曲轴主轴颈和连杆轴颈检测记录表

曲轴主轴颈和连杆轴颈检测记录表

曲轴主轴颈和连杆轴颈检测记录表

发动机型号

曲轴主轴颈/

连杆轴颈编号曲轴主轴颈检测

测量截面

检测数据(mm)

D1 D2 圆度Ⅰ—Ⅰ

Ⅱ—Ⅱ

轴颈圆度

轴颈圆柱度

曲轴连杆轴颈检测

测量截面

检测数据(mm)

D1 D2 D3 Ⅰ—Ⅰ

Ⅱ—Ⅱ

轴颈圆度

轴颈圆柱度

结果分析

检测结论

曲轴轴颈的表面粗糙度(Word)

A中φ0.015形位公差标注所用公差原则为独立原则,轴的实际尺寸在φ9.97-φ10.00mm内。轴线的直线度公差为φ0.015,B中φ0.015形位公差标注相关原则,轴的实际尺寸在φ9.97-φ10.00mm内,轴的实际尺寸最大时,轴线的直线度公差为φ0.015mm,轴的实际尺寸最小时,轴线的直线度公差为0.045mm. 曲轴轴颈的表面粗糙度:磨修后Ra值达1.4—0.8μm,并抛光(表面粗糙度降至Ra0.1—1.2mm)轴瓦镗削后的表面粗糙度Ra值达达1.4—0.8μm,有条件时并滚压强化,问此一对配合件的表面粗糙度Ra值为何要求降低? 答:曲轴与轴瓦配合件为液体润滑方式,靠液动压力使轴瓦间形成液体润滑油膜,并有一最小油膜,厚度h min当h min等于轴颈和轴瓦微凸起高之和时,轴和瓦的液体润滑状态即被破坏,两零件表面开始接触,因此要求轴与瓦的表面粗糙度要低些,以保证配合件液体润滑状态下工作。某发动机的装配技术要求是:活塞位于上止点时,活塞顶部平面不得高出气缸上平面0.9mm,I 不低于上平面0.1mm。今测得送装的曲柄连杆机构各零件的有关尺寸如下:活塞销孔轴线至活塞顶平面间距离A1=96.10mm,活塞销与连杆衬套的间隙A20=0.04mm,连杆大、小端孔轴线间距离A3=330mm,连杆轴瓦与连杆轴颈间隙A40=0.12mm,曲轴回转半径A5=76.02mm,主轴瓦与主轴的间隙A60=0.12mm,缸体主轴承孔至缸体下平面距离A7=147.95mm,缸体上、下平面间距离A8=649.5mm。问该发动机在装配后,能否符合装配要求? 答:本题为尺寸链计算题。活塞顶部平面与气缸体上平面距离A0为封闭环,各组成环的尺寸(mm)如下:A1=96+0.10,A2=1/2 A20=0.02 A3=330 A4=1/2 A40=0.06 A5=76+0.02 A6=1/2 A60=0.06 A7=148-0.05 A8=650-0.5封闭环的基本尺寸为A0=(96+330+76+148)-(0+0+0+650)=0封闭环的偏差为ES=(0.10+0+0.02-0.05)-(0.02+0.06+0.06-0.5)=0.43.装配后,活塞在上止点,活塞顶平面高出气缸体上平面0.43mm。满足装配技术条件。测量误差产生的原因有哪几类?误差产生的原因是什么?如何减少这些误差?五类:1测量器具本身的误差2测量力引起的误差3观察引起的误差4环境条件5测量人员自身|原因1测量器具制造精度精度低,或在使用过程中磨损、变形2测量时用力过大或不稳定3观测读数时,视线不垂直于读数刻度4测量地点的温度高于或低于20度较多,测量仪器与被测零件温度相差过大5测量人技术不熟练。措施:1精心保养量具,定期送检2注意保持测量地点的温度在大20度3提高测试人员技术熟练程度,测量用力适当,观察读数时注意观测位置。 影响公差等级的主要因素是什么?1加工工艺系统的刚度及系统温度的变化2机床的精度及调整状态3刀具的扬制造误差、磨损及选用刀具是否得当4工夹、模具的制造误差及夹紧力是否合适5切削等加工造成的残余应力以及热处理的变形。影响表面粗糙度的主要因素是什么:1切削用量及速度2加工方法及刀具几何形状、材料及刃磨质量3工件的材料及加工时的条件(如冷却等)4工艺系统的振动。简述保证装配精度四种方法:1互换法:组成机器或部件的所有有关零件按图纸要求加工后,不需任何修配,选择或调节就可以装配。装配后可保证装配精度,这种方法是喷射控制零件加工误差来保证装配精度2选枉法:在成批或大量生产条件下,若采用互换法,则零件的制造公差将过严,甚至会超出加工工艺的现实可能性,此时可采用选择装配。即将组成环的公差放大到经济又可行程度,然后选择的零件进行装配,以保证规定的装配精度。3修配法:在单件小批生产中,将装配尺寸链中的各组成环按经济加工精度制造,装配时根据实际测量结果,改变尺寸链中某一组成环的尺寸,使封闭达到规定的装配精度。4调节法:为了保证达到封闭的装配精度,一个可调尺寸的零件,来补偿装配累积误差。形位公差与尺寸公差的相互关系遵循什么原则?内容是什么:1独立原则。图样上给定要素的形位公差与尺寸公差各自独立,彼此无关。2相关原则。图样上给定要素的形位公差与尺寸公差有关,零件要素尺寸偏离最大实体状态时,形位公差获得补偿。什么是尺寸链?分析时如何区别增环和减环:在加工或装配过程中,由一组相互联系的尺寸形成封闭外形。其中某尺寸的精度受其他所有尺寸精度的影响,谓之尺寸链。区别增环和减环的方法是:在一尺寸链中,某一组成环在其他组成的环不变的情况下,封闭环随其增大而增大,则该环为增环,若封闭环随其增大而减小,则该环为减环。什么是六点定位规则?工件定位基准的选择原则是什么:六点定位规则是用适当分布的与工件接触的六个支承点来限制工件六个自由度的规则。原则:1尽量用已加工面作为定位基准,以减少定位误差。机械加工的第一道工序只能用毛坯的粗糙面定位时,应尽可能选用平整光洁以后加工余量均匀的表面作为定位基准。2尽量使工件的定位基准与设计基准或装配测量基准重合,遵守基准重合原则,避免基准转换误差。3尽可能采用统一的基准。即同一零件在加工工艺过程中每道工序尽可能用同一基准来加工零件上各个不同表面,以减少制造安装夹具的时间与费用。4应保证工件安装可靠稳定,使工件由于夹紧力或切削力而引起的变形最小。一般选用工件上最大的表面作为主定位基准(第一定位基准)。夹紧力的三要素是什么?确定时应注意问题:要素:1作用力的方向2作用点的数量和位置3作用力大小。注意:1夹紧力的方向应朝向定位元件2~方向应使工件变形最小3~方向应使所需的~小4~的作用点应不破坏定位5~的作用点应保证夹紧变形不影响加工精度6~的大小应计算正确。变形连杆在矫直后,应进行哪种热处理,为什么:~在冷压或扭弯矫直后,连杆体内一部分晶粒被拉长,晶格扭曲,材料产生冷作硬化现象并产生残余应力。以后在连杆工作过程中,这些残余应力会逐渐释放出来,使连杆恢复原有变形。为了使矫直效果稳定,连杆在冷矫后应进行低温回火,消除冷矫产生的残余应力。热处理时将连杆在箱内缓慢地加热到400—500度,保温0.5-1H,然后再慢慢地冷却下来。拖拉机发动机轴瓦的材料应具备什么特性,常用的轴瓦合金有哪几种,特性有何差异:轴瓦材料应该是有“硬质点分布在软基体中”的组织,硬质点用以支承曲轴的重力,软基体提供配合件间减摩作用层。常用的轴瓦合金有铜铅合金、铝合金、巴氏合金三种。铜铅合金是“在热熔状态下使铜铅混合并迅速冷却,铅的微粒弥散分布在铜的粒子中,形成以铜为硬基体,间杂有软的铅质点的合金层”,巴氏合金是锡化锑硬质点分布在锡的软基体上的合金层。铝合金是铝锑硬质点分布在铝锑和锑化镁共晶体的软基体上的合金层。特性:铜铅合金可承受较大载荷,线膨胀系数小,体格较高,巴:熔点低,易于铸造轴瓦,抗压强度低,适用于汽油机。铝:与铜铅合金相似近,价格较低的,目前已成为铜铅合金的代用材料。

