线粒体DNA稳定性与疾病的关系_黄珊

线粒体DNA稳定性与疾病的关系_黄珊
线粒体DNA稳定性与疾病的关系_黄珊

线粒体及其相关疾病的遗传学研究进展

线粒体及其相关疾病的遗传学研究进展(作者:___________单位: ___________邮编: ___________) 作者:齐科研相蕾陈静宋玉国霍正浩杨泽 【关键词】线粒体DNA 基因突变疾病 线粒体广泛分布于各种真核细胞中,其主要功能是通过呼吸链(电子传递链和氧化磷酸化系统)为细胞活动提供能量,并参与一些重要的代谢通路,维持细胞的钙、铁离子平衡,以及参与其他生命活动的信号传导。 此外,线粒体还与活性氧(reactiveoxygen species,ROS)的产生及细胞凋亡有关[1-3]。组成线粒体的蛋白质有1000多种,除呼吸链复合体蛋白受mtDNA与核基因双重编码,其他蛋白均由核基因编码。mtDNA突变或核基因突变都能引起线粒体功能紊乱[1,4]。早在1963年,Nass等人就发现有遗传物质DNA的存在。1981年,Anderson等发表了人类mtDNA全序列。1988年,Holt和Wallace分别在线粒体脑病和Leber’s遗传性视神经病(LHON)患者的细胞中发现了mtDNA突变,从此开辟了研究mtDNA突变与人类疾病的新领域。随着对mtDNA研究的深入,人们对mtDNA的突变和人类疾病的相关性

日益重视。芬兰的数据显示人群单个点突变(3243A>G)的比率为1∶6000,然而,英国资料表明mtDNA疾病的患病率或易患比率为1∶3500[5]。动物模型和人类研究证据均证明,mtDNA突变是引起人类多因素疾病,部分遗传性疾病以及衰老的重要原因之一。本文将从以下几个方面对mtDNA突变和相关疾病进行阐述。 1 线粒体DNA的遗传学特征 线粒体DNA是存在于线粒体内而独立于细胞核染色体的较小基因组。与核基因相比,线粒体DNA具有一些显著特征。 1.1 母系遗传 Giles等[6]通过对几个欧洲家系线粒体DNA进行了单核苷酸多态性分析时,发现mtDNA 分子严格按照母系遗传方式进行传递。母系遗传是指只由母亲将其mtDNA分子传递给下一代,然后再通过女儿传给后代。有研究表明[7],在受精过程中,精子线粒体会被卵子中泛素水解酶特异性识别而降解,这很好地解释为什么父源性mtDNA不能传播给后代。 1.2 异质性和突变负荷 核基因突变所产生的突变体分为纯合子(homozygote,等位基因都发生突变,含量为100%)和杂合子(heterozygote,等位基因中的一个发生突变,突变含量为50%)与核基因不同,线粒体基因突

线粒体DNA的结构和功能特征

第一节 线粒体DNA的结构和功能特征 一、mtDNA的结构特征 mtDNA是惟一存在于人类细胞质中的DNA分子,独立于细胞核染色体外的基因组,具有自我复制、转录和编码功能。人mtDNA由16 569bp组成,双链闭合环状,其中外环DNA单链由于含G较多,C较少,使整个外环DNA分子量较大,称为重链(heavy chain)或H链;而内环DNA单链则C含量高,G含量低,故分子量小,称为轻链(light chain)或L链。mtDNA的两条链都有编码功能,除与复制及转录有关的一小段D环区(displacement loop)无编码基因外,基因间无内含子序列;部分基因有重叠现象,即前一个基因的最后一段碱基与下一个基因的第一段碱基相重叠(图6-1)。因此,mtDNA的任何突变都会累及到基因组中的一个重要功能区域。mtDNA含有37个基因,其中两个rRNA基因 (16SrRNA,12SrRNA),22个tRNA基因,13个蛋白质基因(包括1个细胞色素b基因,2个ATP酶亚单位的基因。 图6-1 人线粒体基因图谱 Figure 6-1 Map of the human mitochondrial genome Box 6.1 The limited autonomy of the mitochondrial genome  Encoded by Encoded by  Mitochondrial nuclear

genome genome Components of oxidative phosphorylation system Ⅰ NADH dehydrogenase Ⅱ Succinate CoQ reductase Ⅲ Cytochrome b-c1 complex Ⅳ Cytochrome c oxidase complex Ⅴ ATP synthase complex Components of protein synthesis apparatus tRNA components rRNA components Ribosomal proteins Other mitochondrial proteins 13 subunits 7 subunits 0 subunits 1 subunits 3 subunits 2 subunits 24 22 tRNAs 2 rRNAs None None >80 subunits >41 subunits 4subunits 10 subunits 10 subunits 14 subunits ~80 None None ~80 All, e.g. mitochondrial enzymes and proteins 和7个呼吸链脱氢酶亚单位的基因)。位于D环区的HSP(heavy strand promoter)和LSP(light strand promoter)是线粒体基因组转录的两个主要启动子(图6-1)。 mtDNA是裸露的,不与组蛋白结合,存在于线粒体基质内或黏附于线粒体内膜。在一个线粒体内往往有一至数个mtDNA(图6-2)。mtDNA的自我复制也是以半保留复制方式进行。复制先从重链开始,形成一个约680个碱基的7sDNA,称D环。在对鼠细胞研究中发现,大多数的mtDNA均为D环的结构,只有一小部分mtDNA从D环开始合成完整的新生链。轻链的复制要晚于重链,等重链合成过OL之后才开始合成。研究发现mtDNA 的复制可以越过静止期或间期,甚至可以分布在细胞整个周期。mtDNA 的自我转录很似原核生物,即产生一个多顺反子,其中包括多个mRNA和散布于其中的tRNA,剪切位置往往发生在tRNA处,从而使不同的mRNA和tRNA被分离和释放。

