初二数学平行四边形的性质复习讲义

初二数学平行四边形的性质复习讲义
初二数学平行四边形的性质复习讲义

初二数学平行四边形的性质复习讲义

初二()班姓名:

基础知识

1.平行四边形的定义:叫做平行四边形

2.平行四边形的性质:(1)平行四边形的两组对边

(2)平行四边形的两组对角.(3)平行四边形的对角线.3.平行线的性质:平行线之间的距离

4.平行四边形的判定:1)的四边形是平行四边形.

2)的四边形是平行四边形.3) 的四边形是平行四边形.

4) 的四边形是平行四边形.

基础练习:

1.△ABC的三条中位线围成的三角形的周长是5cm,则△ABC的周长是___cm.

2.一个五边形的5个外角的比是1∶2∶3∶4∶5,则这个五边形的最大内角的度数是_____。

3.一个平行四边形的一个内角比它的邻角大36°,这个平行四边形的四个内角度数为 .

4.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是_________

5.□ABCD中,AC=4cm,BD=6cm,则AB边的取值范围是 .

6.□ABCD的周长是120cm,对角线AC,BD相交于点O,△AOB的周长比△BOC的周长小10cm,则AB= ,BC= .

7.已知平行四边形的面积是120,相邻两边上的高分别为6和5,则它的周长为 .

8.在□ABCD中,AG平分∠BAD交BC于G,∠B=60°,AG=6,CG=3,则□ABCD的周长为 .

9.□ABCD中,AD∶AB=1∶2,M是AB的中点,则∠DMC= 度。

【典例分析】

例1.已知:如图,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O,求证:O是BD的中点.

例2.已知如图,□ABCD中,AB的延长线上取一点E,使BE=AB,在CE上取一点M使CM =CD,连结DM并延长交AE的延长线于点F.

求证:BD=BF

例3如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=?14,?AC=19,求MN的长.

例4已知如图,□ABCD中,M、N分别是AB、DC的中点,AN与DM相交于点P,BN与CM 相交于Q。问PQ与MN什么关系,你能利用所学知识说明为什么吗?

【回家作业】

一.填空题

1.□ABCD的周长为36,对角线AC,BD相交于点O.点E是CD中点,BD=12,则△DOE的

周长为.

2.如果一个正多边形的一个外角是60°,那么这个正多边形的内角和为___________

3.在□ABCD中,∠A的平分线交BC于点E.若AB=10cm,CD=14cm,则EC=__________.

4.在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长BC到点F,使CF=1

2

B C.

若AB=10,则EF的长是_________.

5.已知□ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是_______.

6.如图,在□ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E

作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面

积是__________.

二、解答题:

1.如下图所示,□ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=60°,BE=2,

CF=1,连结DE,求△DEC的面积.

2.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和∠α+∠β的度

数.

3. 如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点.

求证:四边形DFGE 是平行四边形.

4. 如图,等边△ABC 的边长是2,D 、E 分别为AB 、AC 的中点,延长BC 至点F ,使

CF =12

BC ,连结CD 和EF . (1)求证:四边形CDEF 是平行四边形;

(2)求四边形CDEF 的周长.

4.如图,AD 是∠BAC 的外角平分线,CD ⊥AD 于点D ,E 是BC 的中点.

求证:DE =

1

2

(AB +AC ).

平行四边形的性质(一)

第六章平行四边形 1. 平行四边形的性质(一) 杨家湾二中顾怀林 一、学生起点分析 学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。 学生活动经验基础:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。 二、学习任务分析 四边形和三角形一样,也是基本的平面图形,在三角形有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索平行四边形的性质并培养学生的探索意识。 教学目标: 1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯; 2.探索并掌握平行四边形的性质,并能简单应用; 3.在探索活动过程中发展学生的探究意识。 教学重点:平行四边形性质的探索。 教学难点:平行四边形性质的理解。 教学方法:探索归纳法 三、教学过程设计 本节课分5个环节: 第一环节:实践探索,直观感知 第二环节:探索归纳,交流合作 第三环节:推理论证,感悟升华 第四环节:应用巩固,深化提高 第五环节:评价反思,概括总结

