应用一次函数图像解决实际问题

应用一次函数图像解决实际问题
应用一次函数图像解决实际问题

《应用一次函数图像解决实际问题》说课稿

尊敬的各位评委,老师:

大家好!

今天,我说课的内容是人教版数学九年级下册《函数及其图像》专题复习之一-------《应用一次函数图像解决实际问题》,下面我将从教材分析,教法学法,教学过程,设计思路、教学反思五个方面来展开我对本节课的理解。

一、教材分析

1、地位和作用

一次函数是中学数学中一种最简单、最基本的函数,是中考考点之一,而利用一次函数图像解决实际问题,已成为中考的热点。它命题背景广泛,紧贴实际生活,构思新颖,题型多样,突出对学生识别图象,处理信息、获取知识以及解决问题的水平的考察,增强了学生应用数学的意识和水平。

很多学生对基础题有一定的理解和解决方法,但对中档题和综合题缺乏清晰的解题思路,往往导致对灵活水准高,综合水平强的试题得分不够理想。通过本节课的学习,有助于协助学生解题思维的形成,掌握系统的解题方法。应用一次函数图像解决实际问题所涉及到的数学建模,待定系数法,分类讨论,数形结合,化归等思想方法也是解决表格式、文字类的实际问题常用的方法,对后续其它函数图像的应用学习以及高中函数学习都将积累宝贵的学习经验和经历,同时《义务教育数学课程标准》也要求“能结合图像对简单实际问题中的函数关系实行分析”,所以本节课的重要性不言而喻。

2、教学目标

(1)经历实际问题的解决过程,掌握系统的解题思路和方法。

(2)通过知识的归纳学习过程,理解和掌握分类讨论,数形结合等思想方法。

(3)进一步体会数学知识与实际生活的的密切联系,丰富数学情感,建立自信心。

3、教学重点:会分析和应用一次函数图像解决实际问题

教学难点:数形结合思想方法的应用;

用一次函数与方程、不等式的联系解决实际问题

二、教法学法

本节课采用学案式,分类归纳,引导探究的教学方法,指导学生以独立思考、观察发现、合作交流,类比归纳的学习方法,得出清晰的解题思路和方法。

三、教学过程

首先通过错题分析,引入新课,其次将所学知识分为由“数”到“形”、由“形”到“数”、“数形”结合三种类型实行归纳,形成体系,然后总结反思,感悟方法提升水平,最后布置作业,达到巩固提升的目的。

1、错题分析,引入课题

通过选择具有代表性的错题实行分析,能够发现:

①审题缺乏细心,不能抓住关键字眼去区分图像的前后差异。

②图像和实际问题的结合水平不够,思维缺乏条理性,逆向性。

③不会用求交点坐标的方法解决实际问题。

④不能用好交点坐标,把图像信息转化为行程问题解决。

⑤条件较多的情况下,容易丢三落四,不能较好地将条件实行组合来解决问题。

综合以上问题,有必要对此实行系统复习。

根据题目思维方式的特点,分为三类实行归纳和学习。

2、分类归纳,形成体系

第一类【由“数”到“形”】以最常见、最基础的三道选择题为代表,要求学生会熟练使用正比例函数,一次函数,以及分段函数的图像来直观反映实际问题中两个变量之间的关系。学生先独立思考,之后口答校对。紧跟着对第1题实行基本变式:1、条件不变,问题改变 2、条件、问题同时改变。

[设计意图] 变式1提醒学生注意认真审题,看清问题,避免思维惯性带来的不必要的错误。变式2引导学生实行比较和归纳:为准确稳妥地得出函数图像,首先找出函数关系式,得出大致图像,然后结合实际情况和意义,确定自变量和函数值的取值范围,最后得出对应的图像。并强调这是解决此类问题最常用的基本思维方法。

第3题也对条件实行改变,若V1>V2呢?[设计意图] 弄清事情经过,注意比较图像的前后差异,如直线倾斜角的大小所表示的实际意义。

第二类【由“形”到“数”】先独立思考4、5两题,然后小组交流,教师负责巡视,倾听,即时评价,目的是在动静结合中调动学生的积极性,活跃课堂氛围。学生只对题目实行方法上的思考和分析,会准确表达意思即可。重心放在注重学生对图像的读取,理解及语言表达。

[设计意图] (1)、在理解横纵坐标所表示的实际意义下,要注意关键点(如与坐标轴的交点,线段的端点,折线的交点)所表示的具体意义,既对理解题意有一定的作用,而且在确定函数解析式时也是优先考虑的对象。