基因与人类健康

基因与人类健康 系别:生物科学系专业:生物技术姓名:王晓思学号:20111341031028 【摘要】:介绍了基因与疾病的关系(主要是肿瘤与其基因的关系)、基因治疗与基因免疫的原理及其应用等。阐述基因在疾病产生中的作用,反衬出正常基因的表达其对健康的重要性。 【关键字】:基因疾病 基因是生命体遗传信息的载体,能够表达产生蛋白质,且蛋白质是构成生命体的物质基础。生物之所以能幸存、维持机体各部分结构功能的正常,首先在于它的DNA能被忠实的复制(复制后的DNA携带遗传信息进入新的细胞或机体),并且尽可能的保护机体免受各种因素的损伤,维护DNA编码蛋白质的准确性。但这些过程一旦出现问题就会导致一系列的或轻或重的疾病的发生,从而影响人类的健康。因此基因对医学各生命科学的发展极具现实意义[1]。 1、基因与疾病的关系 在人类的疾病中,由遗传因素或主要由遗传因素决定的疾病,称谓遗传病。其中的一部分是由基因组某个基因座(Locus)上存在致病基因而引起的,此类遗传病称为单基因遗传病;如:地中海贫血、血友病、白化病等。另一些疾病则是由多个基因座位存在有缺陷基因,这些缺陷基因相互协同作用所致。在许多情况下,这些缺陷基因还需要一定的环境因素参与,才能致个体发病,这一类疾病称谓多基因遗传病,如:高血压、糖尿病、冠心病、肿瘤等等。 基因疾病的发生往往由于基因缺失、突变、错位或外来基因(或DNA片段)插入所引起,导致疾病症状发生的直接原因往往是基因控制的产物发生改变所致[2]。基因产物(蛋白质、酶)的一级结构,二级结物、三级结构或四级结构的改变都可引起疾病[3]。 1.1 基因与肿瘤 癌(Cancer)是一群不受生长调控而增殖的细胞,也称恶性肿瘤。目前已经发现了上百个原癌基因和许多抑癌基因,证明细胞癌变的分子基础是基因突变,DNA的变化和不正常活动导致了细胞癌变。癌基因可分为两大类:一类是病毒癌基因(主要有DNA病毒和RNA病毒),其使靶细胞发生恶性转化。另一类是细胞转化基因(原癌基因),其广泛存在与生物界,具有高保守性,属于管家基因,正常表达时对细胞的生长和分化有调控作用。 ①RNA病毒至少含有gag(组成病毒中心和结构的蛋白质的基因)、pol(逆转录酶的基因)、env(病毒外壳的基因)三种基因,其反转录出的线性双链DNA与宿主的DNA整合,其线性双链表达的产物会激活宿主特定的基因表达,破坏宿主细胞本身固有的平衡,导致细胞发生癌变。 ②原癌基因的突变使其转录活性改变造成细胞癌变。 ③基因互作与癌基因表达主要有染色体构象影响原癌基因表达与抑癌基因产物对原癌基因的调控。 2、基因治疗 基因治疗是通过分子生物学遗传工程手段,将正常基因包括它表达所需要的顺序导入有缺陷基因的患者细胞内,使导入基因发挥作用,从而纠正基因缺陷所致的各种疾病临床症状。纠正致病基因,才能根本上消除病患。目前肝癌基因治疗的方法有: ①反义基因治疗[4]根据肝癌发病原因,导入反义寡核苷酸封闭肝癌基因的表达或用正常

基因与疾病

基因与疾病之流感病毒与流感疫苗 文摘:在过去的一百年中,发生了数次强致病性的流感大流行,每次数百万人死亡,时至今日流感病毒仍然对全球公共卫生构成了严重的威胁。特别是近几年,几乎每年都有新的流感病毒出现,2009年4月,甲型H1N1流感病毒最初现于墨西哥,目前已迅速蔓延到世界各大洲,严重威胁着人们的健康。2013年3月,我国出现新型病毒,H7N9,无数人感染此病毒,2016.1月,广东出现新型病毒H5N6。接种疫苗已被证实是目前最为有效的防止病毒感染和传播的方法。但是,在疫苗技术不断升级的同时,我们不得不面对的是变异更为迅速的流感病毒。因此,新型流感病毒与新型抗流感病毒疫苗之间的战争从未停止,也不会停止。在此,我们对一些流感病毒相关的基本但十分重要的知识进行了介绍,结合传统的和现代的流感疫苗技术进行了讨论。我们相信,通过采用先进的分子生物学工具(手段)和重组技术,高效的流感疫苗可以被迅速设计并制造,使我们具有足够的能力应对潜在的全球流感大流行。在这场对抗中,我们任重而道远。 关键词:流行性感冒疫苗流感病毒甲型H1N1 新型H7N9 H5N6 Genes and disease influenza virus and influenza vaccines (LI Huixian) (Lingnan college teachers college information Zhanjiang 534048) Abstract: in the past one hundred years, occurred several times strong pathogenic influenza pandemic, millions of people die each time, today the influenza virus still poses a serious threat to global public health.Especially in recent years, almost every year there is a new flu virus appears, in April 2009, influenza a (H1N1) virus was originally now in Mexico, has quickly spread to the world's continents, serious threat to people's health.In March 2013, our country appeared new virus, H7N9, millions of people infected with the virus, 2016.1 months, guangdong H5N6 a new virus.Vaccination has been proved to be the most effective way to prevent the spread of the virus infection and.But in vaccine technology escalating at the same time, we have to face is more rapid influenza virus variation.Therefore, a new influenza virus and war between the new influenza virus vaccine has never stopped, also

