笛卡尔与解析几何的创立

笛卡尔与解析几何的创立
笛卡尔与解析几何的创立

笛卡尔与解析几何的创立

(201076000208 侯元军 10级教育技术学(1)班)

【摘要】1 7世纪数学的最大成就是创立了解析几何和微积分学 ,为变量数学即近代数学大厦的形成和发展提供了坚实基础。哲学家兼数学家笛卡尔是解析几何学的主要创立者之一。本文通过简要论述和概括解析几何之父——笛卡尔的生平、笛卡尔解析几何思想的成因以及解析几何的建立及其影响,以此来呈现伟大的数学家笛卡尔的光辉人生和解析几何的创立的背景及意义。

【关键字】笛卡尔解析几何变量数学代数几何

十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先欧式几何的那套方法显然已经不适应了,这就导致了解析几何的出现。

一、认识解析几何之父

(一)生平简介

笛卡尔是法国伟大的数学家、哲学家和物理学家。1596年5月31日他出生在法国都兰的贵族家庭,自幼丧母,体弱多病,8岁入拉弗来什公学读书。教师考虑到他的特殊情况,允许他每天早上晚起多睡。但笛卡尔利用这段时间进行晨读,并养成善于思考的习惯。传说笛卡尔是躺在床上观察虫子在天花板上爬行的位置,激发了灵感,使他产生了坐标的概念。

笛卡尔博览群书,曾自述:“别人学的,我都学了。我并不以此为满足,那些认为最奇怪,最不寻常的有关各种科学的书,凡是我能搞到的,我都要把它们读完。”他有好的思考习惯,每当读书时,总是把书拿来先弄清作者的主要意图,随之读完开头的部分就细细品味,并力求得出下面的结论。

1612年他入普瓦界大学攻读法学,四年后获博士学位,后去巴黎当律师。1618年参军,部队到荷兰南部的小城布勒达时,一次巧遇街头小报上在征解数学难题,笛卡尔成功的应解,这使他对数学发生兴趣,并坚定他终身研究数学的决心。1619年11月部队到达多瑙河上的一个小镇时,他不断思考——怎样把代

数应用到几何中去。他曾说:“我想去寻求一种新的,包含两门学科的好处,而又没有它们缺点的方法。”他在致力研究数学中一门完全崭新的领域,这个领域后来被牛顿称之为解析几何。

1621年他退伍去荷兰、瑞士、意大利旅行。1625年返回巴黎.1628年定居荷兰进行研究与写作,这时他研究哥白尼学说,1634年写成《论世界》一书。1637年出版了《新光学》、《气象学》和《几何学》。

1644年笛卡尔出版了《哲学原理》,1646年出版了《论心灵的各种感情》等重要著作。同年冬,笛卡尔应瑞典女王克利斯提娜的邀请移居斯德哥尔摩为女王讲授哲学,后因感染肺炎,于1650年2月11日去世,享年54岁。

(二)主要贡献

法国数学家、物理学家、哲学家笛卡尔,生前因怀疑教会信条受到迫害,长年在国外避难。他的著作在他生前或被禁止出版或被烧毁,他死后多年还被列入“禁书目录”。但在今天,法国首都巴黎安葬民族先贤的圣日耳曼圣心堂中,庄重的大理石墓碑上镌刻着“笛卡尔,欧洲文艺复兴以来,第一个为人类争取并保证理性权利的人”。

笛卡尔的著作,无论是数学、自然科学,还是哲学,都开创了这些学科的崭新时代。《几何学》是他公开发表的唯一数学著作,虽则只有117页,但它标志着代数与几何的第一次完美结合,使形形色色的代数方程表现为不同的几何图形,许多相当难解的几何题转化为代数题后能轻而易举地找到答案. 他的主要著作都是在荷兰完成的,其中1637年出版的《方法论》一书成为哲学经典。这本书中的3个著名附录《几何》《折光》和《气象》奠定了笛卡尔在数学、物理和天文学中的地位。在《几何》中,笛卡尔分析了几何学与代数学的优缺点,指出:希腊人的几何过于抽象,而且过多的依赖于图形,总是要寻求一些奇妙的想法。代数却完全受法则和公式的控制,而且还阻碍了自由的思想和创造力的发展。他同时看到了几何的直观与推理的优势和代数机械化运算的力量。于是笛卡尔着手解决这个问题,并由此创立了解析几何。所以说笛卡尔是解析几何的创始人。

笛卡尔一生为人类作了多方面的贡献,他在1634年写的《宇宙学》,包含当时被教会视为“异端”的观点:他提出地球自转和宇宙无限;他提的漩涡说是当时最具权威的太阳起源理论;他还提出了光的本性是粒子流的假说,并认为在广袤无垠的太空中存在着极其精细的以太。他对现代数学的发展做出了重要的贡

献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者提出了“普遍怀疑”的主张。他的“二元论”哲学思想,我思故我在,深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。直到二三百年以后,笛卡尔的这些观点仍具有很高的研究价值。(三)传奇故事

1647年深秋的一个夜晚,在巴黎近郊,两辆马车疾驰而过。马车在教堂的门前停下。身佩利剑的士兵押着一个瘦小的老头儿走进教堂。他就是近代数学的奠基人、伟大的哲学家和数学家笛卡尔。由于他在著作中宣传科学,触犯了所谓的神权,因而遭到了当时教会的残酷迫害。

宏伟的教堂里,烛光照射在圣母玛丽亚的塑像上。塑像前是审判席。被告席上的笛卡尔开始接受天主教会法庭对他的宣判:“笛卡尔散布异端邪说,违背教规,亵渎上帝。为纯洁教义,荡涤谬误,本庭宣判笛卡尔所著之书全为禁书,并由本人当庭焚毁。”笛卡尔想申辩,但士兵立即把他从被告席上拉下来,推到火盆旁,笛卡尔用颤抖的手拿起一本本凝结了他毕生心血的著作,无可奈何地投入火中。

笛卡尔1596年生于法国。8岁入读一所著名的教会学校。主要课程是神学和教会的哲学,也学数学。他勤于思考,学习努力,成绩优异。20岁时,他在普瓦界大学获法学学位。之后去巴黎当了律师。出于对数学的兴趣,他独自研究了两年数学。17世纪初的欧洲处于教会势力的控制之下。但科学的发展已经开始显示出一些和宗教教义离经背道的倾向。笛卡尔和其他一些不满法兰西政治制度的青年人一起去荷兰从军体验军旅生活。