(2)、第5题中射线所表示的实际意义是注重的重点,能否准确地把图像信息转化为数学语言对解决问题起着十分重要的作用,它所涉及的识图方法和理解规律,也与生活中的话费,水费,电费,医保报销,工资纳税等相关联,起着融会贯通的作用。

(3)、会熟练使用待定系数法求解析式。第5题可进一步引导学生通过对图像的理解,用列代数式的方法来求解析式,既拓宽思路,又对刚才提到的阶梯式的缴费问题起到触类旁通的作用。

(4)、启发学生善于建立函数模型来解决实际问题。

第6题(1)(2)问依然由学生独立思考组内交流答案即可。

[设计意图] 即时检查和反馈识图用图方法的落实,同时为即将学习的第三种类型的难点突破做好铺垫。

随后引导学生对由“形”到“数”的问题实行总结:注意观察图像的形状特征,充分挖掘其中的已知条件确定函数解析式,再利用函数的图像性质解题。

第三类【“数形”结合】它是对前面两种类型的综合应用,设计的问题对学生的水平提出了更高的要求。增大图像的复杂水准,在于考查学生能否抓住图像的位置,数值和结构特征来对获取的信息实行分解,组合和转化。第7题是对第6题的深入学习,有了之前的分解练习,学生理解第(1)问就比较轻松,容易发现解题方法。把两个函数图像分开实行学习,主要目的在于减弱图像的复杂对学生造成的视觉干扰和思维障碍,以及产生的思维惰性,让学生意识到今后类似问题也可采用局部和整体分析相结合,有利于降低分析难度。然后即时

对学生的解题方法实行强调:通过计算交点坐标来解决求值问题是最常用的一种简单方法,也与之前的错题分析前后呼应。

在学生的自信心持续增强的情况下,进入第(2)问的学习。因为该问题对应的图像没有在坐标系中反映出来,对学生思维的敏捷性和数形结合思想方法的应用是一个考验。

放映视频1

通过合作交流,师生互动,学生展示的形式营造一种学生敢想,敢问,敢说的课堂气氛,让学生时刻不忘借助图像实行分析,再次深刻体会到数形结合带来的便利。

放映视频2

通过引导启发,一题多解,充分挖掘学生的思维深度,拓展解题思路,在类比归纳中优化解题方法。

第8题让学生注意比较两图像的高低;明确两图像的交点和图像上下位置的含义,进一步考察学生识图用图的水平。出现两个交点,[设计意图]在第(2)问选择方案时一定要注意全面分类讨论。其次通过用图像来解决方案比较问题,是让学生会将这类问题熟练地转化为方程、不等式来解决,因为有些题目本身就没有图像,更没有提供函数解析式,那怎么办?比如教材上的选择上网方式,选择通讯资费方式,到哪家商场购物,选哪种灯泡节省电费等,通过这些问题的复习,让学生明确:在选择方案时,要从数学的角度去分析题目中变量之间的关系,从而建立合适的函数关系式。除了借助图像直观分析外,也可直接转化为方程不等式知识来解决,不但能形象思维,也能理性思维。最后一问意在考察学生的实际生活经验,会挖掘其中的数量关系和不等关系,让学生再次理解到数学知识来源于生活又服务于生活,树立学习数学,应用数学,发展数学的观点。

最后对“数形”结合问题实行归纳:善于使用“由数想形,以形助数”的解题策略,充分挖掘题目中的已知条件,从而创造性地解决问题。

3、总结反思,感悟提升

在课堂临近尾声时,鼓励学生从知识,方法,情感等方面实行自我评价,充分体现了学生的主体地位。

放映视频3

4、布置作业,巩固提升

本节课的作业由必做题和选作题组成,体现分层教学,让不同的学生得到不同的发展。

四、教学设计思路

本节课以《课程标准》为指导,把握中考命题的特点及趋势,充分利用教材和《复习指南》,把分散的知识点按出现的先后顺序,由浅入深地实行梳理归纳,使之成为有规律的知识体系,把体现的思想方法和水平要求的学习内容总结好,以基础题,中档题为主,适当渗透综合练习,通过一题多问,一题多变,一题多用,一题多解,来达到覆盖知识点和提升水平的目的,使用错误由学生判断,疑惑让学生解决,规律让学生寻找的教学活动,充分调动学生的积极性和主动性,真正体现以学生为主体的原则,使不同层次的学生有一定的理解,理解和提升,为后面的连续复习和学习奠定坚实基础。