基因与疾病

基因与疾病 姓名:SJ 摘要:人类的很多疾病都是由于人体的基因发生的错误而引起的,对“错误”的基因进行诊断,并加以校正或置换,可以从根本上达到治疗疾病的目的。本文主要介绍了基因与疾病的关系,疾病基因的诊断及其治疗的对策。 关键词:基因疾病基因诊断治疗 1 基因概述 1.1 基因的认识 弗朗西斯·克里克和詹姆斯·沃森对DNA分子为双股螺旋结构的阐明,将人类生命科学的研究带入了一个新时代——基因时代,为基因医学和基因组的研究奠定了基础,推动了生物医学进一步发展,对健康衰老和疾病的认识也引入到分子水平。基因是遗传信息的物质载体。蕴含支配生命活动的指令和构成生物体的信息。所有生物体的生命活动,都直接或间接的受到基因的控制。人类的许多疾病都与基因有关。基因的分离,表达和克隆是目前功能性基因研究的热点。对人类基因的认识、定位和测序分析被认为“大科学”,近年来国际上提出的“生物学中的星球大战”就是要利用体细胞遗传学方法和电子计算机技术,认清人类染色体的30亿(bp)DNA的信息顺序,从而把握“生命的蓝图”,基因对医学各生命科学的发展极具现实意义[1]。 1.2 基因与蛋白质的合成 基因决定着蛋白质的合成,而蛋白质决定代谢作用,代谢作用则决定各种生物性状。DNA链是由许多单核苷酸(A腺嘌呤、C胞嘧啶、T胸腺嘧啶、G鸟嘌呤)按一定顺序连接排列而成的一条长链。在翻译蛋白质时,每三个核苷酸决定蛋白质的一个氨基酸。因此从已知的DNA的核苷酸的排列顺序或蛋白质多肽链氨基酸的顺序,都可以推断出对方的组成。 1.3 基因的研究方法 HGP(人类基因组计划)的近期目标主要是测定人类基因组全序列。而人类基因组DNA由四种核苷酸按一定的顺序排列而成,DNA所含核苷酸的总数为30亿对,如此庞杂的序列顺序如何能一个一个地测定排列出来,确是一项浩大的工程。然而科学家想出了一整套办法,建立了许多测定的方法和手段。先按不同尺度把人类基因组分成若干大的区域,每个大的区域再分成小区域,小区域再切成若干片段,然后把每个小片段的序列测定后排接成小区域,由小区域序列排接成大区域,再把大区域序列排接成全序列。简单地说就是将长长的DNA分成许多许多片段,再一个片段一个片段的测定,结果出来后再将这些片段的DNA序列依次连接起来,这样就得出了整个DNA的全序列[2]。 2 基因与疾病的关系 在人类的疾病中,由遗传因素或主要由遗传因素决定的疾病,称谓遗传病。根据临床统计,25%的生理缺陷、30%的儿童疾病和60%的成年人疾病都是由遗传病引起的。而人类遗传病据报道有5000种,大部分是单基因缺陷造成的。机体是一个复杂的动态性的平衡系统,每一个基因对机体的正常功能的影响都是复杂

第章线粒体遗传与线粒体疾病

第十三章线粒体疾病 广义的线粒体病(mitochondrial disease)指以线粒体功能异常为主要病因的一大类疾病。除线粒体基因组缺陷直接导致的疾病外,编码线粒体蛋白的核DNA突变也可引起线粒体病,但这类疾病表现为孟德尔遗传方式。目前发现还有一类线粒体疾病,可能涉及到mtDNA 与nDNA的共同改变,认为是基因组间交流的通讯缺陷。通常所指的线粒体疾病为狭义的概念,即线粒体DNA突变所致的线粒体功能异常。 第一节疾病过程中的线粒体变化 线粒体对外界环境因素的变化很敏感,一些环境因素的影响可直接造成线粒体功能的异常。例如在有害物质渗入(中毒)、病毒入侵(感染)等情况下,线粒体亦可发生肿胀甚至破裂,肿胀后的体积有的比正常体积大3~4倍。如人体原发性肝癌细胞癌变过程中,线粒体嵴的数目逐渐下降而最终成为液泡状线粒体;缺血性损伤时的线粒体也会出现结构变异如凝集、肿胀等;坏血病患者的病变组织中有时也可见2到3个线粒体融合成一个大的线粒体的现象,称为线粒体球;一些细胞病变时,可看到线粒体中累积大量的脂肪或蛋白质,有时可见线粒体基质颗粒大量增加,这些物质的充塞往往影响线粒体功能甚至导致细胞死亡;如线粒体在微波照射下会发生亚微结构的变化,从而导致功能上的改变;氰化物、CO等物质可阻断呼吸链上的电子传递,造成生物氧化中断、细胞死亡;随着年龄的增长,线粒体的氧化磷酸化能力下降等等。在这些情况下,线粒体常作为细胞病变或损伤时最敏感的指标之一,成为分子细胞病理学检查的重要依据。

