理想气体状态方程(教案)

理想气体状态方程(教案)
理想气体状态方程(教案)

教案

怎样运用理想气体状态方程解题

§7 怎样运用理想气体状态方程解题 理想气体处在平衡状态时,描写状态的各个参量(压强P 、体积V 和温度T )之间关系式,叫理想气体状态方程,其数学表达式为: (1)M PV RT μ= 此式的适用条件是:①理想气体;②平衡态。 上式中: M -气体的质量; μ--摩尔质量; M μ-是气体的摩尔数。 对于一定质量, 一定种类的理想气体,在热平衡下,状态方程可写为: 112212PV PV M R const T T μ==== 此式表明:一定质量、一定种类的理想气体,几个平衡状态的各参量之间的关系。 对于种类相同的两部分气体的状态参量分别为1P 、1V 、1T 、2P 、2V 、2T ,现将其混合。其状态参量为P 、V 、T ,则状态参量间具有下列关系式: 112212 PV PV PV T T T =+ 此式实质上说明了质量守恒:12M M M =+(1M 、2M 与M 分别表示混合前后的质量),按照质量守恒与状态方程是否可以得知:式(3)对不同气体也照样适合?请思考。 一、关于气体恒量R 的单位选择问题: 一摩尔质量的理想气体,要标准状况下,即01P atm =,0273.15T K =,022.4V L =,故有000 PV R T =。 在国际单位制() 23P /,a N m m -压强体积用作单位中,R 的量值选8.31J/mol K ?。

因为:32331.01310/22.410/8.31/273.15N m m mol R J mol K K ???==?; 在压强用大气压、体积用3m 时,R 的量值取3 8.2110/atm m mol K -???,因为: 335122.410/8.2110/273.15atm m mol R atm m mol K K -??==??? 在压强用大气压作单位、体积用升作单位时,R 的量值选0.082/atm l mol K ??,因为: 122.4/0.082/273.15atm l mol R atm l mol K K ?==?? 应用M PV RT μ=计算时,压强、体积单位的选取必须与R 一致在同时温度必须用热力 学温标。 二、怎样用状态方程来解题呢? 1、根据问题的要求和解题的方便,倒塌选取研究对象。研究对象选择得合理,解题就会很方便,否则会造成很多麻烦。选择对象时,容易受容器的限制。事实上,有时一摆脱容器的束缚,就能巧选研究对象。选择时应注意:在独立方程的个数等于未知量的个数的前提下,研究对象的数目应尽可能地少。最好是,研究对象的数目恰好等于待求的未知量的数目,此时,中间未知量一个也没出现。 2、描写研究对象的初、未平衡状态,即确定平衡状态下的P 、V 、T ; 3、根据过程的特征,选用规律列出方程,并求解。选择研究对象与选用规律,其根据都是过程的特征,因此,这两者往往紧密联系。列方程时,一般用状态方程的式子多,而用状态变化方程时式子较少,故能用状态变化方程时应尽可能优先考虑。 气体的混合(如充气、贮气等)和分离(如抽气、漏气等)有关的习题不少。对于这类习题,可从不同角度出发去列方程:①从质量守恒定律或推广到不同种类的分子气体时总摩尔数不变来考虑;②从同温、同压下的折合的加和减来考虑。由于气体体积是温度、压强的函数,所以,在利用利用“气体折合体积的加和性”时必须注意,只有统一折算成相同温度