五、教学反思

本节课始终贯彻以学生为主体的原则,突出数形结合的思想方法,渗透应用数学的意识。不足之处是展开课堂活动时要多给学生时间和空间,引导上要更具有目的性和层次性,多让学生有表现自己的机会。

以上是我对本节课的初浅理解,不当之处,敬请指正!谢谢

动点问题与函数图象

动点问题与函数图象 1、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A 出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y 关于x的函数图象大致为() A B C D 【知识点】动点问题的函数图象 【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决. 【解析】∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1. ∴当点M位于点A处时,x=0,y=1. ①当动点M从A点出发到AM=1的过程中,y随x的增大而减小,故排除D; ②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等.故排除A、C. 故选B. 2、如右图所示,已知等腰梯形ABCD,AD∥BC,若动直 线l垂直于BC,且向右平移,设扫过的阴影部分的面 积为S,BP为x,则S关于x的函数图象大致是 【知识点】动点问题的函数图象 【分析】分三段考虑,①当直线 l经过BA段时,②直线l经过AD段时,③直线l经过DC 段时,分别观察出面积变化的情况,然后结合选项即可得出答案. 【解析】①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快; ②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变; ③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小; 结合选项可得,A选项的图象符合. 故选A. A. … B.

3、如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而 成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图像大致是 【解析】注入水的体积增加的速度随着高度x的变化情况是:由慢到快→匀速增长→由快到慢,由慢到快的图象是越来越陡,由快到慢的图象是越来越平缓,所以选A。 4、如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为() A B C D 【知识点】动点问题的函数图象 【解析】由图中可知:在开始的时候,阴影部分的面积最大,可以排除B,C. 随着圆的穿行开始,阴影部分的面积开始减小,当圆完全进入正方形时,阴影部分的面积开始不再变化.应排除D. 故选A. 5、.如图9,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF = FB = 5,DE = 12,动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t 秒,y = S△EPF,则y与t的函数图象大致是

高中数学双曲线函数的图像与性质及应用

一个十分重要的函数的图象与性质应用 新课标高一数学在“基本不等式 ab b a ≥+2”一节课中已经隐含了函数x x y 1 +=的图象、性质与重要的应用,是高考要求范围内的一个重要的基础知识.那么在高三第一轮复习 课中,对于重点中学或基础比较好一点学校的同学而言,我们务必要系统介绍学习 x b ax y + =(ab ≠0)的图象、性质与应用. 2.1 定理:函数x b ax y +=(ab ≠0)表示的图象是以y=ax 和x=0(y 轴) 的直线为渐近线的双曲线. 首先,我们根据渐近线的意义可以理解:ax 的值与x b 的值比较,当x 很大很大的时候, x b 的值几乎可以忽略不计,起决定作用的是ax 的值;当x 的值很小很小,几乎为0的时候,ax 的值几乎可以忽略不计,起决定作用的是x b 的值.从而,函数x b ax y +=(ab ≠0)表示 的图象是以y=ax 和x=0(y 轴)的直线为渐近线的曲线.另外我们可以发现这个函数是奇 函数,它的图象应该关于原点成中心对称. 由于函数形式比较抽象,系数都是字母,因此要证明曲线是双曲线是很麻烦的,我们通过一个例题来说明这一结论. 例1.若函数x x y 3 233+= 是双曲线,求实半轴a ,虚半轴b ,半焦距c ,渐近线及其焦点,并验证双曲 线的定义. 分析:画图,曲线如右所示;由此可知它的渐近线应该是x y 3 3 = 和x=0两条直线;由此,两条渐近线的夹角的平分线y=3x 就是实轴了,得出顶点为A (3,3),A 1(-3,-3); ∴ a=OA =32, 由渐近线与实轴的夹角是30o,则有a b =tan30o, 得b=2 , c=22b a +=4, ∴ F 1(2,32)F 2(-2,-32).为了验证函数的图象是双曲线,在曲线上任意取一点P (x, x x 3 233+)满足3421=-PF PF 即可;

一次函数解析式专题练习(全面)