发动机曲轴连杆实习报告范文

发动机曲轴连杆实习报告范文 实习是大学进入社会前理论与实际结合的最好的锻炼机会,也是大学生到从业者一个非常好的过度阶段,更是大学生培养自身工作能力的磨刀石,作为一名刚刚从学校毕业的大学生,能否在实习过程中掌握好实习内容,培养好工作能力,显的尤为重要。 发动机曲轴连杆实习报告一 今日实习目的地:南车柴油机二分厂 实习车间:曲轴加工车间 在王工的带领下,进入了曲轴加工车间,首先,向我们介绍了曲轴的用途,以及各个部位特点,如何加工而成、 曲轴是活塞式发动机中最重要、承受负荷最大的零件之一。其主要功用是将活塞的往复运动通过连杆变成回转运动,即把燃料燃烧的爆发力通过活塞、连杆转变成扭矩输送出去做功,同时还带动发动机本身的配气机构和相关系统工作 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,曲轴的曲拐数目等于气缸数(直列式发动机);V型发动机曲轴的曲拐数等于气缸数的一半。主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。曲轴的支承方式一般有

两种,一种是全支承曲轴,另一种是非全支承曲轴。曲轴的形状和曲拐相对位置(即曲拐的布置)取决于气缸数、气缸排列和发动机的发火顺序。 轴典型加工工艺 曲轴的典型加工过程如下 铣端面打中心孔粗精车所有主轴颈及周轴颈铣角向定位面粗精车所有连杆颈粗磨第四主轴颈 车平衡块钻直斜油孔半精磨 1、主轴径7车铣割滚压精磨所有主轴颈及周轴颈淬火回火探伤精磨第四主轴颈喷丸钻工艺孔 两端孔的加工精磨所有连杆颈动平衡抛光所有轴颈清洗防锈 铣键槽 曲轴加工第一工序铣端面、钻中心孔。通常以两端主轴颈的外圆表面和中间主轴颈的轴肩为粗基准,这样钻出的中心孔可保证曲轴加工时径向和轴向余量均匀。 径向定位主要以中心线为基准,还可以两端主轴颈外圆为精基准。轴向定位用曲轴一段的端面或轴肩。角度定位一般用法兰盘端面上的定位销孔或曲柄臂上铣出的定位平台。采用不同的加工工艺方法和设备,定位基准的选用亦有不同。