说起笛卡尔投身数学,多少有一些偶然性。有一次部队开进荷兰南部的一个城市,笛卡尔在街上散步,看见用当地的街上的用佛来米语书写的公开征解的几道数学难题招贴。许多人在此招贴前议论纷纷,他旁边的一位中年人用法语替他翻译了这几道数学难题的内容。第二天,聪明的笛卡尔兴冲冲地把解答交给了那位中年人。中年人看了笛卡尔的解答十分惊讶。巧妙的解题方法,准确无误的计算,充分显露了他的数学才华。原来这位中年人就是当时有名的数学家贝克曼教授。笛卡尔以前读过他的著作,但是一直没有机会认识他。从此,笛卡尔就在贝克曼的指导下开始了对数学的深入研究。所以有人说,贝克曼“把一个业已离开科学的心灵,带回到正确、完美的成功之路”。1621年笛卡尔离开军营遍游欧

洲各国。1625年回到巴黎从事科学工作。为综合知识、深入研究,1628年变卖家产,定居荷兰潜心著述达20年。

古希腊数学过于重视几何学的研究,却忽视了代数方法。代数方法在东方(中国,印度,阿拉伯)虽有高度发展,但缺少论证几何学的研究。后来,东方高度发展的代数传入欧洲,特别是文艺复兴运动欧洲数学在古希腊几何学和东方代数学的基础上有了巨大的发展。

笛卡尔在数学上的杰出贡献就在于将代数和几何巧妙地联系在一起,从而创造了解析几何这门数学学科。1619年在多瑙河的军营里,笛卡尔用大部分时间思考着他在数学中的新想法:能不能用代数中的计算过程来代替几何中的证明呢?要这样做就必须找到一座能连接(或说融合)几何与代数的桥梁,使几何图形数值化。笛卡尔用两条互相垂直且交于原点的数轴作为基准,将平面上的点的位置确定下来,这就是后人所说的笛卡尔坐标系。笛卡尔坐标系的建立,为用代数方法研究几何架设了桥梁。笛卡尔坐标系的建立,把过去并列的两个数学研究对象“形”和“数”统一起来,把几何方法和代数方法统一起来,从而使传统的数学有了一个新的突破。

关于笛卡尔的这一发现,有些史料曾有这样一段记述:由于对科学目的和科

学方法的狂热追求,新几何的影子不时萦绕脑际。1619年11月10日这一天,笛卡尔做了一个触发灵感的梦。他梦见一只苍蝇,飞动时划出一条美妙的曲线,然后一个黑点停在有方格的窗纸上,黑点到窗棂的距离确定了它的位置,梦醒后,笛卡尔异常兴奋,理性主义的理性追求竟由此顿悟而生!笛卡尔后来曾说,他的梦像一把打开宝库的钥匙,这把钥匙就是坐标几何,由于教会势力的控制,笛卡尔的坐标几何的思想未能及时公诸于世。为避免教会的迫害,1637年,也就是奇妙梦幻的18个春秋以后,笛卡尔在荷兰匿名出版了《科学中正确运用推理和寻求真理的方法论》一书。书中抨击繁琐哲学,倡导科学为人类造福,主张人应该主宰自然。笛卡尔的哲学思想,反映了17世纪法国资产阶级反对封建主义,发展生产,发展科学的历史要求。对当时的科学发展有着决定性的影响。《几何学》是该书的一篇附录。在这篇附录中笛卡尔介绍了他所创立的解析几何。17世纪以来,数学的巨大发展很大程度上归功于笛卡尔的解析几何学。作为附录的《几何学》虽是这位伟大哲学家的唯一的数学论文,然而它的历史价值却使笛卡

尔的名字千古流芳。

1760年2月11日笛卡尔在斯德哥尔摩病逝。由于教会的阻止,仅有几个友人为其送葬。其著作在他死后也被教会列为禁书。可是,这位对科学发展有巨大贡献的学者却受到广大科学家和革命者的敬仰和怀念。法国大革命之后,笛卡尔的骨灰和遗物被送进法国历史博物馆。其墓碑上镌刻着:

笛卡尔,欧洲文艺复兴以来,第一个为争取和捍卫理性权利而奋斗的人。

二、笛卡尔的解析几何思想成因

(一)从当时的哲学背景看

笛卡尔被广泛认为是西方近代哲学的奠基人,他第一个创立了一套完整的哲学体系。哲学上,笛卡尔是一个二元论者以及理性主义者。笛卡尔认为,人类应该可以使用数学的方法,也就是理性,来进行哲学思考。他相信,理性比感官的感受更可靠。(他举出了一个例子:在我们做梦时,我们以为自己身在一个真实的世界中,然而其实这只是一种幻觉而已。)他从逻辑学、几何学和代数学中发现了4条规则:除了清楚明白的观念外,绝不接受其他任何东西;必须将每个问题分成若干个简单的部分来处理;思想必须从简单到复杂;我们应该时常进行彻底的检查,确保没有遗漏任何东西。

笛卡尔将这种方法不仅运用在哲学思考上,还运用于几何学,并创立了解析几何。这就是他解析几何思想的成因之一。

(二)从当时的数学背景看

就当时的数学状况而言。一般的坐标思想在古希腊时代就已经产生了,例如古希腊的希帕苏斯在研究天球时就引进过点的坐标;同样,还有古希腊时期的阿波罗尼奥斯,他在推导圆锥曲线的过程中也有过点的坐标思想;还有法国的奥雷斯姆,他用“经度”和“纬度”两个坐标来表示平面上的坐标,并且在这里还有函数表示的思想。当时对曲线的研究非常重视,即有很多的数学家追求一种用一般的方式处理曲线的问题,笛卡尔认识到了使用数量方法的重要性,而且认识到了代数和几何结合起来考虑问题的关键。故而,解析几何的又一关键数学思想是把曲线和曲面用代数方程的形式表达出来。当然,笛卡尔之所以能产生这种想法,也是有深刻的背景的。例如在他之前,法国的大数学家韦达对笛卡尔产生了非常重要的影响。韦达有两个主要科学工作:一个是将代数运用到几何的想法;另一