1 / 3 一次函数解析式的确定练习题 第1题?如图所示,直线I 是一次函数y 二kx ? b 的图象,看图填空: 则y 与x 之间的函数关系式是 第5题.已知直线y = _5x ? a 与直y = 5x ? b 的交点坐标为 (m,8), 贝H a b 的值是 _________________ . 1 第6题.若直线y x ? n 与直线y = mx -1相交于(1, - 2),则( ) 2 第7题.已知下表是y 与x 的一次函数,请写出函数表达式, x -2 -1 0 2 3 y 4 第8题.如图所示,直线I 是一次函数y 二kx ?b 的图象. (1 )图象经过(0, _ )和( _ -)点; (2)贝廿 k 二 ___ - b 二 _________ 第9题.某一次函数的图象经过点 (-1,2)-且函数y 的值随自变量2 出一个符合上述条件的函数关系式是 _____________________ 1 第10题.已知y-m 与3x+6成正比例关系(m 为常数当帚 -1 -2 第11题.已知一次函数y 二kx ? b 的图象经过点 A (2,5)和点E ,点E 是一次函数y = 2x -1 的图象与y 轴的交点,则这个一次函数的表达式是 ___________________ . 1 第12题.直线y =kx ? b 过点(-2,5)且与y 轴交于点P ,直线y x 3与y 轴交于Q - (1) b = k 二 ; (2 )当 x = 6 时, y = ; (3 )当 y =6时, X 二 . 第 2题. 一次函数 y =bx 2的图象经过点A (_1,1) ,I 则 b Y 第3题.正比例函数的图象经过点 A (-2,-3),求正比例函数的关系式. 第4题.y ?3与x 1成正比例,且当x = 1时,y =1 -T O k y / I /的增大而减小,请你写 I | 4 时,a yp4,当 x = 3 时, y =7,那么y 与x 之间的函数关系式是 1 2 3 2

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

2015高考数学(理)一轮题组训练:2-7函数的图象及其应用

第7讲 函数的图象及其应用 基础巩固题组 (建议用时:40分钟) 一、填空题 1.把函数f (x )=(x -2)2+2的图象向左平移1个单位长度,再向上平移1个单位长度,所得图象对应的函数解析式是________. 解析 把函数f (x )=(x -2)2+2的图象向左平移1个单位长度,得y =[(x +1)-2]2+2=(x -1)2+2,再向上平移1个单位长度,得y =(x -1)2+2+1=(x -1)2+3. 答案 y =(x -1)2+3 2.函数f (x )=x +1 x 的图象的对称中心为________. 解析 f (x )=x +1x =1+1 x ,故f (x )的对称中心为(0,1). 答案 (0,1) 3.已知f (x )=? ???? 13x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ), 则g (x )的表达式为________. 解析 在函数g (x )的图象上任取一点(x ,y ),这一点关于x =1的对称点为(x 0,y 0),则??? x 0=2-x , y 0=y . ∴y =? ???? 132-x =3x -2. 答案 g (x )=3x -2 4.函数y =(x -1)3+1的图象的对称中心是________. 解析 y =x 3的图象的对称中心是(0,0),将y =x 3的图象向上平移1个单位,再向右平移1个单位,即得y =(x -1)3+1的图象,所以对称中心为(1,1). 答案 (1,1)

5. 设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________. 解析 利用函数f (x )的图象关于原点对称.∴f (x )<0的解集为(-2,0)∪(2,5). 答案 (-2,0)∪(2,5) 6.若函数f (x )在区间[-2,3]上是增函数,则函数f (x +5)的单调递增区间是________. 解析 ∵f (x +5)的图象是f (x )的图象向左平移5个单位得到的. ∴f (x +5)的递增区间就是[-2,3]向左平移5个单位得到的区间[-7,-2] 答案 [-7,-2] 7.若方程|ax |=x +a (a >0)有两个解,则a 的取值范围是________. 解析 画出y =|ax |与y =x +a 的图象,如图.只需a >1. 答案 (1,+∞) 8.(2013·泰州模拟)已知函数f (x )=??? log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有 两个实根,则实数a 的范围是________. 解析 当x ≤0时,0<2x ≤1,所以由图象可知要使方程f (x )-a =0有两个实

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

利用两个一次函数的图像解决问题

第四章一次函数 利用两个一次函数的图像解决问题 一、学生起点分析 在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用. 二、教学任务分析 本节课是北师大版义务教育教科书八年级(上)第四章《一次函数》第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础. 教学目标 1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题; 2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维; 3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识. 4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣. 教学重点 一次函数图象的应用 教学难点 从函数图象中正确读取信息 三、教法学法 1.教学方法:“问题情境—建立模型—应用与拓展” 2.课前准备: 教具:教材,课件,电脑 学具:教材,练习本,铅笔,直尺 四、教学过程: 本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置. 第一环节:情境引入