13.曲轴轴颈磨损检验

实训十三曲轴轴颈磨损检验 一、实训内容 用外径千分尺测量曲轴主轴颈和连杆轴颈的圆度和圆柱度,来检验曲轴轴颈的磨损。 二、实训目的与要求 1、掌握外径千分尺的使用方法。 2、培养学生检验轴颈磨损的实际操作能力。 三、所需工具、仪器与设备 外径千分尺、平台、V型铁、曲轴、棉纱 四、安全与环保教育 1、树立安全文明生产意识。 2、合理使用工具、量具及设备。 3、操作规范,安全、文明作业。 4、学生应穿工作服进行实习操作,工作场地应打扫清洁,机具摆放整齐。 五、构造、原理、作用、技术标准和检验、维修方法 1、曲轴的结构及原理 曲轴承受较大的载荷,高速旋转,必须有足够的强度和刚度,而且必须保持平衡。曲轴多采用中、高碳钢锻造而成。曲轴通过若干主轴颈支承在缸体的主轴座孔内,通过连杆轴颈和连杆相连,曲柄臂连接着主轴颈和连杆轴颈,为了抵消离心力,在曲轴臂上配有平衡重。在曲轴的前端,有驱动凸轮轴的正时齿轮:为了驱动水泵、交流发电机等设备,曲轴上还装有皮带轮,后端装有飞轮。为了使润滑油从主轴承流入连杆轴承,在曲轴中还开有油道。 2、曲轴的作用 把连杆传来的作用力转变为绕其中心轴线转动的转矩,再经飞轮传给汽车传动系。发动机工作时,各缸爆发行程的推力,经连杆变为曲轴的旋转运动,输出扭矩。 3、技术标准 曲轴主轴颈及连杆轴颈的圆度和圆柱度误差应不大于0.025㎜,否则应按修理尺寸进行磨轴修复。

4、检验方法 用外径千分尺测量其圆度和圆柱度。 5、维修方法 曲轴轴颈的圆度和圆柱度误差不应超差,否则应按修理尺寸进行磨轴修复。 1)确定轴颈的修理尺寸:曲轴主轴颈及连杆轴颈修理等级的多少因车而异,CA6102发动机曲轴有六级修理尺寸,EQ6100发动机曲轴只有两级修理尺寸,上海桑塔纳Ⅳ发动机曲轴有三级修理尺寸,修理尺寸的级差一般为0.25mm。在进行磨轴之前,首先应根据轴颈的磨损程度确定主轴颈及连杆轴颈的修理尺寸,其确定方法为: 主轴颈的修理尺寸:各主轴颈的最小直径—加工余量(按修理等级圆整); 连杆轴颈的修理尺寸:各连杆轴颈的最小直径—加工余量(按修理等级圆整)。 加工余量的大小取决于加工设备的精度和操作人员的技术水平,一般取0.10-0.20mm。 2)曲轴主轴颈及连杆轴颈磨削完毕后,应符合以下技术要求: (1)同名连杆轴颈必须为同级修理尺寸。 (2)轴颈的圆度及圆柱度误差应不大于0.005mm,轴颈与曲柄的过度圆角半径应为3.00—3.50mm。 (3)主轴颈的同轴度误差应为0.03—0.05mm。 (4)各连杆轴颈在圆周上的角度偏差应不大于1°。 (5)主轴颈与连杆轴颈的平行度误差应不大于0.01㎜,曲柄半径应符合原设计要求。 六、实训步骤 1、曲轴轴颈的磨损特点 曲轴主轴颈及连杆轴颈在工作过程中主要是承受气缸内燃料燃烧产生的爆发力和活塞连杆组往复运动的惯性力,由于两者的合力对轴径圆周各部位作用的不均匀性,致使曲轴颈向呈现椭圆形磨损,最大磨损发生在曲轴的曲柄方向。而油孔布置的不对称、曲轴弯曲、缸体及连杆的变形等因素的影响,将造成曲轴沿长度方向呈现锥形磨损。

汽车发动机连杆螺栓热处理工艺设计分析解析

金属材料热处理原理与工艺课程设计40Mn发动机连杆螺栓热处理工艺设计 院、部: 学生姓名: 学号: 指导教师:职称 专业: 班级: 完成时间:

摘要 综述了发动机连杆螺栓的工作环境,使用性能,失效形式,连杆螺栓材料的选择,热处理工艺等。主要就连杆螺栓的热处理工艺做了详细的分析,通过大量的实验得出了连杆螺栓材料热处理后的金相组织图等资料。分别对球化退火、淬火、回火过程中组织、硬度的的变化做了分析。并就实验中出现的问题作了分析,以供参考。 关键词:连杆螺栓热处理;等温退火;淬火;回火;问题分析