个就是引进了系统的数学符号体系。可以说韦达是和笛卡尔的解析几何走的最近的数学家,但是为什么韦达没有能够创立解析几何呢,就是因为他当时考虑的代数方程仅限于齐次的情况,而笛卡尔则没有局限在仅仅只考虑齐次方程的情形。前人的工作为笛卡尔的解析几何思想提供了重要的源泉,笛卡尔正是在这些人的工作的基础之上而得到了解析几何中一些非常重要的成果。

这在数学自身来说,即代数和几何相结合的思想,这些都是解析几何产生时的数学背景。当时的数学背景或许也是他解析几何思想的成因之一。

(三)从他自身方面看

笛卡尔有极富成效的学习方法,这也是他解析几何思想的成因之一。

他有自己独特的学习方法. 他在学习中习惯于弄清作者的意图, 因此, 他读书时常常是只读开头的部分, 一旦弄清作者的意图后, 那些应由作者得出的结论, 他总是力求自己得出。他在学习欧几里得《几何原本》时, 一方面他为书中数学表示出的简洁、令人信服的逻辑推理所吸引。另一方面他感到欧几里得《几何原本》中的每一个证明总是在追求某种新的、往往是奇巧的想法。通过前辈们关于代数与几何关系的讨论, 笛卡尔发现了一个数学金矿—代数。他认为代数与其说是一门数学, 不如说是一种推理方法, 这种有效的推理方法使思考和运算步骤变得简单, 并且无需费很大的脑力。在一系列的实践过程中, 他看到了数量方法的必要性, 科学的需要和对方法的兴趣推动了笛卡尔对解析几何的研究。

三、解析几何的创立

(一)代数与几何的关系

在数学发展史上, 代数与几何有着同样深远的渊源, 由于欧氏几何是建立在严谨的逻辑推理, 公理的体系上的, 使几何看起来比算术、代数要严谨得多. 因此人们把结构严密的数学仅限于几何学, 这种观点严重影响了算术、代数的发展, 从那时起, 就决定了代数从属于几何的地位。甚至到了十六世纪, 代数从属于几何的地位也未得到根本改善, 那怕是韦达高超的代数学, 也是为几何服务的。

(二)笛卡尔的解析几何

1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。

当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。

笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。

从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。为了实现上述的设想,笛卡尔从天文和地理的经纬制度出发,指出平面上的点和实数对(x, y)的对应关系。(x, y)的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。

解析几何的创立,开始了用代数方法解决几何问题的新时代.从古希腊时起,在西方数学发展过程中,几何学似乎一直是至高无上的.一些代数问题,也都要几何方法解决.解析几何的产生,改变了这种传统,在数学思想上可以看作是一次飞跃.代数方程和曲线、曲面联系起来。

(三)解析几何的应用

解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……”

解析几何又分作平面解析几何和空间解析几何:在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面、椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影

片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。

总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。

运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。

(四)解析几何的作用

解析几何出现以前,代数已有了相当大的进展,因此解析几何不是一个巨大的成就,但在方法论上却是一个了不起的创建。

1、笛卡尔希望通过解析几何引进一个新的方法,他的成就远远超过他的希望

在代数的帮助下,不但能迅速地证明关于曲线的某些事实,而且这个探索问题的方式,几乎成为自动的了。这套研究方法甚至是更为有利的。用字母表示正数、负数,甚至以后代表复数时,就有了可能把综合几何中必须分别处理的情形,用代数统一处理了。例如,综合几何中证明三角形的高交于一点时,必须分别考虑交点在三角形内和三角形外,而解析几何证明时,则不须加区别。

2、解析几何把代数和几何结合起来,把数学构造成一个具有两种作用的工具

一方面,几何概念可以用代数表示,几何的目的通过代数来达到。反过来,另方面,给代数概念以几何解释,可以直观地掌握这些概念的意义。又可以得到启发去提出新的结论(例如,笛卡尔就提出了用抛物线和圆的交点来求三次和四次方程的实根的著名方法),拉格朗日曾把这些优点写进他的《数学概要》中:“只要代数和几何分道扬镳,他们的进展就缓慢,他们的应用就狭窄。但当这两门科学结成伴侣时,他们就互相吸取新鲜的活力,就以快速走向完善。”

可以说十七世纪以来数学的巨大发展在很大程度上应归功于解析几何,如果没有前面出现的解析几何的工作与成就,微分学和积分学什么时候能产生还是很难说的。

3、解析几何的显著优点在于它是数量工具。

这个数量工具是科学的发展久已迫切需要的。十七世纪一直公开要求的,例如当开普勒发现行星沿椭圆轨道绕着太阳运动,伽利略发现抛出去的石子沿着抛物线的轨道飞出去时就必须计算这些椭圆和炮弹飞时所画的抛物线了。这些都需要提供数量的工具,研究物理世界,似乎首先需求几何。物体基本上是几何的形象,运动物体的路线是曲线,研究它们都需要数量知识。而解析几何能使人把形象和路线表示为代数形式,从而导出数量知识。

四、结束语

解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。

但在数学史上,一般认为和笛卡尔同时代的法国业余数学家费马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。

费马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想。只是直到1679年,费马死后,他的思想和著述才从给友人的通信中公开发表。

笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。因此,我们要理性地看待笛卡尔与解析几何的创立这一伟大的历史。

参考文献:

[1] 张光远.近现代数学发展概论.重庆: 重庆出版社. 1991. P1- 2.

[2] 赵云.关于笛卡尔解析几何的哲学背景.[J].甘肃高师学报. 2011(02).

[3] 吴忠明.士兵数学家笛卡尔与解析几何.[J].教学教师. 2001(01).

[4] 吴琦.笛卡尔与解析几何学.[J].数学通讯. 2002(23).

[5] 刘印堂.谈笛卡尔解析几何思想.[J].教育教学论坛. 2010(12).