内容:一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用, 按市场价售出一些后,又降价出售,售出的土豆千克 数与他手中持有的钱数(含备用零钱)的关系,如图所 示,结合图象回答下列问题. (1)农民自带的零钱是多少? (2)试求降价前 y 与 x 之间的关系 (3)由表达式你能求出降价前每千克的土豆价格是多 少? (4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆? 活动目的:通过与上一课时相似的问题,回顾旧知,导入新知学习。 活动效果:由于问题与上一课时问题相近,学生很快明确并解决了问题。 第二环节:问题解决 内容1:例1 小聪和小慧去某风景区游览,约好在“飞瀑”见 面,上午7:00小聪乘电动汽车从“古刹”出发, 沿景区公路去“飞瀑”,车速为 36km /h ,小慧 也于上午7:00从“塔林”出发,骑电动自行车 沿景区公路去“飞瀑”,车速为26km /h . (1)当小聪追上小慧时,他们是否已经过了“草 甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑” 还有多少千米? 分析: 当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法? 解:设经过t 时,小聪与小慧离“古刹”的路程分别为1S 、2S , 由题意得:t S 361=,10262+=t S 将这两个函数解析式画在同一个直角坐标系上,观察图象,得 ⑴两条直线t S 361= ,10262+=t S 的交点坐标为(1,36) 这说明当小聪追上小慧时,1236km S S ==,即离“古刹”36km ,已超过35km ,也就是说,他们已经过了“草甸” ⑵当小聪到达“飞瀑”时,即145km S =,此时242.5km S = . 所以小慧离“飞瀑”还有45-42.5=2.5(km )

一次函数解决问题专项练习

一次函数解决问题专项练习 1.甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x (分钟)之间的函数关系如图所示,请你根据图象,回答下列问题: (1)(填“甲”或“乙”)先到达终点;甲的速度是米/分钟; (2)求:甲与乙相遇时,他们离A地多少米? 2.为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6min发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前走,小亮取回借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知骑车的速度是步行速度的2倍,如图是小亮和姐姐距离家的路程y(m)与出发的时间x(min)的函数图象,根据图象解答下列问题: (1)小亮在家停留了多长时间? (2)求小亮骑车从家出发去图书馆时距家的路程y(m)与出发时间x(min)之间的函数解析式.

3.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是甲乙两车离A地的距离y(千米)与行驶时间x(小时)之间的函数图象. (1)求甲车离A地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围; (2)若它们出发第5小时,离各自出发地的距离相等,求乙车离A地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围; (3)在(2)的条件下,求它们在行驶的过程中相遇的时间. 4.有A、B两个港口,水由A流向B,水流的速度是4千米/小时,甲、乙两船同时由A顺流驶向B,各自不停地在A、B之间往返航行,甲在静水中的速度是28千米/小时,乙在静水中的速度是20千米/小时. 设甲行驶的时间为t小时,甲船距B港口的距离为S1千米,乙船距B港口的距离为S2千米,如图为S1(千米)和t(小时)函数关系的部分图象. (1)A、B两港口距离是千米. (2)在图中画出乙船从出发到第一次返回A港口这段时间内,S2(千米)和t(小时)的函数关系的图象. (3)求甲、乙两船第二次(不算开始时甲、乙在A处的那一次)相遇点M位于A、B港口的什么位置?

函数图像应用题专题复习

函数图像应用题专题复习 一.一次函数应用题 1.“利民平价超市”以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销 售量y (件)与售价x(元/件)之间的函数关系如右图:(20≤x ≤60): (1)求每天销售量y (件)与售价x(元/件)之间的函数表达式; (2)若该商品每天的利润为w (元),试确定w (元)与售价x (元/件)的函数表达式,并求售价x 为多少时,每天的利润 w 最大?最大利润是多少? 2.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发, 设慢车行驶的时间为(h)x ,两车之间的距离....... 为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取:(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解: (3)求慢车和快车的速度; (4)求线段BC 所表示的y 与x 问题解决: (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车 相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 解:(1)900;(2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. (3)由图象可知,慢车12h 行驶的路程为900km ,所以慢车的速度为90075(km /h)12 ; 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶 y