第一环节:实践探索,直观感知 1.小组活动一 内容: 问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。 (1)你拼出了怎样的四边形?与同桌交流一下; (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。 目的: 通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形; 平行四边形的相邻的两个顶点连成的一段叫做它的对角线。 教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示“”。 2.小组活动二 内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗? 目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。 效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。 第二环节探索归纳、合作交流 小组活动三: 内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?⑵你还发现平行四边形的那些性质呢? 活动目的: 这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。

初二数学上期末总复习(知识点+习题+答案)

D C B A 21D C B A (一)三角形部分 一、知识点汇总 1. 三角形的定义定义:不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。 组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内 角,简称角,相邻两边的公共端点是三角形的顶点。 三角形ABC 用符号表示为△A BC.三角形AB C的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A所对的边BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形; (3)△ABC 是三角形ABC 的符号标记,单独的△没有意义. 2、(1)三角形按边分类: (2 3、三角形的三边关系 三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边。 注意: (1)三边关系的依据是:两点之间线段最短; (2)围成三角形的条件是:任意两边之和大于第三边. 4、和三角形有关的线段: (1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段 表示法:1、AD 是△ABC 的BC 上的中线. 2、BD=D C=0.5BC. 3、AD 是 ABC 的中线; 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形. (2)三角形的角平分线 三角形一个内角的平分线与它的对边相交,这个角与交点之间的线段。 三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三角形 斜三角形 锐角三角形 钝角三角形

D C B A 21B A C M D 表示法:1、AD 是△ABC 的∠BA C的平分线.2、∠1=∠2=0.5∠BAC. 3、AD 平分∠B AC,交BC 于D 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; (3)三角形的高 三角形的高:从三角形的一顶点向它的对边作垂线, 顶点和垂足之间的线段叫做三角形的高, 表示法:1、AD 是△AB C的BC 上的高。 2、AD ⊥BC 于D 。 3、∠ADB =∠ADC=90°。 4、AD 是△ABC 的高。 注意:①三角形的高是线段:高与垂线不同,高是线段,垂线是直线。 ②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在三角形外; ③三角形三条高所在直线交于一点.(而锐三角形的三条高的交点在三角形的内部...................,.直角..三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。)..................................... 4、三角形的内角和定理 定理:三角形的内角和等于180°. 推论:直角三角形的两个锐角互余。 5、三角形内角外角的关系: (1)三角形三个内角的和等于180?; (2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余. 6、三角形的外角的定义: 三角形一边与另一边的延长线组成的角,叫做三角形的外角. 注意:每个顶点处都有两个外角,但这两个外角是对顶角. 如:∠ACD 、∠BCE 都是△AB C的外角,且∠ACD=∠BC E, 所以说一个三角形有六 个外角,但我们每个一个顶点处只选一个外角,这样三角形的外角就只有三个了. 7. 三角形外角的性质 (1)三角形的一个外角等于它不相邻的两个内角之和. (2)三角形的一个角大于与它不相邻的任何一个内角. 注意:(1)它不相邻的内角不容忽视; (2)作CM ∥AB 由于B 、C 、D共线 ∴∠A=∠1,∠B=∠2. 即∠ACD =∠1+∠2=∠A+∠B. 那么∠ACD>∠A.∠ACD>∠B 。 8、(1)多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 多边形的内角:多边形相邻两边组成的角叫做它的内角。 多边形内角和公式:n 边形的内角和等于(n-2)·180° 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