第二节线粒体疾病的分类 根据不同的角度,线粒体疾病可以有不同的分类。从临床角度,线粒体疾病主要涉及心、脑等组织器官或系统;从病因和病理机制角度,线粒体疾病有生化分类和遗传分类之别。 一、生化分类 根据线粒体所涉及的代谢功能,线粒体疾病可分为以下5种类型:底物转运缺陷、底物利用缺陷、Krebs循环缺陷、电子传导缺陷和氧化磷酸化偶联缺陷(表13-1)。 表13-1 线粒体疾病的生化分类 二、遗传分类 根据缺陷的遗传原因,线粒体疾病分为核DNA(nDNA)缺陷、mtDNA缺陷以及nDNA和mtDNA联合缺陷3种类型(表13-2)。 表13-2 线粒体疾病的遗传分类

线粒体DNA疾病

线粒体DNA疾病和生殖技术发展的意义 张文敬2015602591 杨永妍2015602337 丁艺洁2015602756 杨陈祎2015602340 引言线粒体DNA疾病 线粒体是真核细胞内重要的产能细胞器。线粒体疾病是一种病理状态,在这种状态下,线粒体的产能能力受损,并且不能完成其正常功能。这类疾病是相对比较常见的,但是却很少有这样的诊断,因为大多数患者仅表现出非常轻微的症状(曼瓦林等,2007)。和线粒体疾病相关的症状严重性的不同范围使得其被报道的流行率变异性很大:例如,有一种线粒体的病理学改变(下文所讨论的线粒体基因3243A→G的突变)的流行率是1到300之间(曼瓦林等,2007),也有一种观点认为是1到14000之间(钦纳里等,2000)。 线粒体内自身存在DNA(后文称mtDNA),是人体内唯一存在于细胞核外的DNA。线粒体DNA比较特殊的是它有自己的基因序列和核糖体亚型。它编码产生呼吸链中所需要的少数亚单位,而呼吸链是由多个多聚体蛋白依次排列于线粒体膜上形成的一个产能链,此外它还编码产生转运体RNA和核糖体RNA。呼吸链中大部分的必需蛋白质是由细胞核所编码产生的,很多蛋白质同样也需要线粒体DNA来维持和复制。因此无论是线粒体DNA还是细胞核内DNA,其突变就有可能导致线粒体功能的病理性缺失,导致线粒体疾病(泰勒和特恩布尔,2005;格里弗斯等,2012)在这篇综述中,我们将重点讨论由线粒体DNA突变所引起的疾病。线粒体DNA是母系遗传的,原因很明显,在形成受精卵时,精子不携带细胞质成分,来自父亲的线粒体在卵子受精后即泛素化(Sutovsky等,1999,2000)并被靶向破坏(康明斯等,1998;史特拉等,2000;艾拉维等2011;Sato and Sato,2011;德卢卡和奥法雷尔,2012),仅在异常的胚胎中或种间交配的情况下尚存在(乔伦思丹等,1991;圣约翰等,2000)。线粒体DNA 甚至有可能在受精之前就已经被消除了(卢奥等,2013)。 线粒体DNA突变引起的疾病在发病、严重程度和遗传性方面有其独特的特点,很大一方面原因就是在典型的有核细胞中,其线粒体DNA有数以千计的复制体,(Lightowlers等,1997;华莱士,1999)。从遗传学上来讲,多数正常细胞内的线粒体DNA实际上是相同的(这在医学上称为“同型异源性”)。在线粒体DNA疾病中可能存在大量不同的、突变的DNA分子,从而产生了“异质性”(在同一个线粒体中同时存在多种类型的线粒体DNA)。 线粒体DNA是母系遗传的,使得其成为只在母系中遗传为特点的疾病。线粒体DNA单倍体能够调节由细胞核编码的基因突变造成的病理影响(施特奥斯等,2013),这种线粒体DNA的变异性也依据其背景及环境产生利弊不同的影响(治等,2012)。很多线粒体疾病具有异质性,即变异的和原株线粒体DNA共存于受损细胞内。大多数实例中观察到突变量的影响(杰普森等,2006):线粒体DNA突变体的比例,复制量及其分布影响组织的功能(Petruzzella等,1994)。在最常见的疾病当中,当线粒体DNA突变达70%,线粒体DNA疾病开始出现临床症状(杰普森等,2006)。这种取决于突变量