的速度之和为 900225(km /h)4 =,所以快车的速度为150km/h . (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)?=,所以点C 的坐标为(6450),. 设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得 044506. k b k b =+??=+?,解得225900.k b =??=-?, ∴线段BC 所表示的y 与x 之间的函数关系式为225900y x =-.(46x ≤≤). (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =. 此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出 发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . 3. (2015年浙江)高铁的开通,给衢州市民出行带来了极大的方便. 五一期间,乐乐和颖 颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘高铁从衢州出 发,先到杭州火车东站,然后乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达 游乐园.他们离开衢州的距离(千米)与乘车时间(小时)的关系如下图所示. 请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米? (2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米? (3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时? 解:(1)∵, ∴高铁的平均速度是每小时240千米. (2)设乐乐乘私家车路线的解析式为, ∵当时,;当时,, ∴,解得 .∴乐乐乘私家车路线的解析式为.∴当时,. 设颖颖乘高铁路线的解析式为,∴,解得. y t 24024021 =-y kt b =+1t =0y =2t =240y =02240k b k b +=??+=?240240k b =??=-? 240240y t =- 1.5t =120y =1y k t =1120 1.5k =180k =

一次函数与几何图形综合专题

一次函数与几何图形综合专题思想方法小结: (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结: (1)常数k,b对直线y=kx+b(k≠0)位置的影响. ①当b>0时,直线与y轴的正半轴相交; 当b=0时,直线经过原点; 当b﹤0时,直线与y轴的负半轴相交. b>0时,直线与x轴正半轴相交; ②当k,b异号时,即- k b=0时,直线经过原点; 当b=0时,即- k b﹤0时,直线与x轴负半轴相交. 当k,b同号时,即- k ③当k>O,b>O时,图象经过第一、二、三象限; 当k>0,b=0时,图象经过第一、三象限; 当b>O,b<O时,图象经过第一、三、四象限; 当k﹤O,b>0时,图象经过第一、二、四象限; 当k﹤O,b=0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0) 当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 121b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③?? ?≠=2 121,b b k k ?y 1与y 2平行; ④???==2 121,b b k k ?y 1与y 2重合. 例题精讲: 1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC (2) 在 OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并证明你的结论。 (3) 在(2)的前提下,作 PM ⊥AC 于M,BP 交AC 于N,下面两个结论:① x

一次函数图象题(行程问题)提高篇

一次函数图象题(行程问题)提高篇 11.(2012武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( ) A . ①②③ B . 仅有①② C . 仅有①③ D . 仅有②③ 考点:一次函数的应用。 解答:解:甲的速度为:8÷2=4米/秒; 乙的速度为:500÷100=5米/秒; b=5×100﹣4×(100+2)=92米; 5a ﹣4×(a+2)=0, 解得a=8, ! c=100+92÷4=123, ∴正确的有①②③. 1、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图10中的折线分别表示S 1、S 2与t 之间的函数关系. (1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少 (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围. 《 2· 4· — 8· S(km) 2 0 t(h) A B

2、一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设 客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图12所示: ~ (1)根据图象,直接写出 ....y1,y2关于x的函数关系式。 (2)分别求出当x=3,x=5,x=8时,两车之间的距离。 (3)若设两车间的距离为S(km),请写出S关于x的函数关系式。 (4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油。求A加油站到甲地的距离。 — 3、在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与.B. 港的距离 ....分别为1y、2y(km),1y、2y与x的函数关系如图所示. (1)填空:A、C两港口间的距离为km, a; (2)求图中点P的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围. · - O y/km > 30 a P (第3题) x/h

八年级数学上册利用一次函数解决实际问题教案

教学设计 一、内容和内容解析 1.内容 利用一次函数解决实际问题. 2.内容解析 一次函数是最基本的初等函数之一,是学习后续各类函数的基础.一次函数的核心内容是一次函数的概念、图象和性质以及应用.一次函数的图象和性质的核心,是图象“特征”、函数“特征”以及它们之间相互转化关系,这也是一次函数的本质属性所在.一次函数图象和性质,本身就是“数”与“形”的统一体.通过对实际问题图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法. 本节课内容属于《义务教育数学课程标准(2011年版)》中的“数与代数”领域,是在已经学习了一次函数的图象和性质的基础上,由一个贴近学生生活的中国渔政执法视频开始,利用问题串的形式,用一次函数的相关知识来解决实际问题.在具体的探究过程中,先由分析图象开始,并由分析所得的信息解决相关的实际问题,再利用几何画板将图象进行变化,由此分析其操作的实际意义并衍生处两个新的问题,最终利用一次函数的知识解决这两个问题.在解决实际问题的过程中,体会运用一次函数解决实际问题的作用,初步体验建立函数模型的过程和方法. 基于以上分析,确定本节课的教学重点是:分析实际问题的图象,利用一次函数解决具体问题. 二、目标和目标解析 1.目标 (1)掌握并运用一次函数的图象和性质,体会数形结合思想和建立函数模型研究数学问题的基本方法. (2)通过对实际问题图象的分析,进一步加深对一次函数性质的理解. (3)能够从实际问题中抽象出一次函数关系,并运用一次函数及其性质解决实际问题,发展学生的应用意识. 2.目标解析 (1)从复习一次函数的图象和性质开始,不断渗透图象中k、b、交点坐标的实际意义,体会并利用数学结合的思想来解决问题。 (2)对于问题情境中给出的三个问题,以及衍生的两个变式,无一不是通过对函数图象的分析,结合一次函数的性质来解决。在这样的过程中,巩固对性质的理解。