经典特殊的平行四边形讲义

特殊 的平行四边形 一、知识回顾 矩形、菱形、正方形 1、菱形的性质:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对角. ③具有平行四边形所有性质. 2.菱形的判定:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形. ③四条边都相等的四边形是菱形. 3.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质. 4.矩形的判定:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形. ③有三个角是直角的四边形是矩形. 5.正方形的性质:①正方形的四个角都是直角,四条边都相等. ②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角. 6.正方形的判定:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形. ③对角线相等的菱形是正方形.④对角线互相垂直的矩形是正方形. 课前练习: 1.已知平行四边形ABCD 的周长是28cm ,CD-AD=2cm ,那么AB=______cm ,BC=______cm . 2.菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为_____,一组对边的距离为_____ 3.在菱形ABCD 中,∠ADC=120°,则BD :AC 等于________ 4.已知正方形的边长为a ,则正方形内任意一点到四边的距离之和为_____. 5.矩形ABCD 被两条对角线分成的四个小三角形的周长之和是86cm ,对角线长是13cm , 则矩形ABCD 的周长是_____________ 6.如图,有一张面积为1的正方形纸片ABCD ,M ,N 分别是AD ,BC 边的中点, 将C 点折叠至MN 上,落在P 点的位置,折痕为BQ ,连结PQ ,则PQ 二、例题讲解 矩形 例1.如图,已知矩形ABCD 的纸片沿对角线BD 折叠,使C 落在C ’处,BC ’边交AD 于E ,AD=4,CD=2 (1)求AE 的长 (2)△BED 的面积 巩固练习: 1.如图,矩形ABCD 中,AD=9,AB=3,将其折叠,使其点D 与点B 重合,折痕为 EF,求DE 和EF 的长。 2.如图,已知将矩形ABCD 沿EF 所在直线翻折,使点A 与C 重合,AB=6,AD=8,求折痕EF 的长 M D Q BAC ’ D A B C E F D A B C E C ’ E A D

平行四边形总复习讲义

平行四边形 【知识梳理】 平行四边形是由三角形绕其一边的中点旋转180°而成的中心对称图形。 (1)定义:两组对边分别平行的四边形是平行四边形。 平行四边形是中心对称图形,对角线的交点是它的对称中心。 记作:□ABCD,读作平行四边形ABCD。如图: (2)平行四边形的性质:(证明) ①平行四边形的对边;②平行四边形的对边; ③平行四边形的对角;④平行四边形的对角 题型一、填空题: 【例题精讲】 1、如图1,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于. 2、如图2,过平行四边形ABCD的顶点A分别引高AE、AF,如果AE=3.5,AF=2.8,∠EAF=30°,则AB=,AD=. 3、如图3,平行四边形ABCD的周长是36,且AB:BC=5:4,对角线AC、BD相交于点O,且BD⊥AD,则BD=,AC=. 4、已知平行四边形的面积为4,O为两条对角线的交点,那么△AOB的面积为. 5、在平面直角坐标系内,点A、B、C的坐标分别为(1,2)、(0,0)、(3,0),若以点A、B、C、D为顶点构成平行四边形,则点D坐标为. 6、如图6,在周长为20cm的平行四边形ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为.

7、如图7,平行四边形ABCD中,∠A=70°,将平行四边形ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠BNE=. 8、如图8,□ABCD绕点A逆时针旋转30°,得到□AB′C′D′(点B′与点B 是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=. 9、如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.

(完整版)新人教版八年级下册数学知识点总结归纳期末总复习

新人教版八年级下册数学知识点总结归纳期末总复习 一、 第十六章 二次根式 【知识回顾】 : 1.二次根式:式子 a (a ≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数 相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(1)(a )2=a (a ≥0); (2) ==a a 2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中 有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. =·(a ≥0,b ≥0); (b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,ab a b b b a a =(>0) (<0) 0 (=0);

