=T ) 例1已知函数求A (最大值、最小值)、T (ω) x y 5sin 3= )115sin(3π-=x y )875sin(3π+=x y )11 5sin(π+=x y 练习已知函数求A (最大值、最小值)、T (ω) )351sin(6π+=x y )11100sin(24ππ+=x y )4 21sin(2π+=x y x y 5.0sin 13= 3正弦型函数与正弦函数图象之间的关系(利用课件演示) ⑴x A y sin =与x y sin = 振幅变换:y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(00且ω≠1)的图象,可看作把正弦曲线上

正弦函数、余弦函数性质说课稿

正弦函数、余弦函数性质说课稿 一、教材分析 1.教学目标 知识目标:,观察正弦、余弦函数图像得到正弦函数、余弦函数的性质,并灵活应用性质解题。 能力目标:培养学生分析、探索、类比和数形结合等数学思想方法在解决问题中的应用能力;培养学生自主探究的能力。 情感目标:让学生亲身经历数学的研究过程,感受数学的魅力,享受成功的喜悦。 2 地位和作用 本节课是《数学必修4》的第一章三角函数的内容,是学习了正弦函数、余弦函数的图像和周期性之后,进一步学习正弦函数、余弦函数的性质。该内容共两课时,这里讲的是第二课时。正弦、余弦函数的图像和性质是三角函数里的重点内容,也是高考热点考察的内容之一。通过本节课的学习,不仅可以培养学生的观察能力,分析问题、解决问题的能力,而且渗透了数形结合、类比、分类讨论等重要的数学思想方法,为以后、为高考的学习打下基础。 3 教学重点:正弦函数、余弦函数的奇偶性、单调性、最值。 教学难点:确定函数的单调区间,应该对单调性的应用进行多层次练习,使学生在练习中掌握正弦、余弦函数的性质及应用。 二、学生的认识水平分析 1知识结构:学生在必修1学习了函数的有关概念,以及几个中学阶段的初等函数,在本章书的第一节介绍了角的概念的推广、正弦函数、余弦函数的图像和周期性,所以已经具备了这节课的预备知识。 2能力方面:已经具有一定的分析问题,解决问题的能力,函数思想和数形结合思想已经略有了解,在教师的指导下能力目标不难达到。 3情感方面:高一学生参与意识、自主探究意识逐渐增强,能够对新知识比较感兴趣。三、教法分析 引导发现教学法 为了把发现创造的机会还给学生,把成功的体验让给学生,为了立足于学生思维发展,着力于知识的建构,就必须让学生有观察、动手、表达、交流、表现的机会,采用引导发现法,可激发学生学习的积极性和创造性,分享探索知识的方法和乐趣,使数学教学成为再发现,再创造的过程。 四、学法分析 学法指导在教学过程中有着十分重要的作用,它不仅有助于学生学好数学知识,而且对培养和发展学生的自学能力,使学生学会学习,学会交流,形成科学世界观都有着不可低估的作用。本节课我从以下两个方面对学生进行学法指导: 联想尝试:数学是一门基础学科,数学的概念、性质、方法、思想抽象严谨,因此在学习过程中引导学生借鉴已有知识和经验,通过观察、分析、尝试发现新的知识方法,这有利于培养学生的数学情感,提高学生的学习兴趣,更有助于学生对知识的理解和掌握。 合作学习:引导学生认真观察正弦、余弦函数的图像之后,指导学生进行讨论交流,通

【B402】正弦函数与余弦函数的定义

高一同步之每日一题【B402】 正弦函数与余弦函数的定义 B4021.若点(P -在角α的终边上,则角α的最小正值为______. 解:由点在(P -在第二象限可知角α的终边在第二象限. 由于||4OP ==,因此21cos cos12042 α-==-=?. 所以,角α的最小正值为120?. B4022.已知角θ的终边经过点(,3)P x ,其中0x ≠,且cos x θ=,求sin θ与cos θ的值. 解:由||OP = cos 10 x θ==. 解得1x =-,或1x =. 当1x =-时,sin 10θ==,cos θ=; 当1x =时,sin θ= =,cos θ= B4023.已知角θ的终边上的点均在直线3y x =上,点(,)P m n 在角θ的 终边上,且||OP =,求sin θ与cos θ的值. 解:由题意可知3n m =,且||OP == 解得m n ==-或m n = = 当m n ==-, sin 10θ= =-cos 10θ==-; 当m n ==, sin 10θ==,cos 10 θ==.