理想气体状态方程

***********学院 2015 ~ 2016 学年度第一学期 教师课时授课教案(首页) 学科系:基础部授课教师:**** 专业:药学科目:物理课次: 年月日年月日

理想气体状态方程 (一)引入新课 在讲授本节课之前,让学生完成理想气体方程的实验。上课时,利用学生实验的一组数据进行分析,归纳总结出气体状态方程,再引入理想气体。 (二)引出课程内容 1.气体的状态参量 (1)体积V 由于气体分子可以自由移动,所以气体具有充满整个容器的性质。因而气体的体积由容器的容积决定。气体的体积就是盛装气体的容器的容积。 体积的单位:立方米,符号是m3 。体积的其他单位还有dm3(立方分米)和cm3(立方厘米)。日常生活和生产中还用1L(升)作单位。 各种体积单位的关系: 1 m3=103 L=103 dm3=106 cm3 (2)温度 温度是用来表示物体冷热程度的物理量。要定量地确定温度,必须给物体的温度以具体的数值,这个数值决定于温度零点的选择和分度的方法。温度数值的表示方法称为温标。 ①日常生活中常用的温标称为摄氏温标。它是把1.013×105Pa气压下水的冰点定为零度,沸点定为100度,中间分为100等分,每一等分代表1度。用这种温标表示的温度称为摄氏温度,用符号t表示。 摄氏温度单位:摄氏度,符号是℃。 温标:温度数值的表示方法称为温标。 ②在国际单位制中,以热力学温标(又称为绝对温标)作为基本温标。这种温标以 -273.15 ℃作为零度,称为绝对零度。用这种温标表示的温度,称为热力学温度或绝对温度,用符号T表示。 绝对温度单位:开尔文,简称开,符号是 K。 热力学温度和摄氏温度只是零点的选择不同,但它们的分度方法相同,即二者每一度的大小相同。 ③热力学温度和摄氏温度之间的数值关系: T t=+(为计算上的简化,可取绝对零度为-273℃) 273 例如气压为1.013×105 Pa时 冰的熔点t =0 ℃→T = 273 K 水的沸点t =100 ℃→T =(100+273)K 温度与物质分子的热运动关系:温度越高,分子热运动越剧烈。分子平均速率也越大(各

理想气体状态方程实验

理想气体状态方程实验 【目的和要求】 验证理想气体状态方程;学习使用气压计测量大气压强。 【仪器和器材】 气体定律实验器(J2261型),钩码(J2106型),测力计(J2104型),方座支架(J1102型),温度计(0-100℃),烧杯,刻度尺,热水,气压计(全班共用)。 【实验方法】 1.记录实验室内气压计的大气压强p0。用刻度尺测出气筒全部刻度的长度,用测得的长度除气筒的容积得活塞的横截面积S,还可以进一步算出活塞的直径d(也可用游标卡尺测出活塞的直径d求得S)。 2.将仪器如图 3.4-1安装好。调整气体定律实验器使它成竖直状态。 3.先将硅油注入活塞内腔做润滑油。取下橡皮帽,把活塞拉出一半左右,使气筒内存留一定质量的空气,最后用橡皮帽会在出气嘴上,把气筒内的空气封闭住。 4.向烧杯内加入冷水,直到水完全浸设气体定律实验器的空气柱为止。 5.大约2分钟后,待气体体积大小稳定,读出温度计的度数,和气体的体积(以气柱长度表示)。 6.在气体定律实验器的挂钩上加挂钩码并记下钩码的质

量,用测力计提拉活塞记下活塞重G0,改变被封闭的空气柱的压强。用公式P=P0±(F/S)计算出空气柱的压强。同时读出水的温度、气体的体积。 7.给烧杯内换上热水,实验一次。 8.改变加挂的钩码数(或弹簧秤的示数),再分别做四次上面的实验。 9.将前面得到的数据填入上表,并算出每次实验得到的PV/T的值。 【注意事项】 1.力求气筒内的气体温度与水温一致,同时P、V、T的值尽量在同一时刻测定。一般先读出水的温度紧接着读气体的体积,因为气体的体积是随水的温度变化的。 2.要密封好气筒内的空气,不能漏气,并且气体的体积约占气筒总容积的一半,效果较好。 3.给活塞加挂钩码时,一定要使两边质量相同,使两边保持平衡,挂钩码要缓慢进行。 4.在公式P=P0±(F/S)中压力F是指活塞、硅油及活塞上的一些配件所受的重力G0和对活塞施加的拉力或压力。 5.计算压强时,应把各个量换算成统一单位后再运算,温度计读出的温度应折算成热力学温度。 6.空气柱一定要完全浸入水中,否则气体的温度就测不准