都适用于二次根式的运算 二、第十七章 勾股定理 归纳总结 1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边 长为c ,那么c b a 222=+ 应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90C ∠=?,则 c =,b =,a =) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。 2、勾股定理逆定理:如果三角形三边长a,b,c 满足c b a 222=+那么 这个三角形是直角三角形。 应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。 (定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一 的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边) 3、勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10; 5,12,13;7,24,25等 4.直角三角形的性质 (1)直角三角形的两个锐角互余。可表示如下:∠C=90°?∠A+∠B=90° (2)在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30° ?BC=2 1AB ∠C=90°

平行四边形及其性质

平行四边形及其性质

课题: 4 . 1 平行四边形及其性质 教材:北师大版义务教育课程标准实验教科书八年级上册 一、教材分析 1.教材的地位与作用 平行四边形是最基本的几何图形,也是“空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用. 本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用. 2.教学目标: 知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力. 数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力. 解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性. 情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐. 3.教学重点、难点: 重点:理解并掌握平行四边形的概念及其性质. 难点:运用平移、旋转的图形变换思想探究平行四边形的性质. 4.教材处理: 基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合. 首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性. 然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的

平行四边形的性质与判定讲义精品

平行四边形的性质与判 定讲义精品 -CAL-FENGHAI.-(YICAI)-Company One1

C F B E D A 平行四边形 一、知识梳理 1.平行四边形: (1)平行四边形的定义:两组对边分别平行的四边形是平行四边形.平行四边形用符号“”表示.平 行四边形ABCD 记作,读作平行四边形ABCD . 2.平行四边形的性质: (1) 平行四边形的对边平行且相等. (2).平行四边形的对角相等,邻角互补。 (3)平行四边形的对角线互相平分. (4)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积. 例1.ABCD 中,∠A 的平分线分BC 成4cm 和3cm 两条线段, 则ABCD 的周长为 . 例2.在ABCD 中,∠C=60o,DE ⊥AB 于E,DF ⊥BC 于F . (1)则∠EDF= ; (2)如图,若AE=4,CF=7, 则ABCD 周长= ; 例3.在平行四边形ABCD 中,已知∠A =40°,则∠B = ,∠C = ,∠D = . 例4..中,周长为20cm ,对角线AC 交BD 于点O ,△OAB 比△OBC 的周长多4,则边AB =____________,BC =____________. 变式训练.如图,在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,ΔAOB 的周长为15,AB =6,那么对角线AC 和BD 的和是多少 例5.如图,在□ABCD 中,O 是对角线的交点,过O 的直线交AB 于E ,交DC 于F ,图中全等三角 形共有 ( ) A .2对 B .3对 C .6对 D .8对 3.两条平行线间的距离: (1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离. (2)两平行线间的距离处处相等. 例6、有以下四个说法: ①两点的距离,点到直线的距离,两条平行线间的距离,都是指某种线段的长. ②如果两点的位置固定,那么它们的距离是定值. ③如果一点和一条直线的位置固定,那么它们的距离是定值. ④两条平行线间的距离不是定值 其中正确说法的个数是 ( ) A .1 B .2 C .3 D .4 4.平行四边形的面积: (1)如图①, . O F E D C B A

八年级数学上册期末复习知识点.

八年级数学上册期末知识点总结 第十一章三角形 一、知识框架: 二、知识概念: 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边. 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高. 4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线. 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性. 7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 8.多边形的内角:多边形相邻两边组成的角叫做它的内角. 9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线. 11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质: ⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角.

⑶多边形内角和公式:n边形的内角和等于(2) n-·180° ⑷多边形的外角和:多边形的外角和为360°. ⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3) n-条对角 线,把多边形分成(2) n-个三角形.②n边形共有 (3) 2 n n- 条对角线. 第十二章全等三角形 一、知识框架: 二、知识概念: 1.基本定义: ⑴全等形:能够完全重合的两个图形叫做全等形. ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质: ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性. ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理: ⑴边边边(SSS):三边对应相等的两个三角形全等. ⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形

18.1.1 平行四边形的性质(教学设计)