B4024.若角α的终边上一点的坐标为(sin135,cos135)P ??,则角α的最小正值为______. 解:由于点(sin135,cos135)P ??即为点P , 因为角α的终边在第四象限的角平分线上. 所以角α的最小正值为315?. B4025.若角α的终边上一点的坐标为22(cos ,sin )33P ππ-,则角α的最小正值为______. 解:由于点22(cos ,sin )33 P ππ-即为点1(,22P --, 因为角α的终边在第三象限,且1cos240,sin 2402?=- ?=所以角α的最小正值为240?. B4026.若角α的终边上一点的坐标为22(cos ,sin )55P ππ-,则角α的最小正值为______. 解:因为22cos cos(2)55πππ=-,22sin sin(2)55 πππ-=-, 且2802255 ππππ<-=<. 所以角α的最小正值为85 π. B4027.若角α的终边上一点的坐标为22(sin ,cos )55P ππ,则角α的最小正值为______. 解:因为22sin cos()525πππ=-,22cos sin()525 πππ=-, 且2022510 ππππ<-=<. 所以角α的最小正值为10 π.

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

人教A版必修四全套教案之1.4.2正弦函数余弦函数的性质(教、学案)

§1.4.2正弦函数余弦函数的性质 【教材分析】 《正弦函数和余弦函数的性质》是普通高中课程标准实验教材必修4中的内容,是正弦函数和余弦函数图像的继续,本课是根据正弦曲线余弦曲线这两种曲线的特点得出正弦函数和余弦函数的性质。 【教学目标】 1. 会根据图象观察得出正弦函数、余弦函数的性质;会求含有x x cos ,sin 的三角式的性质;会应用正、余弦的值域来求函数)0(sin ≠+=a b x a y 和函数 c x b x a y ++=cos cos 2)0(≠a 的值域 2. 在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯. 3. 在解决问题的过程中,体验克服困难取得成功的喜悦. 【教学重点难点】 教学重点:正弦函数和余弦函数的性质。 教学难点:应用正、余弦的定义域、值域来求含有x x cos ,sin 的函数的值域 【学情分析】 知识结构:在函数中我们学习了如何研究函数,对于正弦函数余弦函数图像的学习使学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。 心理特征:高一普通班学生已掌握三角函数的诱导公式,并了解了三角函数的周期性,但学生运用数学知识解决实际问题的能力还不强;能够通过讨论、合作交流、辩论得到正确的知识。但在处理问题时学生考虑问题不深入,往往会造成错误的结果。 【教学方法】 1.学案导学:见后面的学案。 2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 【课前准备】 1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。 2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。 【课时安排】1课时 【教学过程】 一、预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 二、复 习导入、展示目标。 (一)问题情境 复习:如何作出正弦函数、余弦函数的图象? 生:描点法(几何法、五点法),图象变换法。并要求学生回忆哪五个关键点 引入:研究一个函数的性质从哪几个方面考虑? 生:定义域、值域、单调性、周期性、对称性等

知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊 【考纲要求】 1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数 A,?,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识络】 【考点梳理】 考点一、函数sin()yAx????(0A?,0??)的图象的作法 1.五点作图法: 作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、 2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。 2.图象变换法: (1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象; (3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象. (4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b? 平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位 sin()yAx???? sin 图象的作法三角函的质其 图象的性 变换的先后顺序不同时,原图象沿x轴的伸缩量有区别. 考点二、sin()yAx????的解析式 1.sin()yAx????的解析式 sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T??? 叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式 求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数 sin()yAx????(0A?,0??)的性质 1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T??? 3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?. 4.单调性:单调增区间 :[????????????22,22kk] , kZ? 单调减区间:[????????????232,22kk] , kZ? 5. 对称性:对称中心(????k,0),kZ?;对称轴