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1 (,)F x y , 2 (,)F x y 及3 (,)F x y . (1) 2222 1x y a b +=;(2) 22 22 1x y a b -=;(3)2 2y px =;(4) 223520; x y x -++= (5)2 226740 x xy y x y -+-+-=.解:(1) 221 0010 000 1a A b ?? ? ? ?= ? ?- ? ?? ?; 121(,)F x y x a = 221(,)F x y y b =3(,)1F x y =-;(2) 221 0010 0001a A b ?? ? ? ?=- ? ?- ? ?? ? ; 121(,)F x y x a = 221(,)F x y y b =-;3 (,)1F x y =-.(3) 0001000p A p -?? ?= ? ?-?? ; 1(,)F x y p =-;2 (,)F x y y =;3 (,)F x y px =-;(4) 510 20 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+ ;2 (,)3F x y y =-;3 5(,)22 F x y x =+;(5)

222420 x xy ky x y ++--=交于两个共轭虚交点.解:详解 略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4) 4924 k >. §5.2二次曲线的渐进方向、中心、渐进线 1. 求下列二次曲线的渐进方向并指出曲线属于 何种类型的(1) 22230 x xy y x y ++++=;(2) 22342250 x xy y x y ++--+=;(3)24230xy x y --+=. 解:(1)由2 2(,)20 X Y X XY Y φ=++=得渐进方向为:1:1 X Y =-或1:1-且属于抛物型的; (2)由2 2(,)3420 X Y X XY Y φ=++=得渐进方向为:(22):3 X Y i =-且属于椭圆型的; (3) 由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的. 2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)2 2224630 x xy y x y -+--+=;(2)2 2442210 x xy y x y -++--=; (3)2 281230 y x y ++-=;(4)2 296620 x xy y x y -+-+=.解:(1) 因为2 1110 12I -= =≠-,所以它为中心曲线; (2)因 为2 120 24 I -= =-且121 241-=≠--,所以它为无心曲线; (3)因为2 00002I = =且004 026 =≠,所以它为无心曲线; (4)因为2 930 3 1 I -==-且933312--==-,所以它为线心曲线;

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A . 13 B . 5 C . 23 D . 59 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2, 且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A . 6 3 B . 33 C . 23 D . 13 3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 5.【2015高考新课标1,理14】一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22 221()x y a b a b +=>>0的 右焦点,直线2 b y = 与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :22 22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,

笛卡尔与解析几何

1647年深秋的一个夜晚,在巴黎近郊,两辆马车疾驰而过。马车在教堂的门前停下。身佩利剑的士兵押着一个瘦小的老头儿走进教堂。他就是近代数学奠基人、伟大的哲学家和数学家笛卡尔。由于他在著作中宣传科学,触犯了神权,因而遭到了当时教会的残酷迫害。 才学里,烛光照射在圣母玛丽亚的塑像上。塑像前是审判席。被告席上的笛卡尔开始接受天主教会法庭对他的宣判:“笛卡尔散布异端邪说,违背教规,亵渎上帝。为纯洁教义,荡涤谬误,本庭宣判笛卡尔所著之书全为禁书,并由本人当庭焚毁。”笛卡尔想申辩,但士兵立即把他从被告席上拉下来,推到火盆旁,笛卡尔用颤抖的手拿起一本本凝结了他毕生心血的著作,无可奈何地投入火中。 笛卡尔1596年生于法国。8岁入读一所著名的教会学校。主要课程是神学和教会的哲学,也学数学。他勤于思考,学习努力,成绩优异。20岁时,他在普瓦界大学获法学学位。之后去巴黎当了律师。出于对数学的兴趣,他独自研究了两年数学。17世纪初的欧洲处于教会势力的控制之下。但科学的发展已经开始显示出一些和宗教教义离经背道的倾向。笛卡尔和其他一些不满法兰西政治状态的青年人一起去荷兰从军体验军旅生活。 说起笛卡尔投身数学,多少有一些偶然性。有一次部队开进荷兰南部的一个城市,笛卡尔在街上散步,看见用当地的佛来米语书写的公开征解的几道数学难题。许多人在此招贴前议论纷纷,他旁边的一位中年人用法语替他翻译了这几道数学难题的内容。第二天,聪明的笛卡尔兴冲冲地把解答交给了那位中年人。中年人看了笛卡尔的解答十分惊讶。巧妙的解题方法,准确无误的计算,充分显露了他的数学才华。原来这位中年人就是当时有名的数学家贝克曼教授。笛卡尔以前读过他的著作,但是一直没有机会认识他。从此,笛卡尔就在贝克曼的指导下开始了对数学的深入研究。所以有人说,贝克曼“把一个业已离开科学的心灵,带回到正确、完美的成功之路”。1621年笛卡尔离开军营遍游欧洲各国。1625年回到巴黎从事科学工作。为综合知识、深入研究,1628年变卖家产,定居荷兰潜心著述达20年。 几何学曾在古希腊有过较高的发展,欧几里得、阿基米德、阿波罗尼都对圆锥曲线作过深入研究。但古希腊的几何学只是一种静态的几何,它既没有把曲线看成一种动点的轨迹,更没有给出它的一般表示方法。文艺复兴运动以后,哥白

数学史融入初中数学教学略谈

龙源期刊网 https://www.360docs.net/doc/7a10105527.html, 数学史融入初中数学教学略谈 作者:李雪红 来源:《读与写·上旬刊》2018年第05期 摘要:数学史是一种文化内容,融入初中数学教材很有意义。数学史融入时遵循着特定的原则。具体融入时可采取的策略有:科学性与趣味性相结合,广泛性与实用性结合,目的性与可接受性结合,思想性与可理解性相结合。 关键词:初中数学;数学史;融入原则;策略 中图分类号:G633.6文献标识码:B文章编号:1672-1578(2018)13-0158-01 数学史具有较长的一段历史,并且含义丰富,当前,我国很多数学教材中都缺失了对数学史的讲解,导致学生的学习过于程序化。随着新课程改革步伐的逼近,越来越多的教育工作者意识到了将数学史融入到教材中的重要性,让学生对数学有更加具体的了解。因此,首先就需要明确将数学史融入到人教版初中数学教材中的原则,再制定相关的策略办法,使得数学史的融入发挥效用。 1.数学史融入初中数学教学的意义 当前,我国初中数学虽然遵循了新课程改革的教育原则,但是在实际实施教学工作的过程中,还是无法让学生深刻认识到教材的重要性。目前的人教版初中数学教材对部分概念定理并没有进行探究,甚至没有涉及到相关的数学问题,原因之一就是数学史在教材中的重度缺失。当前我国很多初中学校在开展数学教学的过程中都是以人教版教材为主,因此,可以将数学史适当融入其中,启发学生的思维,使其能够推数学知识的形成过程。数学史的融入能够在一定程度上激发学生的学习兴趣,使其根据数学史相关内容深入探究数学定理。人教版初中数学注重数学思想教学方式,数学史的融入就能够让学生更好地对数学思想方法、数形结合及分类等数学学习方式进行应用。数学史的形成是漫长的,将其融入到人教版初中数学教材中能够让学生对无理数等的发现有更加具体的认识,从而体会到数学家们的恒心及毅力,能够帮助学生形成正确的数学观。 2.数学史融入初中数学教学的原则 在将数学史融入到人教版初中数学教材中的过程中,首先需要明确相关的原则,只有在遵循原则的情况下,才能正确体现出数学史融入到教材中的意义。在将数学史融入到人教版初中数学教材中的过程中,需要适当反映数学的历史及应用发展的趋势,帮助学生了解人类文明发展史,使其能够在数学史的作用下,形成正确的数学观。虽然新课程标准提出,教师需要对相关科目的历史进行适当的讲解,但是还是需要注重教学方法,不能将过多的时间用在讲解数学