高中数学 含绝对值的函数图象的画法及其应用素材

含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,; ②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 图1 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x -=对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数 )(x f y =的图象就是函数|)(|x f y =的图象; ③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2 --=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4

北师大版八年级上册一次函数之图像测试题(含答案与详细解析)

八上数学——一次函数综合提升测试题 一.填空题(共15小题) 1.(2011?呼和浩特)已知关于x的一次函数y=mx+n的图象如图所示,则可化简为__ __ . 2.(2004?包头)已知一次函数y=ax+b(a≠O)的图象如图所示,则|a+b|﹣(a﹣b)= ___ . 3.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概 率是. 4.一次函数y=k(x﹣k)(k>0)的图象不经过第象限. 5.已知一次函数y=kx+b,kb<0,则这样的一次函数的图象必经过的公共象限有个,即第 象限. 6.若一次函数y=ax+1﹣a中,它的图象经过一、二、三象限,则|a﹣1|+= . 7.已知一次函数y=(m﹣2)x+3﹣m的图象经过第一、二、四象限,化简+的结果是. 8.(2013?镇江)已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于. 9.在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与x轴交于点B,且S△AOB=4,则k 的值是. 10.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点 A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2 013的坐标为. 11.(2013?成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为.12.(2004?郑州)点M(﹣2,k)在直线y=2x+1上,点M到x轴的距离d= . 13.将直角坐标系中一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的 一次函数图象与x、y轴分别交于点A、B,则△ABO为此一次函数的坐标三角形,一次函数的坐 标三角形的周长是 14.(2013?浦东新区模拟)已知点P在直线y=﹣2x﹣3上,且点P到x轴的距离是4,那么点P的坐标是 . 15.(2013?齐齐哈尔)函数y=﹣(x﹣2)0中,自变量x的取值范围是_________ . 二.解答题(共15小题) 16.(2012?花都区一模)直线l:y=mx+n(m、n是常数)的图象如图所示,化简: . 17.若函数y=(a+3b)x+(2﹣a)是正比例函数且图象经过第二、四象限,试化简: . 18.已知一次函数y=(k﹣2)x﹣3k 2 +12. (1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小. 19.如图,直线y=x+b(b>0)与x轴负半轴、y轴正半轴分别交于A、B两点,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=10,BN=3, (1)求A、B两点的坐标;(用b表示)(2)图中有全等的三角形吗?若有,请找出并说明理由.(3)求MN的长. (第1题图) (第2题图) (第10题图) (第13题图)

利用一次函数图象解决实际问题专项训练(含答案)

一次函数专项训练 专训1.一次函数的两种常见应用 名师点金: 一次函数的两种常见应用主要体现在解决实际问题和几何问题.能够从函数图象中得到需要的信息,并求出函数解析式从而解决实际问题和几何问题,是一次函数应用价值的体现,这种题型常与一些热点问题结合,考查学生综合分析问题、解决问题的能力.利用函数图象解决实际问题 题型1行程问题 (第1题) 1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论 ①A,B两城相距300 km; ②乙车比甲车晚出发1 h,却早到1 h; ③乙车出发后2.5 h追上甲车; ④当甲、乙两车相距50 km时,t=5 4 或 15 4 . 其中正确的结论有( ) A.1个B.2个C.3个D.4个

2.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题: (1)线段CD表示轿车在途中停留了________h; (2)求线段DE对应的函数解析式; (3)求轿车从甲地出发后经过多长时间追上货车. (第2题) 题型2工程问题 3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图象如图所示. (1)求甲组加工零件的数量y与时间x之间的函数解析式. (2)求乙组加工零件总量a的值. (3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?