第二节 正弦函数和余弦函数的定义及诱导公式

第二节 正弦函数和余弦函数的定义及诱导公式 A 组 1.若cos α=-35,α∈(π2 ,π),则tan α=________. 解析:cos α=-35,α∈(π2,π),所以sin α=45,∴tan α=sinαcosα=-43 . 答案:-43 2.(2009年高考北京卷)若sin θ=-45 ,tan θ>0,则cos θ=________. 解析:由sin θ=-45<0,tan θ>0知,θ是第三象限角,故cos θ=-35 . 答案:-35 3.若sin(π6+α)=35,则cos(π3 -α)=________. 解析:cos(π3-α)=cos[π2-(π6+α)]=sin(π6+α)=35.答案:35 4.(2010年合肥质检)已知sin x =2cos x ,则5sinx -cosx 2sinx +cosx =______. 解析:∵sin x =2cos x ,∴tan x =2,∴5sinx -cosx 2sinx +cosx =5tanx -12tanx +1=95 . 答案:95 5.(原创题)若cos2θ+cos θ=0,则sin2θ+sin θ=________. 解析:由cos2θ+cos θ=0,得2cos 2θ-1+cos θ=0,所以cos θ=-1或cos θ=12 ,当cos θ=-1时,有sin θ=0,当cos θ=12时,有sin θ=±32 .于是sin2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3.答案:0或3或- 3 6.已知sin(π-α)cos(-8π-α)=60169,且α∈(π4,π2 ),求cos α,sin α的值. 解:由题意,得2sin αcos α=120169 .①又∵sin 2α+cos 2α=1,② ①+②得:(sin α+cos α)2=289169,②-①得:(sin α-cos α)2=49169 . 又∵α∈(π4,π2 ),∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0, ∴sin α+cos α=1713.③sin α-cos α=713 ,④ ③+④得:sin α=1213.③-④得:cos α=513 . B 组 1.已知sin x =2cos x ,则sin 2x +1=________. 解析:由已知,得tan x =2,所以sin 2x +1=2sin 2x +cos 2x =2sin2x +cos2x sin2x +cos2x =2tan2x +1tan2x +1=95 .答案:95 2.(2010年南京调研)cos 10π3 =________. 解析:cos 10π3=cos 4π3=-cos π3=-12.答案:-12 3.(2010年西安调研)已知sin α=35,且α∈(π2,π),那么sin2αcos2α 的值等于________.

正弦函数的性质

正弦函数的性质:编辑本段 解析式:y=sinx 图象:波形图象 定义域:R 值域:【-1,1】 最值: ①最大值:当x=(π/2)+2kπ时,y(max)=1 ②最小值:当x=-(π/2)+2kπ时,y(min)=-1 零值点: (kπ,0) 对称性: 1)对称轴:关于直线x=(π/2)+kπ对称 2)中心对称:关于点(kπ,0)对称 周期:2π 奇偶性:奇函数 单调性:在【-(π/2)+2kπ,(π/2)+2kπ】上是增函数,在【(π/2)+2kπ,(3π/2)+2kπ】上是减函数 余弦函数的性质:编辑本段 余弦函数 图象:波形图象 定义域:R

值域:【-1,1】 最值: 1)当x=2kπ时,y(max)=1 2)当x=2kπ+π时,y(min)=-1 零值点:(π/2+kπ,0) 对称性: 1)对称轴:关于直线x=kπ对称 2)中心对称:关于点(π/2+kπ,0)对称 周期:2π 奇偶性:偶函数 单调性:在【2kπ-π,2kπ】上是增函数 在【2kπ,2kπ+π】上是减函数 tan15°=2-√3 tan30°=√3/3 tan45°=1 tan60°=√3 性质 1、定义域:{x|x≠(π/2)+kπ,k∈Z} 2、值域:实数集R 3、奇偶性:奇函数 4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数 5、周期性:最小正周期π(可用T=π/|ω|来求) 6、最值:无最大值与最小值 7、零点:kπ,k∈Z 8、对称性: 轴对称:无对称轴 中心对称:关于点(kπ/2,0)对称(k∈Z) 9、图像(如图所示) 实际上,正切曲线除了原点是它的对称中心以外,所有x=(2/n)π点都是它的对称中心. 诱导公式 tan(2π+α)=tanα tan(-α) =-tanα tan(2π-α)=-tanα tan(π-α) =-tanα tan(π+α) =tanα tan(α+β) =(tanα+tanβ)/(1-tanα×tanβ) 12.正弦(sin)等于对边比斜边;