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

解析几何专题含答案

椭圆专题练习 1.【2017,2】椭圆22 194 x y +=的离心率是 A . 13 B . 5 C . 23 D . 59 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2, 且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A . 6 B . 3 C . 2 D . 13 3.【2016高考理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段 PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 5.【2015高考新课标1,理14】一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 6.【2016高考卷】如图,在平面直角坐标系xOy 中,F 是椭圆22 221()x y a b a b +=>>0的右焦 点,直线2 b y = 与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :22 22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,

浅谈数学史与初中数学教学的结合

浅谈数学史与初中数学课堂教学的结合 万州桥亭中学秦毅 内容摘要: 为了适应现代教育的需要,在现今的教育与教学过程中穿插一些数学史的有关轶闻趣事,能够激发学生对相关内容产生好奇心,活跃课堂气氛,调动学生学习数学的积极性。学习数学史,不仅是广大学生学好数学的有力帮助,而且是也是我们中学数学教师提高自身素养、更好的搞好教学工作所必需的。我们广大教师不仅要明白数学史的重要性,最根本的是要研究如何将数学史融合到教学当中,努力探索出一条新型的教学模式,以提高学生的数学能力和综合素质。 关键词: 数学数学史 一、引言 数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学史是研究数学科学发生发展及其规律的学科,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。 数学史研究已具有很长的历史,如何在数学教育中运用数学史的知识,充分发挥数学史的作用和价值则是当前数学教育改革面临的一个重要课题。1998年4月20日至26日,由国际数学教育委员会(ICMI)发起,在法国马赛附近的Luminy镇举行了题为“数学史在数学教育中的作用”国际研讨会。张奠宙

教授在《重视“科学史”在科学教育中的应用》一文中指出:在数学教育中,特别是中小学的数学教学过程中,运用数学史知识是进行素质教育的重要方面。目前数学史在数学教育中的应用已经进入系统的研究阶段,并在一些国家和地区进行实践性的操作。我国的数学史研究,乃至科学史研究,已经拥有相当规模的队伍。但是,我们的研究似乎还没有注意到如何运用于教学过程,发挥它的应有效益。 现阶段,在一定程度上,我国中小学数学教育在世界上也算是一流的,也正因为如此,我国的数学才会取得举世瞩目的成就,涌现了一大批优秀的数学家。在中学数学教学中,使学生深刻理解数学基础知识、牢固掌握数学基本技能、提高学生运算能力、思维能力和空间想象能力等方面,我们都有非常成功的经验,也取得了相当多的成绩。近年来,我国数学教育界在提高学生运用数学知识分析问题和解决问题的能力方面也极其重视,并且以探索出了许多成功经验。我国学生在国际数学奥林匹克竞赛中连年取得佳绩、在国际水平测试中名列前茅,这些都是我国数学教育水平高的有力证据,我国数学教育水平高的另一个证据是,在第三次国际数学和科学研究的测试中,深受中国传统文化影响的亚洲参加国的测试成绩遥遥领先于其他国家。因此,中国中小学数学教育的高水平成绩绝不是偶然的,是有厚重的历史积淀的,是几代、十几代数学教育工作者辛勤劳动、共同的结晶,是应该充分肯定的。但是对于现行教育体制中存在的问题,我们也是应该予以正视的。就在我们的教育界为上述的成就感到欢欣鼓舞时,社会上也存在着另外一种不同的声音“现行中小学数学课程处于一种十分尴尬的局面。一方面,我们现行的中小学数学内容一些学生学不好,学不了,成为数学学习上的失败者;另一方面,很多有价值的内容我们的学生没有机会接触,特别表现在数学思考方法、

西方哲学史精选

西方哲学史2006年 一概念解析 逻格斯、爱丽亚学派、柏拉图的回忆说、理念论、亚里士多德的第一哲学、教父哲学、唯名论、流射说、二重真理、实体、黑格尔的绝对理念 二。洛克怎样批判天赋观念? 莱布尼茨单子论中的辩证法思想? 休谟的不可知论的主要表现有那些?? 笛卡尔的普遍怀疑二元论? 下面是西方哲学试题的分类整理 一名词解析 99年 卢克莱修的“始基说“、亚里士多德的“实体论”基督教的基本教义、文艺复兴时期的人文主义、霍布斯的“社会契约论”、休谟的“因果关系是习惯联系”、库恩的“常规科学”、詹姆士的“彻底经验主义?、莫里斯的语用学 00年 柏拉图的理念论、文艺复兴时期的人文主义思潮、唯名论与唯实论的根本分歧、霍布斯的“自然状态?和社会契约“论、詹姆士的实用主义真理论、语言分析哲学 02年 米利都学派、柏拉图“回忆说“、伊壁鸠鲁”快了主义“、经院哲学、”四假相“说、《利维坦》、我思故我在、洛克”两种性质?学说、实用主义 03年 泰利斯的“水…、恩培多克勒”四根说“、“普罗泰戈拉的人是万物的尺度、苏格拉底”接生术“ 、柏拉图”回忆说“、伊壁鸠鲁”快乐观”、教父哲学、奥卡姆的“剃刀?、我思故我在、拉美特利”人是机器“、康德的?自在之物”、詹姆士的“有用即真理…、 04年 米利都学派、赫拉克利特的“火“、毕达哥拉斯的”数?、巴门尼德德?存在?、“流射说“、“影像说”、伊壁鸠鲁”快了主义、奥古斯丁及教父哲学、奥卡姆的“剃刀?、佛兰西斯培根德?二重真理?、《利维坦》维也纳学派 二论述题 评述经院哲学德基本特征 评述洛克德经验论 评述康德德伦理学 评述杜威德工具主义 什么是人权?简述人权德绝对性和相对性 00年 简述18世纪法国唯物主义德无神论思想及其历史意义 评述费尔巴哈人本主义德唯物主义及其局限性。 简评罗尔斯正义论的原则 简述科学哲学中实证主义(归纳主义)的基本观点及其困难。 02年 试论亚里士多德的四因说 试论海德格尔的基本本体论 谈谈莱布尼茨单子论中的辩证思想 费尔巴哈为什么把自己的哲学称之为?人本学…