高中理想气体的状态方程学案教案

2.查理定律 3. 盖—吕萨克定律 二、理想气体: 为研究气体性质的方便,可以设想一种气体,在任何温度、任何压强下都遵从,我们把这样的气体叫做。 (回忆:已学过的理想模型?) (1)理想气体的宏观描述:能够严格遵从气体三个实验定律的气体. (2)理想气体的微规模型:分子间不存在相互作用力(除碰撞外),并且分子是没有大小的质点的气体. (3)理想气体是从实际气体抽象出来的物理模型. 理想气体是不存在的,但在温度不太低,压强不太大的情况下,可将实际气体看做是理想气体,误差很小,计算起来却方便多了. 三、理想气体的状态方程 完成P24思考与讨论-----推导一定质量的理想气体p、V、T所遵从的数学关系式一定质量的某种理想气体从状态A(p A、V A、T A)经历一个等温过程到状态B(p B、V B、T B),从B经历一个等容过程到状态C(p C、V C、T C)(图) A到B:由玻意耳定律可得 (1) B到C: 由查理定律可得(2) 又:T B=T A V C=V B 可得 而A、C是气体的任意两个状态。故上式表明: 一定质量的理想气体,从状态1( p1V1T1) 变到状态2(p2V2T2)尽管p、V、T着三个参量都可以改变,但是是不变的。即: 或 注意:式中的C是一个常量,与P、V 、T无关。以上两式都叫做一定质量理想气体的状态方程。 思考P25例题,体会解题思路和步骤 练习

1.对于一定质量的理想气体,下列说法正确的是 ( ) ( A )压强增大,体积增大,分子的平均动能一定增大 ( B )压强减小,体积减小,分子的平均动能一定增大 ( C )压强减小,体积增大,分子的平均动能一定增大 ( D ) 压强增大,体积减小,分子的平均动能一定增大 2.甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙容器中气体的压强分别为p甲、 p乙,且p甲< p乙 , 则() A.甲容器中气体的温度高于乙容器中气体的温度 B.甲容器中气体的温度低于乙容器中气体的温度 C.甲容器中气体分子的平均动能小于乙容器中气体分子的平均动能 D.甲容器中气体分子的平均动能大于乙容器中气体分子的平均动能 3.一活塞将一定质量的理想气体封闭在水平固定放置的气缸内,开始时气体体积为V0,温度升高到27℃。活塞上施加压力,将气体体积压缩到2V0/3,温度升高到57℃。设大气压强P0=×105Pa,活塞与气缸壁摩擦不计。 (1)求此时气体的压强; (2)保持温度不变,缓慢减小施加在活塞上的压力使气体体积恢复到V0,求此时气体的压强。 4.内壁光滑的导热气缸竖直浸放在盛有冰水混合物的水槽中,用不计质量的活塞封闭压强为×l05Pa、体积为×l0-3m3的理想气体.现在活塞上方缓缓倒上沙子,使封闭气体的体积变为原来的一半,然后将气缸移出水槽,缓慢加热,使气体温度变为127℃. (1)求气缸内气体的最终体积; (2)在p-V图上画出整个过程中 气缸内气体的状态变化. (大气压强为×l05Pa) 3)