第十八章平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质 第一课时 【岩帅中学李光兴】 一、教学目标: 1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3.培养学生发现问题、解决问题的能力及逻辑推理能力. 二、重点、难点 【重点】平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 【难点】运用平行四边形的性质进行有关的论证和计算. 三、课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象? 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗? 你能总结出平行四边形的定义吗? (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“”来表示. 如图,在四边形ABCD中,AB∥DC,AD∥BC, 那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定); ②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质). 平行四边形性质一:平行四边形的两组对边分别平行;

注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下. 猜想平行四边形的对边相等、对角相等. 下面证明这个结论的正确性. 已知:如图ABCD, 求证:AB=CD,CB=AD,∠B=∠D, ∠BAD=∠BCD. 分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论. (作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.) 证明:连接AC, ∵AB∥CD,AD∥BC, ∴∠1=∠3,∠2=∠4. 又AC=CA, ∴△ABC≌△CDA (ASA). ∴AB=CD,CB=AD,∠B=∠D. 又∠1+∠4=∠2+∠3, ∴∠BAD=∠BCD. 由此得到: 平行四边形性质二:平行四边形的对边相等. 平行四边形性质三:平行四边形的对角相等.

平行四边形培优讲义新打印版

平行四边形培优讲义新 打印版 -CAL-FENGHAI.-(YICAI)-Company One1

平边四边形知识点 一.知识框架 二.知识概念 平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。 平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 平行四边形的判别方法: 两组对边分别平行的四边形是平行四边形。 两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。 三角形的中位线平行于三角形的第三边,且等于第三边的一半。 矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) 矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。 对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。 推论:直角三角形斜边上的中线等于斜边的一半。 菱形的定义:一组邻边相等的平行四边形叫做菱形。 菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 菱形的判别方法:一组邻边相等的平行四边形是菱形。 对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。 S菱形=1/2×ab(a、b为两条对角线)或底×高 正方形的定义:一组邻边相等的矩形叫做正方形。 正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有四条对称轴) 正方形常用的判定: 有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形;

平行四边形全部讲义

平行四边形 1、平行四边形的性质 考点一、平行四边形的概念 (1)定义:两组对边分别平行的四边形叫做平行四边形。 (2)表示:平行四边形用符号”表示,平行四边形ABCD记作ABCD”, 读作“平行四边形ABCD”。平行四边形一定按顺时针或逆时针依次注明各顶点。(3)平行四边形定义的作用:平行四边形的定义既是判定,又是性质。 ①由定义知平行四边形两组对边分别平行; ②由定义可以得出只要四边形中两组对边分别平行,那么这个四边形就是平行四边形。 (4)平行四边形的基本元素:边、角、对角线。 例1、在ABCD中,EF∥AB,GH∥BC,EF、GH相交于点P,写出图中的 平行四边形。 A E D G P H B F C 考点二、平行四边形的性质 (1)边的性质:平行四边形的对边平行且相等。 (2)角的性质:平行四边形的邻角互补,对角相等。 (3)对角线性质:平行四边形的对角线互相平分。 例2、在ABCD中,∠A+∠C=160°,求∠A、∠B、∠C、∠D的度数。 A B C D

考点三、平行四边形的对角线的性质 (1)平行四边形的对角线互相平分。 例3、在 中,对角线AC 、BD 相交于O 点,若AC=14,BD=8,AB=10,则△OAB 的周长为_______。 练习题 一、感受理解 1.已知O 是 ABCD 的对角线交点,AC=10cm ,BD=18cm ,AD=?12cm ,?则△BOC?的周长是_______. 2.已知 ABCD 的对角线AC ,BD 交于点O ,△AOB 的面积为2,那么平行四边形ABCD 的面积为_____. 3.已知平行四边形的两邻边之比为2:3,周长为20cm ,?则这个平行四边形的两条邻边长分别为___________. 4.平行四边形的周长为30,两邻边的差为5,则其较长边是________. 5.平行四边形具有,而一般四边形不具有的性质是( ) A .外角和等于360° B .对角线互相平分 C .内角和等于360° D .有两条对角线 6.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( ) A.8.3 B.9.6 C.12.6 D.13.6 A O D C B