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

费马和笛卡尔的解析几何世界.1

项目名称: 对比分析费马和笛卡儿在解析几何方面的创建工作报告人: 指导教师: 2012年12月25日 摘要:解析几何学对近代数学的发展产生了重要的影响,解析几何的诞生促进了新时代的到来,对旧的数学做了总结,代数和几何相结合,引发的变量概念为物理学打基础。这其中笛卡尔和费马为解析几何做了很大贡献,两者不同的解题思路也引发我们的思考。

关键词:笛卡尔费马解析几何坐标图形 背景: 解析几何:解析几何系指借助坐标系,用代数方法研究集合对象之间的关系和性质的一门几何学分支,亦叫做坐标几何17世纪以来,由于航海、天文、力学、经济、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用于数学的各个分支。在解析几何创立以前,几何与代数是彼此独立的两个分支。解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生不可估量的作用 解析几何的基本思想是在平面引进所谓的坐标的概念,并借助这种坐标在平面上的点和有序实数对() ,建立一一对应的关系,每对 x y 实数对() ,都对应于平面上的一个点,反之每个点都应于它的坐标 x y () ,平面上一条曲线对 f x y=0 x y ,,以这种方式可以将一个代数方程() 应起来,于是几何问题归结为代数问题,并反过来通过代数问题的研究发现新的几何结果。 (一)笛卡尔的解析几何之路:从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。 笛卡尔的方法论指导:任何问题→数学问题→代数问题→方程求解.

西方哲学史-邓晓芒-赵琳-整理打印版

西方哲学史邓晓芒赵琳 绪论 第一章古希腊罗马哲学 第一节希腊哲学产生的背景及发展梗概 一、希腊哲学产生的背景 二、希腊哲学发展的梗概 第二节早期希腊哲学 一、米利都学派 1.泰勒斯 2.阿那克西曼德 3.阿那克西美尼 二、毕达哥拉斯学派 三、赫拉克利特 四、爱利亚学派 1.克塞诺芬尼 2.巴门尼德 3.芝诺 4.麦里梭 第三节鼎盛时期的希腊哲学 一、智者派 1.普罗泰戈拉 2.高尔吉亚 二、原子论者及其先驱 1.恩培多克勒 2.阿那克萨戈拉 3.留基波 4.德谟克利特 三、苏格拉底与柏拉图 1.苏格拉底 2.小苏格拉底学派 3.柏拉图 四、亚里士多德 第四节希腊哲学的衰颓 一、伊壁鸠鲁学派 二、斯多葛学派 1.早期斯多葛学派 2.晚期斯多葛学派 三、怀疑主义 1.早期怀疑主义 2.晚期怀疑主义 四、新柏拉图主义 1.斐洛 2.普罗提诺 3.波菲利 第二章中世纪基督教哲学 第一节概论 第二节教父哲学 一、教父哲学对待理性与信仰的基本态度1.“基督教是真正的哲学 2.超理性的信仰 3.基督教基本教义的确立 二、奥古斯丁的哲学思想 第三节经院哲学一、实在论与唯名论 1.“共相”问题的由来 2.安瑟尔谟 3,最初的唯名论者 4.阿伯拉尔 二、托马斯·阿奎那的哲学思想 三、反托马斯主义的方济各修会经院哲学家 1.罗吉尔·培根 2.约翰·邓斯·司各脱 3.威廉·奥卡姆 第三章16-18世纪西欧哲学 第一节概论 第二节文艺复兴与宗教改革 一、文艺复兴与人文主义 二、宗教改革 第三节早期经验论哲学 一、弗兰西斯·培根 二、霍布斯 三、洛克 四、英国自然神论 第四节唯理论哲学 一、笛卡尔 二、伽桑狄与马勒伯朗士 1.伽桑狄 2.马勒伯朗士 三、斯宾诺莎 四、莱布尼茨 第五节晚期经验论哲学 一、贝克莱 二、休谟 第四章18世纪法国哲学 第一节概论 第二节法国自然神论者 一、伏尔泰 二、孟德斯鸠 三、卢梭 第三节法国唯物主义者 一、狄德罗 二、拉美特利 三、爱尔维修 四、霍尔巴赫 第五章德国古典哲学 第一节概论 第二节康德 一、“前批判时期”的自然观及批判哲学的 形成 1.“前批判时期”的自然观 2.康德批判哲学的形成 二、批判哲学的认识论:《纯粹理性批判》 1.感性 2.知性 3.理性 4.未来形而上学的方法 三、批判哲学的道德哲学:《实践理性批判》 1.道德问题的提出 2.道德律 3.自由 4.实践理性的二律背反和道德宗教 四、批判哲学的美学和目的论:《判断力批 判》 1.康德两大批判的对立及调和的努力 2.审美判断力批判 3.目的论判断力批判 第三节费希特和谢林 一、费希特的主观唯心主义的“行动哲学 1.对康德哲学的批判 2.知识学的基本原理 3.理论知识的基础 4.实践知识的基础 二、谢林的客观唯心主义的“同一哲学 1.对费希特的批判和“绝对同一性”的提 出 2.自然哲学 3.先验哲学 4.艺术哲学 第四节黑格尔 一、德国古典唯心主义的总结和开拓 二、逻辑学 1.存在论 2.本质论 3.概念论 三、应用逻辑学 1.自然哲学 2.精神哲学 第六章近代哲学的终结及向现代哲学的过 渡 第一节青年黑格尔派与费尔巴哈的直观唯 物主义哲学 一、“实体”和“主体”之争 二、费尔巴哈的感性的人学和直观的唯物主 义 第二节马克思的实践唯物主义哲学的创立 一、马克思的感性学 二、马克思的历史唯物主义 三、马克思的辩证法 第三节非理性主义的兴起 一、叔本华的生命意志哲学 二、尼采的权力意志哲学 三、克尔凯郭尔的存在哲学 第四节实证主义哲学的滥觞 一、孔德的社会学的实证主义 二、穆勒的归纳逻辑及其运用 三、斯宾塞的社会达尔文主义 后记