目录 摘要............................................................................................................................................. I 前言. (1) 1 连杆螺栓的使用性能 (1) 2 材料选择及技术要求 (1) 2.1.螺栓的热处理工艺规范 (2) 2.2材料的选择 (2) 3 热处理工艺及目的 (3) 3.1退火 (3) 3.2正火 (3) 3.3淬火 (4) 3.4回火 (4) 4 设计说明 (4) 4.1失效形式 (4) 4.2工作要求 (4) 4.3结构钢40M N的化学成分 (5) 4.3.1 主要特性 (5) 4.3.2 材料分析 (5) 4.3.3 力学性能要求 (6) 4.3.4 基于材料的零件设计 (6) 4.5热处理工艺说明 (7) 5 设计方案 (8) 5.1正火 (8) 5.2调质处理 (8) 5.3回火的制定 (9) 6 螺栓的热处理质量检测 (9) 6.1硬度计 (9) 6.2外观检测与金相组织检验 (9) 7 螺栓热处理回火缺陷的原因及解决方案 (10) 参考文献 (11)

《汽车发动机检修》复习题一

《汽车发动机检修》复习题一 一、选择题 1.柴汽缸的磨损规律是()。 (A)上小下大不规则的圆锥形(B)上部成椭圆锥形(C)上大下小不规则的圆锥形(D)下部成椭圆形2.发动机汽缸磨损圆柱度达到()mm要进行大修。 (A) 0.10~0.20 (B) 0.175~0.25 (C) 0.20~0.30 (D) 0.15~0.25 3.某些柴油机连杆大头分开面为斜切口式,其作用是()。 (A)承受弯矩大(B)承受扭矩大(C)便于拆装(D)抗压性强 4.气缸盖螺丝拆卸步骤正确的是( ) (A)从中间到两边,分两到三次(B)从两边到中间,分两到三次 (C)由一个方向顺序拆卸(D)没有严格要求 5.检查汽缸体内部有无裂纹,应采取()。 (A)敲击法检查(B)水压试验检查(C)气压试验检查(D)放射线同位素法检查6.活塞环的检查内容包括()应符合规定。 (A)弹力,开口间隙,边间隙,背间隙以及漏光通量应符合规定 (B)弹力,开口间隙,边间隙,背间隙以及漏光程度应符合规定 (C)弹力,开隙,间隙,后间隙以及漏光缝隙应符合规定 (D)张力,开口间隙,边间隙,背间隙,以及漏光程度应符合规定 7.有的发动机活塞采用活塞销偏置的作用是( ) (A)方便活塞销安装(B)减轻活塞重量(C)减小活塞运行过程中的敲缸现象(D)平衡发动机8.发动机汽缸磨损圆度达到()mm要进行大修。 (A) 0.05~0.07 (B) 0.05~0.063 (C) 0.10~0.15 (D) 0.01~0.05 9.四行程直列六缸发动机的曲拐布置为() (A)六个曲拐分别布置在三个平面内,平面之间相隔120o(B)六个曲拐分别布置的间隔角为180°(C)六个曲拐分别布置在两互相错开90°的平面内(D)六个曲拐分别相互间隔60° 10.曲轴轴颈的圆度、圆柱度误差不得大于()mm时,应按修理尺寸对轴颈进行磨削修理。 (A))0.025 (B) 0.25 (C) 0.15 (D) 0.05 11.曲轴轴颈磨损的规律是() (A)各主轴颈的最大磨损靠近连杆轴颈一侧;而连杆轴颈的最大磨损部位在主轴颈一侧,曲轴轴颈沿轴向均匀磨损。 (B)各主轴颈的最大磨损靠近连杆轴颈一侧;而连杆轴颈的最大磨损部位在主轴颈一侧,曲轴轴颈沿轴向锥形磨损。 (C)各主轴颈的最小磨损靠近连杆轴颈一侧;而连杆轴颈的最小磨损部位在主轴颈一侧,曲轴轴颈沿轴向锥形磨损。 (D)均匀磨损。

曲轴连杆轴颈的铣削

4D型曲轴连杆轴颈的铣削 曲轴连杆轴颈的铣削是机械加工中效率相对较高的一种基础加工方法,通过多刃刀具的高速旋转运动和进给运动对所加工的工件进行切削操作,根据实际的要求加工的工件可以固定,也可以做进给运动,经过刀具在工件表面进行切削去去屑后逐渐铣出粗加工后的表面。 铣削一般具有以下三个特征: ①刀具的每个刀齿在进行切削加工过程中的切削厚度是随时变化的。 ②在加工过程中,用每齿进给量af(mm/齿)来表示工件在铣削刀具每次转过一个刀齿的时间内所经过的相对位移量。 ③铣刀的各个刀齿在加工的过程中会周期性地进行间断切削。 铣削可以适用于沟槽、平面和螺纹等的加工,一般在镗床或铣床上进行加工操作,加工机床一般有立式的铣床和卧式的铣床,可以是普通或者数控机床。 铣削加工相对于车削加工来说具有较高的生产效率,一般为车削加工生产效率的3倍左右,所以铣削加工的采用可以达到降低生产设备的投资的目的。 车削加工的稳定性在现实生产中也不如铣削加工,同时车削工件在进行车削加工时需要高速的回转,这样对生产机床就不可避免地产生较大的离心力,长期进行的车削加工操作的机床相对发生的故障率也要比铣床多一些。 根据铣削刀具的不同,铣削一般可分为外铣和内铣两种,下面我们通过对两种不同的铣削方式来研究适用于4D型曲轴连杆轴颈加工的具体操作方式。 1、4D型曲轴连杆轴颈的外铣加工 曲轴的外铣加工方式主要适用于小排量的车辆,对曲轴的主轴颈和曲轴的连杆轴颈去除毛坯余量不大的加工处理。按曲轴外铣加工的铣床铣的数量可以分为双头铣加工和单头铣加工两种。