理想气体状态方程整理

19.(2015?潍坊二模?37) (2)如图所示,一个粗细均匀的平底网管水平放置,右端用一橡皮塞塞住,气柱长20cm ,此时管内、外压强均为1.0×105Pa ,温度均为27℃;当被封闭气体的温度缓慢降至-3℃时,橡皮塞刚好被推动;继续缓慢降温,直到橡皮塞向内推进5cm .已知圆管的横截面积为4.0.×105-m 2,橡皮与网管间的滑动摩擦力等于最大静摩擦力,大气压强保持不变.求:(i)橡皮与圆管间的最大静摩擦力; (ii)被封闭气体最终的温度. 20. (2015?枣庄八中模拟?14).将如图所示的装置的右端部分气缸B 置于温度始终保持不变的环境中,绝热气缸A 和导热气缸B 均固定在地面上,由刚性杆连接的绝热活塞与两气缸间均无摩擦,开始时两形状相同的长方体气缸内装有理想气体,压强均为P 0、体积均为V 0、温度均为T 0.缓慢加热A 中气体,使气缸A 的温度升高为1.5T 0,稳定后.求: (i )气缸A 中气体的压强P A 以及气缸B 中气体的体积V B ; (ii )此过程中B 中气体吸热还是放热?试分析说明. 21.(2015?陕西三模?14)如图,导热性能极好的气缸,高为L=l.0m ,开口向上固定在水平面上,气缸中有横截面积为S=100cm 2 、质量为m=20kg 的光滑活塞,活塞将一定质量的理想气体封闭在气缸内.当外界温度为t=27℃、大气压为P 0=l.0×l05 Pa 时,气柱高度为l=0.80m ,气缸和活塞的厚度均可忽略不计,取g=10m/s 2 ,求: ①如果气体温度保持不变,将活塞缓慢拉至气缸顶端.在顶端处,竖直拉力F 有多大? ②如果仅因为环境温度缓慢升高导致活塞上升,当活塞上升到气缸顶端时,环境温度为多少摄氏度? 23.(2015?德州二模?37) (2)(8分)如图所示,质量1m kg =的导热气缸倒扣在水平地面上,A 为一T 型活塞,气缸内充有理想气体。气缸的横截面积S=2×10-4m 2 ,当外界温度为t=27℃时,气缸对地面恰好没有压力,此时活塞位于气缸中央。不计气缸壁厚度,内壁光滑,活塞始终在地面上静止不 动,大气压强为52 0110,10/P Pa g m s =?=。求: ①气缸内气体的压强;②环境温度升高时,气缸缓慢上升,温度至少升高到多少时,气缸不再上升。 ③气缸不再上升后,温度继续升高,从微观角度解释压强变化的原因。 24.(2015?吉林三模?33)(2)(10分)如图20所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m 的密闭活塞,活塞A 导热,活塞B 绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分。初状态整个装置静止不动处于平衡,Ⅰ、Ⅱ两部分气体的长度均为l 0,温度为T 0。设外界大气压强为P 0保持不变,活塞横截面积为S ,且mg=P 0S ,环境温度保持不变。求: ①在活塞A 上逐渐添加铁砂,当铁砂质量等于2m ,两活塞在某位置重新处于平衡,活塞B 下降的高度。 ②现只对Ⅱ气体缓慢加热,使活塞A 回到初始位置.此时Ⅱ气体的温度。

理想气体的状态方程 说课稿 教案 教学设计

新课标要求 知识与技能过程与方法情感、态度和价值观 1.掌握理想气体状态方程的内容及表达式。 2.知道理想气体状态方程的使用条件。 3.会用理想气体状态方程进行简单的运算。通过推导理想气 体状态方程,培 养学生利用所学 知识解决实际问 题的能力 理想气体是学生遇到 的又一个理想化模型, 正确建立模型,对于学 好物理是非常重要的, 因此注意对学生进行 物理建模方面的教育 教材分析与方法 教学重点教学难点教学方法教学用 具 1.掌握理想气体状态方程的内容及表达式。知道理想气体状态方程的使用条件。 2.正确选取热学研究对象,抓住气体的初、末状态,正确确定气体的状态参量,从而应用理想气体状态方程求解有关问题。应用理想 气体状态 方程求解 有关问题 启发、讲 授、实验探 究 投影仪、 多媒体、 实验仪 器 教师活动学生活动 1.前面我们已经学习了三个气体 实验定律,玻意耳定律、查理定 律、盖-吕萨克定律。这三个定 律分别描述了怎样的规律?说出 它们的公式。 2.以上三个定律讨论的都是一个 参量变化时另外两个参量的关 系。那么,当气体的p、V、T三 个参量都变化时,它们的关系如 何呢? 一、理想气体 问题: 压强(p)(atm)空气体积V(L)pV值( 1×1.013×105PaL) 1 100 200 500 1000 1.000 0.9730/100 1.0100/200 1.3400/500 1.9920/1000 1.000 0.9730 1.0100 1.3400 1.9920 在压强不太大的情况下,实验结果跟实验定律——玻意耳定律基本吻合,而在压强较大时,玻意耳定律则完全不适用了。 (2)为什么在压强较大时,玻意耳定律不成立呢?如果温度太低,查理定律是否也不成立呢?