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标 §1.3 数量乘矢量 4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ → → → → → → → → → =+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→ AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21 AC AB AL += Θ )(21 BC BA BM += )(2 1 CB CA CN += 0)(2 1 =+++++=++∴CB CA BC BA AC AB CN BM AL 7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL +OM +ON . [证明] LA OL OA +=Θ MB OM OB += NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。 8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB +OC +OD =4OM . [证明]:因为OM = 21 (OA +OC ), OM =2 1 (OB +OD ), 所以 2OM =2 1 (OA +OB +OC +OD ) 所以 OA +OB +OC +OD =4OM . 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 图1-5

解析几何试题及答案

解析几何 1.(21)(本小题满分13分) 设,点的坐标为(1,1),点在抛物线上运动,点满足,经 过点与轴垂直的直线交抛物线于点,点满足 ,求点的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由知Q,M,P三点在同一条垂直于x轴的直 线上,故可设 ① 再设 解得②,将①式代入②式,消去,得 ③,又点B在抛物线上,所以, 再将③式代入,得 故所求点P的轨迹方程为 2.(17)(本小题满分13分) 设直线 (I)证明与相交; (II)证明与的交点在椭圆 (17)(本小题满分13分)本题考查直线与直线的位置关系,线线相交的判断与证明,点在曲线上的判断与证明,椭圆方程等基本知识,考查推理论证能力和运算求解能力. 证明:(I)反证法,假设是l1与l2不相交,则l1与l2平行,有k1=k2,代入k1k2+2=0,得此与k1为实数的事实相矛盾. 从而相交. (II)(方法一)由方程组,解得交点P的坐标为,而 此即表明交点 (方法二)交点P的坐标满足, ,整理后,得 所以交点P在椭圆 .已知椭圆G:,过点(m,0)作圆的切线l交椭圆G于A,B两点。 (1)求椭圆G的焦点坐标和离心率; (2)将表示为m的函数,并求的最大值。 (19)解:(Ⅰ)由已知得所以 所以椭圆G的焦点坐标为,离心率为 (Ⅱ)由题意知,.当时,切线l的方程, 点A、B的坐标分别为此时 当m=-1时,同理可得 当时,设切线l的方程为 由;设A、B两点的坐标分别为,则; 又由l与圆

初中数学教学中融入数学史的意义与建议

初中数学教学中融入数学史的意义与建议 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中数学教学中融入数学史的意义与建议 郑小瑞 摘要:数学史是研究数学的发生、发展过程及其规律的一门学科,它研究的主要对象是历史上的数学成果和影响数学发展的各种因素,探索前人的数学思想,借以指导数学的进展,并预见数学的未来。我国数学家吴文俊说过: “数学教育和数学史是分不开的。”学习一些数学知识,可以使同学们了解数学的发展轨迹,更好地体会数学概念所反映的思想方法,感受数学家们刻苦钻研和勇于开拓的精神,这对开阔视野,启发思维以及学习和掌握数学知识都大有益处。 关键词:数学史数学教学 一、引言 数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学史是研究数学科学发生发展及其规律的学科,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。 数学史研究已具有很长的历史,如何在数学教育中运用数学史的知识,充分发挥数学史的作用和价值则是当前数学教育改革面临的一个重要课题。1998年4月20日至26日,由国际数学教育委员会(ICMI)发起,在法国马赛附近的Luminy镇举行了题为“数学史在数学教育中的作用”国际研讨会。张奠宙教授在《重视“科学史”在科学教育中的应用》一文中指出:在数学教育中,特别是中小学的数学教学过程中,运用数学史知识是进行素质教育的重要方面。目前数学史在数学教育中的应用已经进入系统的研究阶段,并在一些国家和地区进行实践性的操作。我国的数学史研究,乃至科学史研究,已经拥有相当规模的队伍。但是,我们的研究似乎还没有注意到如何运用于教学过程,发挥它的应有效益。 现阶段,在一定程度上,我国中小学数学教育在世界上也算是一流的,也正

西方哲学史期末复习材料

1、“逻各斯”(Logos):最早由赫拉克利特提出,是西方哲学史上里程碑式的创举。客观上指世界的本原,可理解为原则和规律;主观上指人所认识的道理,可理解为理性和理由,是符合客观逻各斯的思想和真理。 2、奴斯:是阿那克萨格拉提出的,最初是指感知﹑认识﹑理解事物的东西。他认为,宇宙万物是由种子构成的﹐种子本身是永恒的、无始无终的、不可变的,其本身不能运动﹐这就需要一种推动运动的力。但是因为这力必须认为是现存的,因此,他将此力赋予一种特别的、单一的物质,即基本实体,即奴斯,奴斯是一种物质元素:均匀、不生不灭,奴斯以最细微的状态存在于一切事物和物质之中。 3、原子(德谟克利特):德谟克利特认为万物的本原或根本元素是原子和虚空。原子的本意是不可分割,表示充实的最小微粒。原子的根本特性是“充满和坚实”,因而是不可分的。德谟克利特认为,原子是永恒的、不生不灭的;在数量上是无限的;处在不断的运动状态中,它的惟一的运动形式是振动;原子的体积微小,不能为感官所知觉,只能通过理性才能认识。 4、理念:客观存在的、借思维把握的一类事物的共性。它是一类事物的原本、范畴,而个别事物则是理念的阴影和摹本。它的特点有本原性,超感性,不变性、永恒性,绝对性,客观性、真实性,目的性、完善性。单一性和多数性,有序性。柏拉图的理念论是西方哲学史上第一个客观唯心主义体系,一方面论证理念世界与感性世界、理性认识与感性认识的分离和对应关系,另一方面用“分有”和“摹仿”说明感性世界与理念世界的联系。 5、实体(亚里士多德):通常指能够独立存在的、作为一切属性的基础和万物本源的东西。亚里士多德认为,实体必须具备以下特征:第一,不表述主体;第二,独立自在性;第三,实体的属性是可变的,本身是不变的。他还区分了第一实体和第二实体,第一实体指个别事物,第二实体指事物的属和种。四因说和潜能现实说也是对实体论的延续。 6、经验论:主张一切知识归根到底都来源于感觉经验,科学知识—主要是自然科学—都是对感觉经验归纳的结果,经验是人的一切知识或观念的唯一来源。经验论片面地强调经验或感性认识的作用和确实性,贬低乃至否定理性认识的作用和确定性。以F.培根、霍布斯、洛克、贝克莱、休谟为代表。 7、唯理论:主张理性是知识的主要来源,认为感觉经验是相对的、个别的、偶然的,因而是不可靠的,具有普遍必然性的科学知识不可能建立此基础上,而只能是从理性所固有的天赋观念中推演而来,这样才能说明科学知识的普遍有效性。唯理论是片面强调理性作用的一种认识论学说。以笛卡儿、斯宾诺莎、莱布尼茨为代表。 8、哥白尼革命:康德对其哲学认识论改革的自喻。康德受到哥白尼将地球太阳关系颠倒而得出日心说的启发,认为在认识主客体之间关系的思考上也可以换个角度,即让对象符合认识,符合主体固有的认识形式。这样,经验为知识提供材料,主体为知识提供对这些材料进行加工整理的形式,知识就其内容而言是经验的,但就其形式而言是先天的。科学知识的普遍必然性由此得到证明。哥白尼式的革命的核心就是认识主客体关系的颠倒。 9、道德律令:由康德提出,指先天存在于人内心深处的普遍的道德法则,而与后天的经验无关。康德认为,道德之所以是道德,在于服从和执行心中固有的道德律令,因此道德必须超越经验。它有三个特征:第一条,普遍的立法形式。即这种行为能成为普遍有效的道德法则,能得到所有人的认同而共同遵守;第二条,人是目的。行为本身尊崇人是目的,而不是当作工具;第三条,意志自律。道德主体不受外界因素制约,为自己规定法则。 10、形而上学:由亚里士多德提出,被他称为第一哲学。他认为,没有一样东西不属于存在的范围,其他科学只是研究存在的某个部分或性质,只有第一哲学才研究存在自身及其本质属性。13至19世纪,形而上学主要指研究经验以外对象的哲学。黑格尔哲学则开始把形而上学作为一种抽象、孤立、固定的思维方式分析和批判。马克思主义哲学认为形而上学用孤立的、静止的、片面的观点去看世界,看不到事物内在本质的变化。