曲轴的外铣加工示意图 曲轴在外铣加工时,在机床上将曲轴两端的主轴颈要进行位置和角度定位并夹紧,通过止推面进行轴向定位,在加工的过程中铣刀高速旋转在径向进给到曲轴连杆轴颈所规定的直径尺寸后,外铣刀具进行跟踪曲轴连杆轴颈作仿行铣削运动(这个过程也可称为数控),同时曲轴需要围绕曲轴主轴颈的中心低速旋转三百六十度,这样一个完整的工序就可以将曲轴连杆轴颈的各面加工出来了。 由于普通的曲轴外铣加工在性能上存在有许多的缺陷,基本上已经被曲轴的内铣加工所取代,所以4D型曲轴连杆轴颈在现实生产中不采用外铣加工。 2、4D型曲轴连杆轴颈的内铣加工 曲轴的内铣加工示意图 曲轴的连杆轴颈的内铣加工根据实际情况可以分为加工工件不旋转和加工

曲轴的损伤和检查修理要点

曲轴的损伤和检查修理要点 发动机在工作中,曲轴由于受力和工作条件复杂,各摩擦表面滑动速度很高,散热条件又差,因此,曲轴不仅轴颈容易磨损,而且还会出现弯曲和扭曲变形,甚至产生裂纹或折断等。所以在解体清洗后,应进行仔细检查,根据查出的损伤部位和损伤程度,采取相应的修理方式。 ⑴ 曲轴轴颈磨损的检验与处理方法 ① 磨损部位。曲轴的主轴颈_和连杆轴颈在工作中不可避免地要产生磨损,而且磨损是不均匀的,其主要表现为轴颈出现圆度、圆柱度超过标准值和拉伤。连杆轴颈磨损的最大部位,一般在各轴颈的内侧面上,即靠曲轴中心线一侧,使轴颈失圆;而磨损成锥形的部位,一般在润滑油道杂质附着的一侧和受力大的部位上。曲轴主轴颈_的磨损部位,按发动机的强化程度、气缸数、曲轴长度和平衡块的配重不同而各异,而且相对于连杆轴颈磨损要均匀些。实践表明,连杆轴颈的磨损比主轴颈磨损要快,但是,主轴颈磨损比连杆轴颈磨损所造成的后果要严重。 ② 检验与处理方法。根据各轴颈磨损规律查找出磨损部位,可用外径测微器测量其圆度和圆柱度以便确定曲轴的修理级别和磨削尺寸。其具体方法是; ⒈ 先在润滑油道孔两侧测量,再转90°测量,其测量的最大值与最小值之差值即为轴颈的_圆柱度。 ⒉ 在轴颈纵向测量出的最大值与最小值之差,即为轴颈的圆柱度。

⒊ 当轴颈圆度大于0.050mm,锥度大于0.013mm,或者发现轴颈有拉伤、烧蚀等损伤时,都应进行修理。 ⒋ 轴颈_磨损量超过极限需要修理时,应从磨损最大的的轴颈开始,按曲轴分级修理尺寸(每级相差0.25mm),在专用的曲轴磨床上进行磨削,并进行抛光处理。修磨后要求轴颈圆度不得大于0.005mm,锥度不得大于0.005mm,表面粗糙度Ra不得大于0.80~0.40um,各轴颈的径向跳动不大于0.05mm,否则,为不合格。 ⑵ 曲轴裂纹的检验与处理方法 ① 裂纹多发部位 曲轴的疲劳裂纹多发生于轴颈与曲柄臂相连的过渡圆角处以及轴颈中间油孔处。前一种裂纹为横向裂纹,是曲轴断裂的先兆,即从出现微细裂纹,逐渐延伸,最后在特定条件下发生断裂,后一种裂纹为纵向裂纹,由油孔处往轴向展开。 ② 检验与处理方法 曲轴裂纹微细,用肉眼不易看出,可用磁力探伤仪进行检查。在条件不具备的情况下,最简易的检查方法是浸油锤击法:先将曲轴浸入煤油中片刻,取出擦净后,撒上白粉,然后用手锤分段在曲轴臂_上敲击,由于震动,裂纹内的煤油渗出,使白粉显出油迹呈现黄色线痕,据此即可判定裂纹位置和长度。

发动机连杆设计说明书

广东技术师范学院天河学院 汽车制造工艺学 课程设计说明书 课题: — 姓名: 学号: 班级: 指导教师:

二〇年月 · 汽车制造工艺学课程设计任务书

目录 ( 序言 (1) 一、生产纲领及零件说明 (2) 二、材料与毛坯 (3) 三、连杆的技术要求 (4) 四、加工工艺路线 (5) 五、指定工序加工余量、计算工序尺寸及公差 (6) 六、指定工序切削用量和工时定额 (6) 七、指定工序专用夹具设计 (7) ( 参考文献 (9)