线粒体基因全分析及进化树的构建毕业论文

1、前言(Introduction) 英国《自然》杂志网络版2006年5月18日报道,科学家已对含有2.23亿个碱基对,占人类基因组中碱基对总量的8%左右的人类第一号染色体完成测序,宣告持续16年的人类基因组计划全部完成。作为人类自然科学史上重要的里程碑,“人类基因组”的研究已从“结构基因组”阶段进入“功能基因组”阶段。在人类基因组计划后相继推出的水稻基因组计划、马铃薯基因组计划、草鱼基因组计划等,和快速增长的微生物基因测序,“海量”的基因信息的积累,催生了“功能基因组”时代的来临。针对充分利用“海量”基因组信息的生物信息学不仅应运而生,而且为以注释、阐明基因功和利用基因生物学功能的“后基因组时代”的研究发挥了重大作用。 生物信息学是把基因组DNA序列信息分析作为源头,在获得了蛋白质编码区的信息后,进行蛋白质空间结构的预测和模拟,然后依据特定蛋白质的功能进行必要的药物设计。就是说,生物信息学的主要任务是组织和分析生物学数据,而生物学数据的分析离不开计算机算法的运用。因此,可以说生物信息学是一门集生命科学、计算机科学、数学、物理学为一身的多学科交叉的前沿学科。 动物mtDNA属母系遗传,是共价闭合的双链DNA分子,核酸序列和组成比较保守,基因的排列顺序比较稳定而且紧密,无重组和单拷贝。由于其结构和进化上的特点,mtDNA已成为研究动物起源进化以及群体遗传分化的理想对象。昆虫mtDNA大小约为15.4~16.3kb,其基因组大小的变化受A+T-rich区长度变化的影响十分显著。A+T-rich 区(A+T丰富区)的长度最短为399 bp,最长达4601 bp,两者相差4202bp,前者见于Tricholepidion gertschi,后者见于黑尾果蝇Drosophila melanogaster。昆虫线粒体基因组由2个rRNA基因(1rRNA和srRNA)、22个tRNA基因、13个蛋白编码基因[Cytb基因(细胞色素b基因,cytochrome oxidase b),ATPase6和ATPase8(ATP酶亚基基因6和8,ATP synthase subunits 6 and 8),COⅠ、COⅡ和COⅢ(细胞色素氧化酶亚基基因Ⅰ-Ⅲ,cytochrome oxidasesubunit Ⅰ-Ⅲ),NDl-6和ND4L(NADH降解酶基因1~6和4L,NADH dehydrogenase subunit 1-6 and 4L)],共37个基因和1个包含复制启动子的非编码区(A+T-rich区)组成。Aloni 和Attardi将mtDNA两条链中密度较小者命名为轻链(L链),另一条命名为重链(H链)。考虑到昆虫mtDNA没有明显的L链与H链之分,Simon等根据昆虫mtDNA中多数基因都是从一条链上转录的特点,将这一条链定义为J链,另一条链定义为N链[1-3]。 自Wolstenholme和Clary第一个报道了果蝇Drosophila yakuba mtDNA全序列以来,GenBank已收录了80余种昆虫mtDNA全序列,其中双翅目昆虫有15个种。在双翅目实蝇科昆虫中,地中海实蝇Ceratis capitata和油橄榄果实蝇Bactrocera oleae的线粒体基因组全序列已有报道[4]。 梨小食心虫,学名Grapholitha molesta (Busck),简称“梨小”,别名有梨小蛀果蛾、东方果蠹蛾、梨姬食心虫、桃折梢虫、小食心虫、桃折心虫。属于鳞翅目(Lepidoptera),

基因突变与疾病

第九章基因突变与疾病 基因(gene)是DNA分子上一段具有遗传功能的核苷酸序列,是细胞内遗传物质的主要结构和功能单位。基因具有如下特征:①基因能自我复制。一个基因随DNA的复制而成为两个相同的基因。②基因决定性状。DNA上某一结构基因经转录和翻译,决定某种酶和蛋白质的合成,从而表现出某一性状。③基因能发生突变。在生物进化过程中,由于多种因素的影响,基因可发生突变,基因突变是生物进化、分化的分子基础,也是某些疾病的基础,是生物界普遍存在的现象。 第一节基因突变的概念和原因 基因突变(gene mutation)是指DNA分子上核苷酸序列或数目发生改变。由一个或一对碱基发生改变引起核苷酸序列改变所致的突变,称为点突变(point mutation);把核苷酸数目改变的基因突变称为缺失性或插入性突变(deletional and insertionar mutation)。基因突变后在原有位置上出现的新基因,称为突变基因(mutant gene)。基因突变后变为和原来基因不同的等位基因,从而导致了基因结构和功能的改变,且能自我复制,代代相传。 基因突变可以发生在生殖细胞,也可发生在体细胞。发生在生殖细胞的基因突变可通过受精卵将突变的遗传信息传给下一代,并在子代所有细胞中都存在这种改变。由于子代生殖细胞的遗传性状也发生了相应的改变,故可代代相传。发生于有性生殖生物体细胞的基因突变不会传递给子代,但可传给由突变细胞分裂所形成的各代子细胞群,在局部形成突变细胞群体。通常认为肿瘤就是体细胞突变的结果。 基因突变的原因很多,目前认为与下列因素有关:

一、自发性损伤 大量的突变属于自发突变,可能与DNA复制过程中碱基配对出现误差有关。通常DNA复制时碱基配对总有一定的误配率,但一般均可通过DNA损伤的修复酶快速修正。如果少数误配碱基未被纠正或诸多修复酶某一种发生偏差,则碱基误配率就会增高,导致DNA分子的自发性损伤。 二、诱变剂的作用 诱变剂(mutagen)是外源诱发突变的因素,它们的种类繁多,主要有: (一)物理因素 如紫外线、电离辐射等。大剂量紫外线照射可引起DNA主链上相邻的两个嘧啶碱以共价键相结合。生成嘧啶二聚体,相邻两个T、相邻两个C或C与T 之间均可形成二聚体,但最容易形成的二聚体是胸苷酸二聚体(thyminedimerTT )。由于紫外线对体细胞DNA的损伤,从而可以诱发许多皮肤细胞突变导致皮肤癌。电离辐射对DNA的损伤有直接效应和间接效应。前者系电离辐射穿透生物组织时,其辐射能量向组织传递,引起细胞内大分子物质吸收能量而激发电离,导致DNA理化性质的改变或损伤;后者系电离辐射通过扩散的离子及自由基使能量被生物分子所吸收导致DNA损伤。生物组织中的水 经辐射电离后可产生大量稳定的、高活性的自由基及H 2O 2 等。这些自由基与活 性氧与生物大分子作用不但可引起DNA损伤,而且也能引起脂质和生物膜的损伤及蛋白质和酶结构与功能的异常。电离辐射使DNA损伤的作用机制主要表现在三个方面:①碱基破坏脱落与脱氧戊糖分解。②DNA链断裂。③DNA交联或DNA-蛋白质交联。 (二)化学因素 如某些化工原料和产品、工业排放物、汽车尾气、农药、食品防腐剂和添加剂等均具有致突变作用。目前已检出的致突变化合物已达6万余种。现择下列常见化学诱变剂说明对DNA损伤的机制。

基于线粒体CO+Ⅱ和Cytb基因序列的8种漠甲系统发育关系

?556?昆虫知识ChineseBulletinofEntomology 72。C延伸lrain,最后1个循环后,72。C再延伸5 IIlin。扩增产物用1.2%的琼脂糖凝胶电泳检测 大小和亮度,检测结果见图l。对扩增效果良 好的样品委托上海生工生物工程有限公司进行 纯化和双向测序,测序仪为ABIPRISM377型。 1234567Mbp 一2000 —l000 -750 —500 -250 一loo 图1部分种类PER结果检测结果 I,P,mongolica2.M.8randls3.A.potanini4.A, gravidula5.M.kraa场6.P.础tata7.T.pseudopimelia M.DNAmilker 1.3DNA序列分析 用ContigExpress软件进行正反链的拼接。 将正反链匹配校正后的序列剪除引物部分即所 测得的序列。用ChstalXl,8软件对8条序列进 行多重比对,用MEGA2.1软件统计核苷酸组 成,分析各物种间的序列差异。以土甲族的 Eumyladapotanini(Genbank检索号:EU250295、 EU250306)作为外群,基于Kimura.2参数,采用 邻接法(Neighbor-Joiningmethod,NJ法)、最简约 法(MaximumParsimony,MP法)构建系统树。 2结果 本研究测定了漠甲亚科8种昆虫Cytb基 因长度为579bp和C011基因长度为585bp的 部分序列,将所测序列经BLAST搜索GenBank 表明与现有昆虫的Cytb和COII基因序列有很 高的同源性,序列中无碱基的插入和缺失。用 MEGA2.1软件分别统计2个基因的序列组成, 使用无脊椎动物线粒体密码表,对8种昆虫的 密码子使用频率进行统计,推断出各物种Cytb 和COII基因编码区的密码子使用频率及氨基 酸组成。200845(4) 2.1Cytb基因序列组成及变异 分析表明,8种昆虫Cytb基因序列(长579bp)中共有239个核甘酸变异位点,162个简约信息位点,变异率为41.3%。碱基T,C,A,G的平均含量分别为34.4%.22。5%。32.4%和10.7%,A+T平均含量(66.8%)明显高于G+C含量(33.2%)。第三位点表现出非常强的AT含量偏向性,A+T含量较之前2个位点高,达到74.1%,而该位点碱基G的含量最低,平均仅为3.2%。8种昆虫的579bp序列共编码193个氨基酸,其中34个发生取代,变异率为17.6%。在氨基酸组成中,除鳖甲族的宽腹东鳖甲A.gravidula、波氏东鳖甲A.potanini和克氏小鳖甲M.kraatzi3种昆虫外,其余5种均不含半胱氨酸(Cys),由19种氨基酸组成,其中亮氨酸(Leu)含量远高于其它氨基酸。从碱基替换的结果看,序列间转换(transition,'IS)略多于颠换(transversion,TV),"IS/Tv的平均值为1.3。转换的发生主要以C—T为主,颠换的发生主要以A—T为主,其它类型的替换很少发生。碱基替换主要发生在密码子第三位点,占总替换数的74.6%,第二位点最保守,很少发生替换,替换率仅为5.2%。 2.2COⅡ基因序列组成及变异 本实验测得8种漠甲COⅡ基因序列长度为585bp的片段,其中变异位点210个,变异率为35。9%。简约信息位点149个。碱基T,C,A,G的平均含量分别为33.1%,加.0%,34.6%和12.4%,A+T平均含量为67.7%,第三位点高达80.1%,该位点碱基G的含量在种间差异很大,在1.0%一8.2%之间,平均为4.1%。共编码195个氨基酸,其中33个发生取代,变异率为16.9%。密码子以A、T结尾频率高,第三位是G的密码子使用较少。在氨基酸组成中,所有种类均不含半胱氨酸(Cys),由19种氨基酸组成,其中亮氨酸(ku)、异亮氨酸(1le)含量最高,反映出CO1I基因在氨基酸组成上具有一定偏向性。从碱基替换的结果看,序列问转换略多于颠换,转换主要发生在C++T之间,颠换主要发生在A++T之间,咧’1'v的平均值为