最新1.4.2正弦函数、余弦函数的性质导学案

学习-----好资料 § 142正弦函数、余弦函数的性质导学案 般结论:函数y = As in (,x亠门)及函数y=Acos(?x亠仃),x?二R的 周期T = 2: 【学习目标】 1、掌握正弦函数、余弦函数的周期性,周期,最小正周期。 2、掌握正弦函数,余弦函数的奇偶性、单调性。 3、会比较三角函数值的大小,会求三角函数的单调区间。 【学习过程】 一、自主学习(一)知识链接:作出函数y=sinx与y=cosx , x€ R的图象,图象的分布有什么特点?(二)自主探究:(预习教材P34-P40) 1、 ___________________________________________________ 正弦函数,余弦函数都是周期函数,周期是,最小正周期是 _________________________________________ 。 2、由诱导公式 _______________________________ 可知正弦函数是奇函数;由诱导公式 __________________________ 可知,余弦函数是偶函数。 3、正弦函数图象关于直线 _______________ 轴对称,关于点 _________________ 中心对称;余弦函数图象关于直线 ________________ 轴对称,关于点 _________________ 中心对称。 4、正弦函数在每一个闭区间 __________________ 上都是增函数,其值从一1增大到1 ;在每一个闭区 间 _________________ 上都是减函数,其值从1减少到一1。 5、余弦函数在每一个闭区间 __________________ 上都是增函数,其值从一1增大到1 ;在每一个闭区 间 ______________ 上都是减函数,其值从1减少到一1。 6、正弦函数当且仅当x = ____________ 时,取得最大值1,当且仅当x= ___________________ 时取得最小值—1。 7、余弦函数当且仅当x = ________________ 时取得最大值1;当且仅当x= _________________ 时取得最小值—1。 二、合作探究 1 2兀 1 兀 1、求下列函数的周期:(1)y sin(3x ), (2)y = 2cos( x ) 2 5 2 6 2、求出下列函数的最大值、最小值,并写出取最大值、最小值时自变量x的集合。 (1) y=1 sin 2x (2) y = -3cos 2x 3、禾U用三角函数的单调性,比较下列各组中两个三角函数值的大 小: ① sin( 54' : 7 )与sin( 63 二 8 ②cos举与cos理 8 9 1 7T 4、求函数y = 2sin(― x ')的单调区间。 2 3 更多精品文档

正弦余弦函数的定义教学反思

《任意角正弦、余弦函数的定义》公开课后的教学反思2017年4月12日,在数学组备课组长、教研组长及所有组内同事的共同指导与帮助下,我有幸在高一1605班上了一节《任意角正弦、余弦函数的定义》的公开课。本节内容是北师大版高一数学必修四第一章第三节的内容,该节内容是对推广后任意角的正弦、余弦函数的重新定义,理论性较强,虽然学生在初中有学习过相应的函数知识,但由于任意角的推广,学生对于任意角的正弦、余弦函数就不那么容易理解了。整节课讲授之后,我才发现学生的学习情况并没有自己想象中的那么理想与完美,因此,对于这节课,我做出以下几点教学反思: 1.对“数学概念”的反思——学会数学的思考 对一名高中数学教师而言教学反思首先是对数学概念的反思。 对于学生来说,学习数学的一个重要目的是要学会数学的思想,用数学的眼光去看世界去了解世界:用数学的精神来学习。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,去挖掘、发现新的问题,解决新的问题。因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。 2.对“备学生”的反思---学会课前多“备学生” 教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来,这样我们才能更充分了解学生的思想,掌握他们的学习情况。因此,课前充分去“备学生”—--备学生的思想,备学生的差异,备学生的基础都是很有必要的。 3.对“备教材”的反思----学会课前多听课 由于我是今年开学初才接任的高中数学科教学任务,教学时间短,经验不是很足,因此,在备教材的时候,感觉自己也有点力不从心。整节课的内容,虽然我花了很长的时间去备课,但到了真正的课堂,在和学生一起探究正弦、余弦函数定义的环节时,我发现自己仍存在一定的问题,比如:如何引导学生通过构造