: 序言 《汽车制造工艺学课程设计》是我们学习完大学阶段的汽车类基础和技术基础课以及专业课程之后的一个综合的课程设计,它是将设计和制造知识有机的结合,并融合现阶段汽车制造业的实际生产情况和较先进成熟的制造技术的应用,而进行的一次理论联系实际的训练,通过本课程的训练,将有助于我们对所学知识的理解,并为后续的课程学习以及今后的工作打下一定的基础。 对于本人来说,希望能通过本次课程设计的学习,学会将所学理论知识和工艺课程实习所得的实践知识结合起来,并应用于解决实际问题之中,从而锻炼自己分析问题和解决问题的能力;同时,又希望能超越目前工厂的实际生产工艺,而将有利于加工质量和劳动生产率提高的新技术和新工艺应用到机器零件的制造中,为改善我国的汽车制造业相对落后的局面探索可能的途径。但由于所学知识和实践的时间以及深度有限,本设计中会有许多不足,希望各位老师能给予指正。

】 ' 一.生产纲领及零件说明 1. 生产纲领 发动机连杆零件,年产量为30000件,现已知该产品属于轻型机械,根据生产类型与生产纲领的关系查阅参考文献,确定其生产类型为大批量生产。 大批量生产的工艺特征: 】 (1)零件的互换性:具有广泛的互换性,少数装配精度较高处,采用分组装配法和调整法。毛坯的制造方法和加工余:广泛采用金属模机器造型,模锻或其他商效方法。毛坯精度高,加工余量小。 (2)机床设备及其布置形式:广泛采用商效专用机床及自动机床,按流水线和自动排列设备。 (3)工艺装备:广泛采用高效夹具,复合刀具,专用量具或自动检验装置,靠调整法达到精度要求。 (4)对工人的技术要求:对调整工的技术水平要求高,对操作工的技术水平要求较低。 (5)工艺文件:有工艺过程卡或工序卡,关键工序要调整卡和检验卡。 (6)成本:较低。 (7)生产率:高。

汽车发动机连杆的热处理工艺设计

—汽车发动机连杆的热处理工艺设计 目录 摘要---------------------------------------------------------------------------------------------------(1)1.概述--------------------------------------------------------------------------------------------(2)1.1 前言-----------------------------------------------------------------------------------------------(2)1.2 使用性能-----------------------------------------------------------------------------------------(2) 1.3 失效形式---------------------------------------------------------------------------------------(2) 1.4 材料选择---------------------------------------------------------------------------------------(2) 1.4.1技术要求-----------------------------------------------------------------------------------(2) 1.4.2材料比较------------------------------------------------------------------------------------(3) 1.5热处理工艺及目的----------------------------------------------------------------------- ----(4) 1.5.1退火--------------------------------------------------------------------------------------------(4) 1.5.2正火-------------------------------------------------------------------------------------------(4) 1.5.3淬火----------------------------------------------------------------------------------------- (4) 1.5.4回火--------------------------------------------------------------------------------------------(5) 2.热处理工艺-------------------------------------------------------------------------------------(5) 2.1工艺路线------------------------------------------------------------------------------------- -(5) 2.1.1 等温退火---------------------------------------------------------------------------------(5) 2.1.2淬火----------------------------------------------------------------------------------------(5) 2.1.3回火-----------------------------------------------------------------------------------------(6) 3.实验结果及分析---------------------------------------------------------------------6) 3.1 组织及分析----------------------------------------------------------------------------------(6) 3.1.1原始组织----------------------------------------------------------------------------------- (6) 3.1.2 等温退火后组织---------------------------------------------------------------------------(7) 3.1.3淬火后组织----------------------------------------------------------------------------------(7) 3.1.4 回火后组织---------------------------------------------------------------------------------(8) 3.2 缺陷分析------------------------------------------------------------------------(8) 3.2.1过热-----------------------------------------------------------------------------------------(8) 3.2.2欠热-----------------------------------------------------------------------------------------(8) 3.2.3淬火裂纹-----------------------------------------------------------------------------------(8) 3.2.4脱碳组织-----------------------------------------------------------------------------------(8) 3.2.5热处理变形--------------------------------------------------------------------------------(9) 3.2.6软点-----------------------------------------------------------------------------------------(9) 3.2.7回火缺陷-----------------------------------------------------------------------------------(9) 4 . 总结--------------------------------------------------------------------------------(10) 5. 参考文献-------------------------------------------------------------------------(10) 6.致谢----------------------------------------------------------------------------------(10)