人类遗传病教案

学校:临清二中学科:生物 第五章第3节《人类遗传病》 一、教材分析 《人类遗传病》是人教版高中生物必修二《遗传与进化》第5章第3节教学内容,主要学习“人类常见遗传病的类型”,“遗传病的监测和预防”和“人类基因组计划与人体健康” 二、教学目标 1.知识目标: (1).人类遗传病及其病例 (2).什么是遗传病及遗传病对人类的危害 (3).遗传病的监测和预防 (4).人类基因组计划与人体健康 2.能力目标: 探讨人类遗传病的监测和预防 3.情感、态度和价值观目标: 关注人类基因组计划及其意义 三、教学重点难点 重点:人类遗传病的主要类型。 难点:(1)多基因遗传病的概念。 (2)近亲结婚的含义及禁止近亲结婚的原因。 四、学情分析 学生初中已经学习了几种遗传病,教材前几章已经出现伴性遗传病和常染色体遗传病,所以学生对本节内容有一定基础。另外“人类遗传病的类型”是了解水平的内容,学生通过自学就可以达到学习目的。 五、教学方法, 1学案导学:见后面的学案。 2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:1课时 八、教学过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 (二)情景导入、展示目标。 近年来,随着医疗技术的发展和医药卫生条件的改善,人类传染性疾病已得到控制,而人的生殖细胞或受精卵里的遗传物质在数量,结构或功能上发生改变,使由此发育成的个体患先天性遗传病,其发病率和死亡率却有逐年增高的趋势。今天,我们来学习这方面的知识。(三)合作探究、精讲点拨。 探究一、人类常见遗传病的类型 学生分组讨论 1.什么是遗传病?举例? 2.怎样做到遗传病的监测和预防?

线粒体功能障碍与人体疾病地研究的进展(20201221054219)

兰州交通大学化学与生物工程学院 综合能力训练I 文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚

学号:201207730 指导教师:谢放 完成日期:2014-7-16 线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。 一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1 线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而 成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为:(1)外膜与内质网或细胞骨架连接形成网络;⑵内外膜间随机分布横跨两端,宽20nm的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子 通道蛋白;内膜中有电子传递链(呼吸链)复合物l~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-dueing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP 转换蛋白(ANT)和线粒体膜转运孔

人类线粒体基因组与疾病

人类线粒体基因组与疾病 1、线粒体基因及基因组介绍 人类线粒体DNA(mtDNA),共包含37个基因,这37个基因中有22个编码转移核糖核酸(tRNA)、2个编码核糖体核糖核酸(12S和16S rRNA),13个编码多肽。 2、线粒体基因及基因组分析的现状和临床意义 对于可疑线粒体病的患者来说,理想的遗传学诊断方法是发现导致线粒体结构和功能缺陷的相关基因突变。这些基因突变可能在mtDNA上,也可能发生在核基因上,线粒体的遗传方式可能为常染色体隐形遗传、X-连锁遗传、母系遗传,有些还是新突变。由于线粒体病涉及基因众多,目前临床只能选择少数常见的线粒体基因位点进行突变和缺失筛查,阳性率很低,大多数患者难以获得准确的病因诊断。 3、线粒体基因及基因组分析测定 (1)13个编码多肽的基因 编码产物基因分 析 基因变异对应的常见线粒体病种 类 NADH dehydrogenase (complex I)MT-ND1Leber遗传性视神经病 MT-ND2心肌线粒体病,Leber遗传性视神经病 MT-ND3进肌阵挛,癫痫,视神经萎缩MT-ND4 Leber遗传性视神经病,线粒体肌 病,Leber遗传性视神经病,张力 障碍 MT-

ND4L Leber遗传性视神经病 MT-ND5Leigh综合征,线粒体脑肌病伴乳酸中毒及中风样发作综合症 MT-ND6Leber遗传性视神经病,线粒体脑肌病伴乳酸中毒及中风样发作综合症,糖尿病,肌张力障碍 coenzyme Q-cytochrome c reductase/Cytochrome b(complex III)MT-Cytb 慢性游走性红斑,Leber遗传性视 神经病,线粒体肌病,心肌线粒 体病,线粒体脑肌病伴乳酸中毒 及中风样发作综合症,帕金森病 cytochrome c oxidase(complex IV)MT- COX1 肌红蛋白尿运动神经元疾病,铁 粒幼细胞贫血 MT- COX2 线粒体肌病,线粒体多系统疾 病,线粒体脑肌病 MT- COX3 Leigh综合征,慢性游走性红斑, 骨骼肌溶解症 ATP synthase MT- ATP6 共济失调并发色素性视网膜炎, 母系遗传Leigh综合征,家族性双 侧纹状体坏死 MT- ATP8 共济失调并发色素性视网膜炎, 母系遗传Leigh综合征,家族性双 侧纹状体坏死 (2)22个编码tRNA的基因 Alanine MT-TA进行性眼外肌麻痹Arginine MT-TR

遗传与疾病的关系

遗传与疾病的关系 《浅谈疾病与遗传的关系》)12.(

姓名:xx 专业:xx 学号:11306xxx 2012.4.28 日期: 随着染色体显示技术进步,通过揭晓核糖核酸的分子结构,以及对 研究遗传和疾病的研究进入一个新的层次。基因定位和功能的阐明,则使人体患这种即存在易感基因,表明,疾病对应人类的易感基因,