理想气体的状态方程教案

理想气体的状态方程教 案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第3节理想气体的状态方程 复习预习引入 知识探究过程 一、理想气体 问题:以下是一定质量的空气在温度不变时,体积随常压和非常压变化的实验数据:

压强(p)(atm)空气体积V (L) pV值( 1××105PaL) 1 100 200 500 1000 100 200 500 1000 问题分析:(1)从表中发现了什么规律? 在压强不太大的情况下,实验结果跟实验定律——玻意耳定律基本吻合,而在压强较大时,玻意耳定律则完全不适用了。 (2)为什么在压强较大时,玻意耳定律不成立呢如果温度太低,查理定律是否也不成立呢 ○1分子本身有体积,但在气体状态下分子的体积相对于分子间的空隙很小,可以忽略不计。 ○2分子间有相互作用的引力和斥力,但分子力相对于分子的弹性碰撞时的冲力很小,也可以忽略。 ○3一定质量的气体,在温度不变时,如果压强不太大,气体分子自身体积可忽略,玻意耳定律成立,但在压强足够大时,气体体积足够小而分子本身不能压缩,分子体积显然不能忽略,这样,玻意耳定律也就不成立了。 ○4一定质量的气体,在体积不变时,如果温度足够低,分子动能非常小,与碰撞时的冲力相比,分子间分子力不能忽略,因此查理定律亦不成立了。 总结规律:设想有这样的气体,气体分子本身体积完全可以忽略,分子间的作用力完全等于零,也就是说,气体严格遵守实验定律。这样的气体就叫做理想气体。 a.实际的气体,在温度不太低、压强不太大时,可以近似为理想气体。

b.理想气体是一个理想化模型,实际气体在压强不太大、温度不太低的情况下可以看作是理想气体. 二、理想气体的状态方程 情景设置:理想气体状态方程是根据气体实验定律推导得到的。如图所示,一定质量的理想气体由状态1(T 1、p 1、v 1)变化到状态2(T 2、p 2、v 2),各状态参量变化有什么样的变化 呢?我们可以假设先让气体由状态1(T 1、p 1、v 1)经等温变化到状态c (T 1、p c 、v 2),再经过等容变化到状态2(T 2、p 2、v 2)。 推导过程:状态A →状态B ,等温变化,由玻意耳定律: 状态B →状态C ,等容变化,由查理定律: 两式消去B p ,得 又 A B T T =,C B V V = 代入上式得 上式即为状态A 的三个参量p A 、V A 、T A 与状态C 的三个参量p C 、V C 、T C 的关系。 总结规律:(1)内容:一定质量的理想气体,在状态发生变化时,它的压强P 和体积V 的乘积与热力学温度T 的比值保持不变,总等于一个常量。这个规律叫做一定质量的理想气体状态方程。 (2)公式:设一定质量的理想气体从状态1(p 1、V 1、T 1)变到状态2(p 2、V 2、T 2)则有表达式: 222111T V p T V p =或T pV = 恒量 适用条件:①一定质量的理想气体;②一定质量的实际气体在压强不太高,温度不太低的情况下也可使用。