基于ANSYSworkbench的汽车发动机连杆力学性能分析

第36卷?第2期?2014-02(下)? 【107】 收稿日期:2013-11-22 作者简介:胡小青(1980 -),女,四川德阳人,讲师,硕士,研究方向为机械设计制造及其自动化。 基于ANSYS workbench 的汽车发动机连杆力学性能分析 Mechanical properties analysis of motocar engine connecting rod based on ANSYS Workbench 胡小青HU Xiao-qing (四川工程职业技术学院,德阳 618000) 摘 要:以汽车发动机用连杆为研究对象,建立了发动机连杆力学性能分析简化模型。采用Ansys workbench软件static structure模块,利用有限元分析法对发动机连杆模型进行模拟分析,得出了发动机连杆模型总变形、等效应力以及等效弹性应变分布。结果显示,发动机连杆模型最大变形位于发动机小头顶部,最大等效应力位于发动机连杆与大头交接顶角处,为4.09×109Pa ,最大等效弹性应变与等效应力所处位置相同为0.02。 关键词:发动机连杆;Ansys workbench;有限元法;模拟分析;力学性能中图分类号:TG213 文献标识码:A 文章编号:1009-0134(2014)02(下)-0107-02Doi:10.3969/j.issn.1009-0134.2014.02(下).30 0 引言 汽车发动机连杆是内燃机中的一个重要的结构零件,其作用是连接活塞和曲轴,将作用在活塞上的力传递给曲轴,使活塞的往复运动转变为曲轴的旋转运动,对外输出做功[1]。连杆小头与活塞销相连接,与活塞一起做往复运动,连杆大头与曲柄销相连和曲轴一起做旋转运动[2,3]。因此,连杆体除了上下运动外,还左右摆动,做复杂的平面运动[4]。所以,连杆的受力情况也十分复杂,工作中经常受到拉伸、压缩和弯曲等交变载荷的作用[5]。这种复杂的载荷容易引起连杆的疲劳破坏,甚至直接关系到操作人员的安全,从而造成严重的后果[6]。因而,对于汽车发动机连杆运动过程中的力学分析非常重要。 通常,大多数工程实际问题很难单独的通过经典的弹性力学通过求解微分方程而得到其解析解[7,8]。而有限元方法则避免了求解微分方程,因此,通过计算机采用有限元分析方法分析汽车发动机连杆在使用过程中的力学性能,可以为汽车发动机行业的发展提供一个有力的参考[9~11]。 基于此,本文对汽车发动机连杆建立了相应的模型,采用有限元法,利用Ansys Workbench 软件分析了发动机连杆的力学性能,包括连杆的变形、等效应力与等效弹性应变。为发动机连杆的应用提供一定的参考。 1 实验 建立合适的有限元模型和进行合适的网格划分对发动机连杆分析至关重要。实验中采用Pro/E 软件建立发动机连杆的简化模型,在建立模型时,对连杆总体应力影响不大地过渡圆角、润滑小油孔等均被忽略。采用Ansys Workbench 软件进行网格划分和模拟分析。实验所建立的实体模型和网格模型如图1所示,图1(a)为实体模型,图1(b)为网格模型。划分网格时,发动机小头和大头内表面均采用加密网格。网格划分后,连杆节点数为292598个,单元数为191590个。在发动机工作过程中,连杆只承受轴向力作用,该力的最大值是由发动机活塞面爆燃气体压力和活塞与连杆小头的惯性力引起的。通过分析汽车发动机的做功情况以及燃气压力和连杆惯性力的影响,得到连杆在发动机燃气压力下的压力约为4.5MPa ,对应的最大轴向力约为11500N 。将其均布在连杆小头下半圆面上。 对模型进行材料实验初始值特性定义过程中,采用连杆采用40Cr 钢,其主要性能参数如下:弹性模量E=2×1011Pa ,泊松比μ=0.28, ρ=7.9×103kg/m 3 。实验中采用Ansys workbench 中Static Structural 模块对发动机连杆进行模拟分析。

曲轴的结构

曲轴的结构如图1.1所示:它由主轴颈,连杆轴颈曲轴臂,平衡块,前轴端和后轴端等部分组成。其中一个连杆颈和它两端的曲臂以及前后两个主轴颈合在一起,称为曲拐。曲轴的形式有整体式和组合式两种。下面分析大多数汽车发动机采用的整体式曲轴的结构。 图1.1 1.主轴颈 图1.2所示,用来支撑曲轴,曲轴几即绕其中心线旋转。主轴颈支撑于滑动主轴承上,主轴颈结构和连杆轴颈类似,不同点于滑动主轴承上,主轴颈结构和连杆轴颈类似,不同点是内表面有油槽。主轴承盖用螺栓与上曲轴箱的主轴承座紧固在一起。为了使各主轴颈磨损相对均匀,对于受力交大的中部和两端的主轴颈制造得较宽。 在连杆轴颈的两侧都有主轴颈者,称为全支撑曲轴。全支撑曲轴钢度好,主轴颈负荷小,但它比较长。如果主轴颈数目比连杆轴颈少,则称为非全支撑曲轴。其特点和全支撑主轴相反。 图1.2