15.3(1)正弦型函数教案

邳州市中等专业学校理论课程教师教案本(2015—2016学年第1学期) 班级名称 课程名称数学 授课教师 教学部

课题15.3 正弦型函数 一、正弦型函数的概念 教材分析 《正弦型函数的概念》是学生在学习了三角函数线及诱导公式后,为学习函数图像的周期、相位变换提供了依据;在正弦函数的图像和性质的基础上,进一步地加深对三角函数的认识,为刻画物理学中简谐振动和电工学中交流电的电压、电流变化提供数学模型,它是三角函数知识从理论到生活实践中的连接桥梁。 学情分析 1、知识方面:学生已经掌握了三角函数线及诱导公式,以及正弦函数的图像和性质。对具体形象的实例比较感兴趣,具有一定的数学基础及分析解决问题能力。 2、能力方面:职业学校学生普遍学习缺乏自觉,学习主动性不强,但是爱动手,对于通过自己的探索得出的结论格外感兴趣。 教学目标一、知识与技能 1、认识正弦型函数图像及其表达式的特征, 2、理解正弦型函数的概念, 3、会根据正弦型函数的图像或表达式求参数A,ω,?的值。 二、过程与方法 1、通过学生动手实践,分组讨论,培养学生分析问题解决问题的能力; 2、通过多媒体辅助教学,使学生学会将复杂问题进行分解的能力 三、情感、态度与价值观 1、通过主动探索,感受探索的乐趣和成功的体验,培养学生合作交流的意识,体会数学的理性和严谨; 2、让学生感受“从特殊到一般、从具体到抽象、数形结合”的数

学思想方法。 重难点1、教学重点: 正弦型函数的概念,根据已知条件求参数A,ω,?和最大最小值。 2、教学难点: 实际问题中的正弦型函数的理解。 教法与学法一、教法分析 教法上主要体现启发、探究、分组讨论等形式,同时利用学案导学优化课堂教学。 1、充分利用学生的好奇心与创造性,加强师生互动,生生互动,提高学生课堂参与程度。 2、通过采用设疑的形式启发、引导学生参与 二、学法分析 在学生已有的认知基础上,通过教师的引领,学生在已有认知结构的基础上自主探究,合作交流。 教学资源1、江苏省职业学校文化课教材《数学》第四册 2、教师编写的学案 3、多媒体课件(PPT),几何画板 教学 准备 1、制作多媒体课件,编写本节课学案,从而优化课堂教学; 2、布置学生复习正弦函数的图像和性质。

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》 江西省铜鼓县铜鼓中学漆赣湘(336200) 教材:北师大版高一数学必修四第一章第四节第一小节 一、教学目标 1.知识与技能目标 (1)了解任意角的正弦函数、余弦函数定义产生的背景和应用; (2)掌握任意角的正弦函数与余弦函数的定义,正确理解三角函数是以实数为自变量的函数,并能应用. 2.过程与方法目标 (1)通过参与知识的“发现”与“形成”的过程,培养合理猜测的能力,体会函数模型思想,数形结合思想. (2)培养观察、分析、探索、归纳、类比及解决问题的能力.3.情感、态度、价值观目标 在学习中感悟数学概念的合理性、严谨性、科学性.感悟数学的本质,培养追求真理的精神.通过本节的学习,使同学们对正弦函数与余弦函数有了一个全新的认识,通过对定义的应用,提高学生分析、解决问题的能力. 二、教学重难点 教学重点: 任意角的正弦函数与余弦函数的定义(包括定义域和函数值在各象限的符号)及其应用. 难点: 任意角的正弦函数与余弦函数的定义及其构建过程的理解. 三、教学方法与教学手段 问题教学法、合作学习法结合多媒体课件 四、教学过程

(一)问题引入【投影展示】 问题1:初中我们学过锐角α的正弦函数与余弦函数,同学们还记得它是怎样表示的吗? 借助右图直角三角形,复习回顾. sin s r α α==的对边 斜边 , cos h r α== α的邻边 斜边 . 问题2:锐角三角函数就是以锐角为自变量,以比值为函数值的 函数,那么该比值会随着三角形的大小而改变吗?为什么?(根据相似三角形的知识可知该比值不会发生改变) (二)新知探究 我们所学角的范围已经扩充到任意角,如果角α为任意角,显然初中正弦函数与余弦函数的定义已经不能满足我们的需求,我们必须重新定义正弦函数、余弦函数.今天,我们将在直角坐标系中,对此作深入探讨. 【投影展示】问题3:如图,在直角坐标系中,我们作出一个以原点为圆心,以单位长度为半径的圆,该圆称为单位圆.设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,终边与单位圆交于点(,) P u v,你能求出sinα与cosα的值吗?该值与点P的坐标有什么关系呢? 由学生自己探究,得出结论,sin v v r α==, cos u u r α==. 归纳总结:一般地,在直角坐标系中,给定 α r x y (,) P u v O α M

相关文档
最新文档