理想气体状态方程式

第1章第零定律与物态方程 一、基本要点公式及其适用条件 1.系统的状态和状态函数及其性质 系统的状态—就是系统物理性质和化学性质的综合表现,它采用系统的宏观性质来描述系统的状态,系统的宏观性质,也称为系统的"状态函数"。 系统的宏观性质(状态函数)—就是由大量(摩尔级)的分子、原子、离子等微观粒子组成的宏观集合体所表现出的集团行为,简称"热力学性质"或“热力学函数”如p、V、T、U、H、S、A、G等。 Z=f(x,y)表示一定量、组成不变的均相系统,其任意宏观性质(Z)是另两个独立宏观性质(x,y)的函数。状态函数Z具有五个数学特征: (1),状态函数改变量只决定于始终态,与变化过程途径无关。 (2),状态函数循环积分为零,这是判断Z是否状态函数的准则之一。 (3),系Z的全微分表达式 (4),系Z的 Euler 规则,即微分次序不影响微分结果。 (5),系Z、x、y满足循环式,亦称循环规则。 2.热力学第零定律即热平衡定律: 当两个物态A和B分别与第三个物体C处于热平衡,则A和B之间也必定彼此处于热平衡。T=t+273.15,T是理想气体绝对温标,以"K"为单位。t是理想气体摄氏温标,以"℃"为单位。 绝对温标与摄氏温标在每一度大小是一样的,只是绝对温标的零度取在摄氏温标的 -273.15℃处,可以看出,有了绝对温标的概念后,只需确定一个固定参考点(pV)0p=0,依国际计量大会决定,这个参考点选取在纯水三相点,并人为规定其温度正好等于 273.16K。 3.理想气态方程及其衍生式为: ;式中p、V、T、n单位分别为 Pa、m3、K、mol;R=8.314J·mol-1·K-1,V m为气体摩尔体积,单位为 m3·mol-1,ρ为密度单位kg·m-3,M 为

教学反思+理想气体的状态方程

《理想气体的状态方程》教学反思六字引领下的四步目标教学法,是我校一直以来坚持的一种教学方法,在实际的教学中已经取得了很大的成果,学生已经能够非常好的适应在这种模式下学习。5月22日,我以落实“六字引领下的四步目标教学法”为主题,进行一节公开课:选修3-3,第八章第三节《理想气体的状态方程》。 通过课前的教学的准备,课上的积极铺垫与引导,本节课顺利高效的完成,有值得以后借鉴的地方也有需要改进的不当之处。 我觉得有点主要有这样三方面: 一、为此,我在课前备课时充分考虑到这些问题;通过对前几节知识的复习,当学生有了基础预设之后,我适时的提出问题:“当气体的温度很低或者压强很大时,前面所学习的三个定律不再适用,于是我们在解题中遇到了一定的问题,为了解决这个问题也为了计算的方便,物理学中引入理想气体的概念,本节课来学习什么是理想气体,研究一下理想气体具有哪样的性质”。这样,学生既知道了为什么要引入理想气体,同时又明确了本节课需要学习哪些知识,从而对本节课有自己的预设,使学生进入新课时没有新知识的冲击压力; 二、在课堂教学中,设置众多难度较低的问题,使学生能够顺利的解决问题,提高学习的信心;在课堂教学中,设置了多个讨论环节,使学生充分参与到其中,鼓励他们通过讨论,通过团队的力量解决问题,提高学生之间的合作意识。最终,在清晰思路的引领下,完成了本节课的教学内容,各个环节也都得到了充分的落实,学生和老师都

反应非常不错。 三、本节课最大的亮点就在于将学生分组,通过理想气体进行不同形式的变化,利用三个定律推导出状态参量满足相同的关系式,这样既完成了本节课的重点内容,又使得学生对前面知识的把握更进一层。 本节课的不当之处有一下几点: 首先,在“理想气体的特点”教学环节中,虽然设置了四个问题,让学生讨论以得出特点,但是起初对于“根据屏幕上四个问题来讨论”强调的不够,以致于学生在看书和讨论时出现了没有根据,找不到问题的切入点; 其次,在“特点”的讨论得出结论后,并没有给学生一定的时间整理学案或者记忆,使得知识没有得到最及时的记忆和理解; 第三,在应用理想气体的状态方程解例题的过程中,直接给出了四个思考问题来引导学生解答,虽然学生能够据此很好的得出答案,但是对学生思维的拓展起到了束缚的作用,因此,该点值得商榷。 总之,这节课完成的非常流畅,教学任务落实的很到位,“六字”以及“四步目标”体现的非常明显。学生在学习中,不管是知识还是能力都有所收获,但是,如果将上述的几个问题处理的更好,本节课将会更加的精彩。