初二数学期末复习计划归纳

初二数学期末复习计划归纳 一、复习内容: 第一章:勾股定理 第二章:实数第三章:位置与坐标 第四章:一次函数 第五章:二元一次方程组 第六章:数据的分析 第七章:平行线的证明 二、复习目标: 八年级数学本学期知识点多,复习时间又比较短,只有三周的时间。 根据实际情况,应该完成如下目标: (一)、整理本学期学过的知识与方法: 1.第一、七章是几何部分。这三章的重点是勾股定理的应用以及平行线的性质与判别还有三角形 内角和定理及其应用。所以记住性质是关键,学会判定是重点,灵活 应用是目的。要学会判定方法的选择,不同图形之间的区别和联系要 非常熟悉,形成一个有机整体。对常见的证明题要多练多总结。 2.第 四五六章主要是概念的教学,对这几章的考试题型学生可能都不熟悉,所以要以与课本同步的训练题型为主,要列表或作图的,让学生积极 动手操作,并得出结论,课堂上教师讲评,尽量是精讲多练,该动手 的要多动手,尽可能的让学生自己总结出论证几何问题的常用分析方法。 3.第二章主要是计算,教师提前先把概念、性质、方法综合复习,加入适当的练习,在练习计算。课堂上逐一对易错题的讲解,多强调 解题方法的针对性。最后针对平时练习中存有的问题,查漏补缺。

(二)、在自己经历过的解决问题活动中,选择一个有挑战问题性 的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过 程及所获得的体会,并选择这个问题的原因。 (三)、通过本学期的数学学习,让同学们总结自己有哪些收获;有 哪些需要改进的地方。 三、复习方法: 1、强化训练,这个学期计算类和证明类的题目较多,在复习中要 增强这方面的训练。特别是一次函数,在复习过程中要分类型练习, 重点是解题方法的准确选择同时使学生养成检查计算结果的习惯。还 有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又 严谨的效果。 2、增强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点, 对接受水平差的学生课后要增强辅导,即时纠正出现的错误,平时多 小测多检查。对水平较强的学生要引导他们多做课外习题,适当提升 做题难度。 3、增强证明题的训练,通过近阶段的学习,我发现学生对证明题 掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生 如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型 题做全并抓住其特点。 4、增强成绩不理想学生的辅导,制定详细的复习计划,对他们要 多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们实行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕 麻烦,直至弄懂弄会。 四、课时安排:

平行四边形的概念和性质

平行四边形的概念和性质(1) 冒合中学杜碧玲 [教学目标] 1﹑了解平行四边形的概念,掌握平行四边形的性质,并能熟练用其来解决实际问题。 2﹑通过探索、发现、论证培养学生类比、转化的数学思想方法锻炼学生的自学能力和缜密的逻辑思维能力 3、让学生在观察、合作、讨论、交流中感受数学的实际应用价值,培养学生善于发现、积极思考、合作学习、勇于创新的学习态度 [教学重点、难点] (1)重点:掌握平行四边形的性质(2)难点:利用平行四边形的性质解决相关问题 [教学过程] 一、板书课题: 引入:在小学里,我们初步认识平行四边形,会计算平行四边形的周长和面积,这节课开始我们进一步来学习平行四边形的概念,研究它的性质—平行四边形的概念、和性质。 二、出示目标 出示事先写在小黑板上的教学目标: 1﹑了解平行四边形的概念,掌握平行四边形的性质,并能熟练用其来解决实际问题。 2﹑通过探索、发现、论证培养学生类比、转化的数学思想方法锻炼学生的自学能力和缜密的逻辑思维能力 3、让学生在观察、合作、讨论、交流中感受数学的实际应用价值,培养学生善于发现、积极思考、合作学习、勇于创新的学习态度 三、自学指导 (一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学。(二)出示自学指导 认真看课本(P83-84)练习前面的内容。 1.理解平行四边形的概念和记法; 2.掌握平行四边形的对边相等对角相等的性质,注意兰色书签的内容; 3.利用三角形全等证明上述性质。