正是由于细胞遗传物质的受损而导致的基因突变和病的可能性加大,染色体变异,从而产生易感基因,加大人体患病概率,因此,几乎所有的疾病都与遗传有关。 一、疾病的本质是什么?疾病是机体在一定的条件下,受病因损害作用后,因自稳调 节紊乱而发生的异常生命活动过程,并引发一系列代谢、功能、一定的原因造结构的变化,表现为症状、体征和行为的异常。成的生命存在的一种状态,在这种状态下,人体的形态和(或)或早或正常的生命活动受到限制或破坏,功能发生一定的变化,(恢复正这种状态的结局可以是康复迟地表现出可觉察的症状,常)或长期残存,甚至导致死亡。但由于个体差异的存在,疾病

至今尚无令人满意的定义。那么,疾病的本质什么呢? 就人类疾病而言,即可分为生物病原体引起的疾病和非传染性疾病两大类,也可细分为炎症,免疫性疾病,心血管系统疾病,呼吸系统疾病,消化系统疾病,淋巴造血系统疾病,泌尿系统疾病,生殖系统和乳腺疾病,内分泌系统疾病,神经系统疾病,传染病与深部真菌病,寄生虫病十二类。倘若继续细分下去,加之那么该如何预防与治疗疾病疾病数目会不断增加,技术的进步, 此时便问题便迎刃而解。呢?最好的途径莫过于抓住疾病本质,经常会同回到第一个问题,疾病的本质是什么。在疾病出现时,,此时医师可针对出现的其中时出现临床症状(早期肿瘤除外)

线粒体dna鉴定

竭诚为您提供优质文档/双击可除 线粒体dna鉴定 篇一:线粒体DnA的结构特征及在鹿科动物物种鉴定中的应用 线粒体DnA的结构特征及在鹿科动物物种鉴定中的应用摘要最新研究表明,作为生物能量的生成场所线粒体是一种具有自我遗传控制功能,本文重点针对鹿科动物的线粒体DnA结构特征进行了研究和分析,通过具体的实验验证了鹿科动物物种鉴定中线粒体DnA的实际功能和应用。同时,还对线粒体DnA的提取方法进行了探索,最后就线粒体DnA 的序列以及动物物种进行了鉴定,就鹿科动物线粒体DnA的研究成果提出了意见。 关键词染色体;线粒体DnA;鹿科动物;物种鉴定 0引言 线粒体是1898年被命名的,其实线粒体的发现却要追踪到1850年。线粒体外膜比较平滑,具有两层的膜包被,向内的折叠内膜形成嵴,两层膜中间有一个腔,基质居于线粒体的中央。基质内部有可以喝三羧酸进行循环时所需要的

所有酶类,内膜上有ATp酶复合体和呼吸链酶系。线粒体其实就是细胞内形成ATp和氧化磷酸化的关键场所,因此,被形象地成为细胞的动力加工厂。 1线粒体DnA结构特征 真核生物所呼吸所用的细胞器就是线粒体,不同物种的细胞之间,其线粒体的数目有着很大的差距,通常情况下都在100个~3000个之间,植物细胞中一般都会含有50个~100个左右的线粒体,而动物的细胞中其线粒体的数目差异性要远远高于植物体内的线粒体数目,多的要达到1000个,少的却只有50个左右。实验表明,植物细胞中的所有线粒体都会参与植物本身的一系列新陈代谢的全过程。植物体内的所有的线粒体通过自身的功能可以把细胞所吸收和合成的糖类、脂肪等所有的储藏能量经过进一步地氧化而生成了co2和h2o,最后通过特定的方式将其释放出去,同时它还能将所存储的一些太阳能经过一系列的转换生成了细胞用以维持自身的生理功能的具体能量-ATp分子。正是由于植物细胞中的线粒体少于动物体内的线粒体,从而制约了能量的来源,因此植物就不可能出现和动物一样的自由活动和快速增长。由于线粒体DnA(mtDnA)相对比较小,所以它仅能决定本身最基本的一些特征,缺少多余的编码结构,因此就难以产生有效的修复功能。实验表明,只要线粒体DnA受到了不同程度的损伤,哪怕只是一个极其微小的变化,都会直接

线粒体功能障碍和人体疾病的研究进展

兰州交通大学化学与生物工程学院综合能力训练Ⅰ——文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚 学号:201207730 指导教师:谢放 完成日期:2014-7-16

线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为: (1)外膜与内质网或细胞骨架连接形成网络;(2)内外膜间随机分布横跨两端,宽20nm 的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子通道蛋白;内膜中有电子传递链(呼吸链)复合物I~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-ducing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP转换蛋白(ANT)和线粒体膜转运孔(mitochondrialper-meabletransition pore,MPTP)存在于接触点;三羧酸循环(TCA cycle)酶系、存储钙离子的致密颗粒及线粒体基因组则包含于基质中。【1】与核基因组(nDNA)不同,mtDNA 结构简单,仅含16 569 个碱基,编码2 种rRNA、22 种tRNA和13种参与呼吸链形成的多肽。通常裸露且不含内含子,既缺乏组蛋白保护和完善的自我修复系统,又靠近内膜呼吸链,极易受环境影响,突变频率比nDNA 高10~20 倍。 1.2线粒体功能作为糖、脂肪、氨基酸最终氧化释能的场所,线粒体的主要功能是进行氧化磷酸化、合成ATP,为生命活动提供直接能量。除此以外,它还扮演着多种角色,其中之一是充当“钙库”,参与细胞内钙离子的信号传导。

相关文档
最新文档