2.连杆轴颈 用来安装连杆大头,如图1.3所示。直列式发动机的连杆轴项数与汽缸数相等;V型发动机因为两个连杆共同装在一个连杆轴颈上,故连杆轴颈数为汽缸数的一半。连杆轴颈通常被制成中空,其目的是为了减轻曲拐旋转部分的质量,以减小离心力。中空的部分还可兼作油道和油腔,如图所示。油腔不钻通,外端用螺塞封闭,并用开口销锁住。连杆中部插入一弯管,管口位于油腔中心。当曲轴旋转时,在曲轴油管机油中的较重的杂质被甩向油腔壁,而洁净的机油则经弯管流向连杆轴向表面,减轻了轴颈的磨损。 图1.3 3.曲轴臂 用来连接主轴颈和连杆轴颈,如图1.4所示。有的发动机曲轴臂上加有平衡块,用来平衡曲轴的不平衡的离心力和离心力矩,有的还可平衡一部分往复惯性力。图示1.5为四缸发动机曲轴受力情况。1.4道连杆轴颈的离心力F1.F4与2.3道连杆轴颈的离心力F2.F3大小相等,方向相反。从整体上看,似乎在内部能相互平衡,但由于在F1与F2形成的力偶MF2和F3与F4形成的力偶M3-4作用下,如果曲轴的刚度不足,则发生弯曲变形,加剧主轴颈的磨损。为此,需加宽轴颈,增加刚度,以减少磨损。但更有效的措施是在曲轴臂反方向延伸一块平衡块。平衡块与曲轴制成一体,也可单独制造,再用螺栓固装在曲轴臂上,加平衡块会导致曲轴质量和材料消耗增加,制造工艺复杂。因此,曲轴是否要加平衡块,应视具体情况而定。

曲轴弯曲变形及磨损的检验

曲轴弯曲变形及磨损的检验 一、实训目的 (1)掌握各种量具的使用方法。 (2)掌握曲轴变形、曲轴磨损的检查内容。 (3)掌握曲轴变形、曲轴磨损的检查方法。 二、实训的重点和难点 量具的使用与曲轴磨损、曲轴变形的检查方法。 三、实训量具、工具、设备 外径千分尺、磁性表架、百分表、曲轴、V形块、检验平台等。 四、实训技术标准及要求 (1)曲轴弯曲变形:径向圆跳动误差一般不应超过0.04~0.06mm。 (2)曲轴轴颈:圆度和圆柱度误差一般不超过0.01~0.0125mm。 五、实训注意事项 (1)往检验平台上放置量具、零件时要轻拿轻放,以免损坏平台,影响测量数据的准确性。 (2)检验平台使用完以后,应涂抹防护油。 (3)曲轴不能随意放置,应放在专用支架上。 六、实训操作步骤 1、曲轴弯曲变形的检测 如图所示,将曲轴放在检测平台上的V形块上,百分表指针抵触在中间主轴颈上,转动曲轴一圈,百分表指针的摆差一般不应超过0.04~0.06mm。 2、曲轴磨损的检测 用外径千分尺或游标卡尺来测量主轴颈及连杆轴颈的磨损量,从而计算圆的及圆柱度误差来判别曲轴是否需要大修。 (1)根据曲轴轴颈选用适当量程的外径千分尺。 (2)依据磨损规律用外径千分尺在曲轴主轴颈及连杆轴颈分别测量磨损量,并计算圆度、圆柱度误差。先在轴颈油孔的两侧测量,然后选择90° 再次测量。每一轴颈选取两个截面,每个截面大约选在轴颈长度的1/3处,如图所示

图曲轴弯曲变形的检测图曲轴磨损的检测七、整理现场 (1)将各个量具清洁后放入相应的量具盒内。 (2)将其他工具清洁后放回工具车里。 (3)清洁工作台,清扫地面。 (4)将抹布或棉纱等垃圾放入清洁箱中。 八、实训评分标准

汽车发动机连杆胀断系统设计

摘要 汽车发动机连杆胀断系统 连杆胀断工艺是国际上九十年代初发展起来的一种连杆加工新技术,它从根本上改变了传统的连杆加工方法,大幅度提高了整体发动机的生产技术水平,具有十分显著的经济效益和社会效益。 本文在对胀断工艺原理、胀断主机、装配螺栓及工件自动化传送装置的详细分析的基础上,主要研究了胀断生产线的控制系统。 文中,首先确定了系统的电气控制方案并进行了必要的论证。根据电气控制方案,对具体硬件电路进行了详细设计,并做了具体的说明。 本文的研究方法与技术线路是按胀断工艺的技术特点而确定,通过制定整体技术方案、合理确定胀断主机的结构与主要技术参数、研究并设计胀断自动化生产装备的液压、电气及微机控制系统,全面满足连杆胀断技术高精度、高质量、高效率的精益生产要求。 关键词:连杆胀断工艺,可编程控制器

Abstract The bloated and broken technology of engine connecting rod of the automobile is a new kind of processing technology of automobile connecting rod which developed at the beginning of the 1990s in the world. it changes the traditional processing method of connecting rod fundamentally, and it improves the level of technology of the whole engine by a large margin .It has very remarkable economic benefits and social benefit. This text firstly analyzes the principle of bloated disconnected craft, the bloated disconnected host machine and the automatic assembling line in detail,then the text mainly study the control systems of the production line. In the text, we give the electrical control of the system and carrie on an essential demonstration. According to control method,the text designed the hardware circuit in detail, and gave the concrete explanation. The research approach of this text and technological circuit are fixed according to the technological characteristics of the craft .By making the whole technological scheme, confirming the structure of the bloated disconnected host machine and main technical parameters, we study and design the hydraulic pressure,electrical and computer control system of the bloated disconnected automatic eqippment.The design meet the requests of high-accuracy, high quality, high-efficiency for the the bloated disconnected production line in an all-round way. Keyword: the bloated disconnected technology of engine connecting rod, the programmable logic controller ,

相关文档
最新文档