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

解析几何课后答案按

第1章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 §1.3 数量乘矢量 1.要使下列各式成立,矢量,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=-

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- 2. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以构成一个三角形. [证明]: )(21 AC AB AL += )(21 BM += 0= 3. 设L 、 [证明] 4. [证明] 但 OB OD OC OA OB OC OA OD +=+-=-∴=-=-= 由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD , ∴0=+=+OB OD OC OA , 从而OA=OC ,OB=OD 。

5. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB ++=4. [证明]:因为OM = 21 (OA +OC ), =2 1 (OB +), 所以 2=2 1 (OA +OB ++OD ) 所以 OA +OB ++OD =4OM . 6. [所以所以显然所以 1. [所以从而 OP =λ+1. 2. 在△ABC 中,设=1e ,AC =2e ,AT 是角A 的平分线(它与BC 交于T 点),试将分解为1e ,2e 的线性组合. 图1-5

新课标下考数学史与初中数学的整合试备课讲稿

新课标下数学史与初中数学的整合 在新一轮中学数学课程改革中,数学史首先被看作理解数学的一种途径。在对数学内容的学习过程中,教材中应当包含一些辅助材料,如史料、进一步研究的问题、数学家介绍、背景材料等,还可以介绍数学在现代生活中的广泛应用(如建筑、计算机科学、遥感、CT 技术、天气预报等),这样不仅可以使学生对数学的发展过程有所了解,激发学生学习数学的兴趣,还可以使学生体会数学在人类发展历史中的作用和价值。义务教育阶段各科课程标准都围绕三个基本方面:知识与技能,过程与方法,情感态度与价值观,对于理科课程,还进而包括理解科学、技术与社会之间的关系,尝试科学教育与人文教育的融合。 一、在新一轮中学数学课程改革中,数学史首先应被看作理解数学的一种途径 1、认识数学的发展规律,了解榜样的激励作用,减少学生走数学学习的“弯路”。 数学史让我们认识数学发展的规律,了解昨天,指导今天,预见明天。从前人研究数学的经验教训中获取鼓舞力量,以指导和推动我们今天的数学学习和研究,少走弯路。平时的教学中,要结合数学史教育,把精力用在基础知识的学习和基本技能的提高上,多做一些有意义的探究活动,以适应新课改学习方式的需要。 许多大数学家在成长过程中遭遇过挫折,不少著名数学家都犯过今天看来相当可笑的错误,介绍一些大数学家是如何遭遇挫折和犯错误的,不仅可以使学生在数学方法上从反面获得全新的体会(这往往能够获得比从正面讲解更好的效果),而且知道大数学家也同样会犯错误、遭遇挫折,对学生正确看待学习过程中遇到的困难、树立学习数学的自信心会产生重要的作用。数学思想形成中的曲折与艰辛以及那些伟大的探索者的失败与成功还可以使学生体会到,数学不仅仅是训练思维的体操,也不仅仅是科学研究的工具,它有着丰富的人文内涵。 2、了解数学理论发展的历史背景,加深理解数学理论、公式、定理和数学思维。 一般说来,历史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对地失去了生气与天然的、已经被标本化了的数学。从这个意义上说,历史可以引导我们创造一种探索与研究的课堂气氛,而不是单纯地传授知识。它既可以激发学生对数学的兴趣,培养他们的探索精神,而历史上许多著名问题的提出与解决方法还十分有助于他们理解与掌握所学的内容。写在书本上的数学公式、定理、理论都是前人苦心钻研经过无数次的探索、挫折和失败才形成的,是在当时社会生产、人们的哲学思想、数学家的独创精神联系在一起的活生生的数学。但是,我们从书本的条文上,已看不到数学成长、发展的生动的一面,而只看到数学家的浓缩的形式,这就妨碍我们对这些数学理论的深刻理解。如在七年级教空间与图形部分前,可以向学生介绍有关的数学背景知识,特别介绍欧几里得的《几何原本》,使学生初步感受几何演绎体系对数学发展和人类文明的价值。 3、抓住数学历史名题,丰富教学内容,展现学习数学新途经。 对于那些需要通过重复训练才能达到的目标,数学历史名题可以使这种枯燥乏味的过程变得富有趣味和探索意义,从而极大地调动学生的积极性,提高他们的兴趣。对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供了相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出与解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题,或许这个问题还难住了许多有名的人

相关文档
最新文档