四、先学 (一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难。 (二)检测 1、过渡语:同学们,看完的请举手。懂了的请举手。好下面就比一比,看谁能正确做出检测题。 2、检测题P84:1、2、3 3、学生练习,请三名同学到黑板上进行板演,教师巡视。(改集错误解进行二次备课) 五、后教 (一)更正:请同学们仔细看一看这三名同学的板演,发现错解的请举手(指名更正) (二)讨论: 教师根据学生发言的情况进行评平行四边形的概念,研究它的性质价,(教师要强调解题格式) (三)归纳:我们已经学习了平行四边形的概念和性质,你能说一说今天的收获吗?(指名说) 六、当堂训练 (一)讲述:让同学口答新知识,能运用新知识做对作业吗?好,要注意解题格式,书写工整。 (二)出示作业题: P90-91第1题2题第3题 (三)学生练习,教师巡视。

第1讲平行四边形的性质和判定讲义

平行四边形的性质和判定 讲义1.已知平行四边形的周长是100cm ,AB :BC =4:1,则AB 的长是_____. 讲义5.平行四边形ABCD 的周长32,5AB =3BC ,则对角线AC 的取值范围为_______ 讲义2.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______.作业4.在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为. 作业5.平行四边形ABCD 的周长为22,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大5,则AD 的边长为. 讲义3.在平行四边形ABCD 中,∠A :∠B =3:2,则∠C =_____度,∠D =___度. 讲义7.在平行四边形ABCD 中,∠B -∠A =20°,则∠D 的度数是_______ 讲义8.由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长 等于等腰三角形的( )A .周长 B .一腰的长 C .周长的一半 D .两腰的和 讲义10.以长为5cm ,4cm ,7cm 的三条线段中的的两条为边,另一条为对角线画平行四 边形,可以画出形状不同的平行四边形的个数是( ) A.1B .2C .3D .4讲义14.如图,平行四边形ABCD 中,AE =CG ,DH =BF ,连结E ,F ,G ,H ,E ,则四边形 EFGH 是_____.H G F E D C B A 讲义15.如图,平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =CF ,连结B ,F , D , E ,B 则四边形BED F 是___________. G F E D C B A

部编版八年级数学下册期末复习资料

第十六章 1.分式的定义:如果a、b表示两个整式,并且b中含有字母,那么式子叫做分式。 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 3.分式的通分和约分:关键先是分解因式 4.分式的运算: 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则:分式乘方要把分子、分母分别乘方。 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。 5. 任何一个不等于零的数的零次幂等于1,即;当n为正整数时,? ( 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数) (1)同底数的幂的乘法:; (2)幂的乘方:; (3)积的乘方:; (4)同底数的幂的除法:( a≠0); (5)商的乘方:();(b≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。 解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。 解分式方程的步骤: (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答. 第十七章反比例函数 1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。其他形式xy=k 2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和y=-x。对称中心是:原点 3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。 第十八章勾股定理 1.勾股定理:如果直角三角形的`两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

平行四边形的性质典型例题

《平行四边形的性质》典型例题 例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度 例2 已知:如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,AOB ?的周长比BOC ?的周长多8cm ,求这个平行四边形各边的长. 例3 已知:如图,在ABCD 中,BD AC 、交于点O ,过O 点作EF 交AB 、CD 于E 、F ,那么OE 、OF 是否相等,说明理由. 例4 已知:如图,点E 在矩形ABCD 的边BC 上,且DE AF AD DE ⊥=,,垂足为F .求证:.DC AF = 例5 O 是ABCD 对角线的交点,OBC ?的周长为59,38=BD ,24=AC ,则=AD ________,若OBC ?与OAB ?的周长之差为15,则=AB ______,ABCD 的周长=______. D C A B O