专题九函数图象及其综合应用

专题九 函数图象及综合应用 函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。 知识网络: 一、新课引入 在初中我们是采用什么方法来画出函数的图象?描点法作图。 描点法作图的步骤有哪些? 描点法作图的基本步骤是:列表、描点、连线。 基本函数的图象要熟记:一次函数、二次函数、反比例函数、幂函数、指数函数、对数函数、幂函数。 二、新课讲解 1、函数图象的基本作法有两种: ① 描点法②图象变换法 2、画函数图象时有时也可利用函数的性质如单调性、奇偶性、对称性、周期性等,以及图象上的特殊点、线(如对称轴、渐近线等)。 3、图象的变换是指一个函数的图象经过适当的变换,得到另一个与之有关的函数图 象。 . 在高考中要求学生掌握的三种变换是:平移变换、对称变换、伸缩变换、翻折变换。 4、常用函数图象变换的规律。 (1)平移变换 ①水平平移:y =f(x±a)(a>0)的图象,可由y =f(x)的图象向左(+)或向右(-)平移a 个单位而得到。 ②竖直平移:y =f(x)±b(b>0)的图象,可由y =f(x)的图象向上(+)或向下(-)平移b 个单位而得到。 (2)对称变换 ①y =f(-x)与y =f(x)的图象关于y 轴对称。 ②y =-f(x)与y =f(x)的图象关于x 轴对称。 ③y =-f(-x)与y =f(x)的图象关于原点对称。 (3)伸缩变换 ①y =af(x)(a >0)的图象,可将y =f(x)图象上每点的纵坐标伸(a >1时)或缩(a <1时)到原来的a 倍,横坐标不变。 ②y =f(ax)(a >0)的图象,可将y =f(x)的图象上每点的横坐标伸(a <1时)或缩(a >1时)到原来的1a 倍,纵坐标不变。 (4)翻折变换 ①作为y =f(x)的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到上方,其余部分不变,得到y =|f(x)|的图象。

函数专题_一次函数的图像和性质

教学过程 一、课程导入 画出y=-x与y=-x+2的图象,找出它们的相同点和不同点 小结:直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。即k值相同时,直线一定平行。

二、 复习预习 ①如图(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限); ②如图(2)所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限); ③如图(3)所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限); ④如图(4)所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限). k >0时,y 的值随x 值的增大而增大;当k<0时, y 的值随x 值的增大而减小;一次函数y =kx +b 的图象为 一条直线,与坐标轴的交点分别为)0.(k b ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置.

三、知识讲解 考点1 一次函数图象上点的坐标特征 1、 一次函数y =kx +b 的图象为一条直线,与坐标轴的交点分别为)0.(k b ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置. 2、 正比例函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知x y 是定值. 3、经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式.

考点2 一次函数图像的平移 上加下减(b),左加右减(x) 直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。即k值相同时,直线一定平行。

数学人教版八年级下册利用函数图像解决实际问题

19.1.2函数的图象 第1课时函数的图象 教学目标1.理解函数图象的意义; 2.能够结合实际情境,从函数图象中获取信息并处理信息.教学重点:理解函数图象的意义 教学难点:能够结合实际情境,从函数图象中获取信息并处理信息. 教学过程 下图是自动测温仪记录的图象,它反映了北京春季某天气温T如何随时间t 变化而变化,你从图象中得到了哪些信息 气温T是时间t的函数 (1)最低、最高温度分别是多少? (2)哪些时段温度呈下降状态?上升状态呢? (3)我们可以从图象中看出这一天中任一时刻的气温大约是多少吗? (4)如果长期观察这样的气温图象,我们能总结出气温的变化规律吗? 例1 下图表示一辆汽车的速度随时间变化的情况:

①汽车行驶了多长时间?它的最高时速是多少? ②汽车在哪些时间段保持匀速行驶?时速分别是多少? ③出发后8分到10分之间可能发生了什么情况? ④用自己的语言大致描述这辆汽车的行驶情况. 例2小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米? (2)小明在书店停留了多少分钟? (3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟? (4)我们认为骑单车的速度超过300米/分就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗? 解析:根据图象进行分析即可. 解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米; (2)根据题意,小明在书店停留的时间为从8分钟到12分钟,故小明在书店停留了4分钟; (3)一共行驶的总路程为1200+(1200-600)+(1500-600)=1200+600+900=2700(米);共用了14分钟; (4)由图象可知:0~6分钟时,平均速度为1200 6=200(米/分);6~8分钟时, 平均速度为1200-600 8-6 =300(米/分);12~14分钟时,平均速度为 1500-600 14-12 = 450(米/分).所以,12~14分钟时小明骑车速度最快,不在安全限度内.

相关文档
最新文档