例6 已知:如图,ABCD 的周长是cm 36,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且cm DE 34=,cm DF 35=.求这个平行四边形的面积. 例7 如图,已知:ABCD 中,BC AE ⊥于E ,CD AF ⊥于F , 若?=∠60EAF ,cm BE 2=,cm FD 3=. 求:AB 、BC 的长和ABCD 的面积.

参考答案 例 1 分析 根据平行四边形的对角相等,邻角互补可以求出四个内角的度数. 解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题意,得1803=+x x ,解得45=x ,∴.1353=x ∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°. 例2 分析 由平行四边形对边相等,可知=+BC AB 平行四边形周长的一半=30cm ,又由AOB ?的周长比BOC ?的周长多8cm ,可知8=-BC AB cm ,由此两式,可求得各边的长. 解 ∵四边形ABCD 为平行四边形,∴.,,OO AO BC AD CD AB === 60=+++BC AD CD AB Θ,∴.30=+BC AB 8)(=++-++OC BC OB OB AB AO ,∴.8=-BC AB ∴.11,19====AD BC CD AB 答:这个平行四边形各边长分别为19cm ,11cm ,19cm ,11cm. 说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差. 例3 分析 观察图形,DOF BOE CFO AEO CDO ABO ?????????,,,从而可说明.OF OE = 证明 在ABCD 中,BD AC 、Θ交于O ,∴.OC AO = CD AB //Θ,∴CFO AEO FCO EAO ∠=∠∠=∠,, ∴)(AAS CFO AEO ???,∴.OF OE = 例4 分析 观察图形,AFD ?与DCE ?都是直角三角形,且锐角DEC ADF ∠=∠,斜边DE AD =,因此这两个直角三角形全等。在这个图形中,若连结AE ,则ABE ?与AFE ?全等,因此可以确定图中许多有用的相等关系。 证明 ∵四边形ABCD 是矩形,∴?=∠90,//C BC AD ,∴.DEC ADE ∠=∠ DE AF ⊥Θ,∴?=∠=∠90C AFD ,

平行四边形的性质及判定(讲义)(含答案)

平行四边形的性质及判定(讲义) ?课前预习 (2)连接AC,BD,设AC,BD的交点为O.求证:OA=OC 1.平行四边形的定义 _________________________的四边形叫做平行四边形.平行四边形__________的两个顶点连成的线段叫做它的对角线.四边形ABCD是平行四边形,记作_________,读作“平行四边形ABCD”. 2.平行四边形的性质 平行四边形是______图形,两条对角线的交点是它的______; 边:________________________________________________; 角:________________________________________________; 对角线:____________________________________________.

3.平行四边形的判定 ?????①的四边形是平行四边形; 边 ②的四边形是平行四边形. 角:_____________________的四边形是平行四边形. 对角线:_____________________的四边形是平行四边形. ?精讲精练 1.在□ABCD中,已知AB,BC,CD三条边的长度分别为x+3,x-4,16,则这个平 行四边形的周长为___________. 2.如图,在□ABCD中,∠DAB的平分线AE交CD于点E,若AB=5,BC=3,则 EC的长为() A.1 B.1.5 C.2 D.3 B C E D A F E D C B A 第2题图第3题图 3.如图,在□ABCD中,CE⊥AB于点E,CF⊥AD于点F.若∠B=60°,则∠ ECF=___________. 4.在□ABCD中,对角线AC,BD相交于点O,若△ABO的周长为15,AB=6,则 AC+BD=____________. 5.如图,在□ABCD中,已知AB=5,AD=3,AC⊥BC,则 □ABCD的面积为_______,线段BD的长为_______. O D C B A

相关文档
最新文档