高中物理选修3-3理想气体的状态方程教案

8.3、理想气体的状态方程 一、教学目标 1.在物理知识方面的要求: (1)初步理解“理想气体”的概念。 (2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。 (3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。 2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。 3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。 二、重点、难点分析 1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。 2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。 另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。 三、教具 1.气体定律实验器、烧杯、温度计等。 四、主要教学过程 (一)引入新课 前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。 (二)教学过程设计 1.关于“理想气体”概念的教学 设问: (1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。 (2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。 老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。这就是说,当温度足够低或压强足够大时,任何气体都被液化了,当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。 5

理想气体状态方程典型例题解析

理想气体状态方程·典型例题解析 【例1】某房间的容积为20m 3,在温度为17℃,大气压强为74 cm Hg 时,室内空气质量为25kg ,则当温度升高到27℃,大气压强变为76 cm Hg 时,室内空气的质量为多少千克? 解析:以房间内的空气为研究对象,是属于变质量问题,应用克拉珀龙方程求解,设原质量为m ,变化后的质量为m ′,由克拉珀龙方程 pV RT =可得:m M m m m m 25kg 24.81kg =……①′=……②②÷①得:=∴′==×××=.MpV RT Mp V RT m m p T p T p T p T 122 211221127629074300 点拨:对于变质量的问题,应用克拉珀龙方程求解的比较简单. 【例2】向汽车轮胎充气,已知轮胎内原有空气的压强为1.5个大气压,温度为20℃,体积为20L ,充气后,轮胎内空气压强增大为7.5个大气压,温度升为25℃,若充入的空气温度为20℃,压强为1个大气压,则需充入多少升这样的空气(设轮胎体积不变). 解析:以充气后轮胎内的气体为研究对象,这些气体是由原有部分加上充入部分气体所混合构成. 轮胎内原有气体的状态为:p 1=1.5 atm ,T 1=293K ,V 1=20L . 需充入空气的状态为:p 2=1atm ,T 2=293K ,V 2=? 充气后混合气体状态为:p =7.5atm ,T =298K ,V =20L 由混合气体的状态方程:+=得:p V T p V T pV T 111222 V (pV T )(7.520298)117.5(L)2=-·=×-××=p V T T p 1112215302932931 . 点拨:凡遇到一定质量的气体由不同状态的几部分合成时,可考虑用混合气体的状态方程解决. 【例3】已知空气的平均摩尔质量为2.9×10-2 kg/mol ,试估算室温下,空气的密度. 点拨:利用克拉珀龙方程=及密度公式ρ=可得ρ=, pV RT m M m V pM RT

高中物理人教版选修3-3教案 《理想气体的状态方程》(2篇)

理想气体的状态方程 一、教学目标 1.在物理知识方面的要求: (1)初步理解“理想气体”的概念。 (2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。 (3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。 2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。 3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。 二、重点、难点分析 1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。 2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。 三、教具 1.气体定律实验器、烧杯、温度计等。 四、主要教学过程 (一)引入新课 前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。 (二)教学过程设计 1.关于“理想气体”概念的教学 设问: (1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。 (2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。 老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。这就是说,当温度足够低或压强足够大时,任何气体都被液化了,当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。 P (×1.013×105Pa) pV值(×1.013×105PaL) H 2 N 2 O 2 空 气 1 1 .000 1 .000 1 .000 1 .000 100 1 .0690 .9941 .9265 .9730 200 1 .1380 1 .0483 .9140 1 .0100 500 1 .3565 1 .3900 1 .1560 1 .3400 1000 1211

理想气体状态方程四种情况

理想气体状态方程 1、如图所示,U形管右管横截面积为左管2倍,管内水银在左管内封闭了一段长为26cm、温度为 280K的空气柱,左右两管水银面高度差为36cm,大气压为76cm Hg.现向右管缓慢补充水银. ①若保持左管内气体的温度不变,当左管空气柱长度变为20cm时,左管内气体的压强为多大? ②在①条件下,停止补充水银,若给左管的气体加热,使管内气柱长度恢复到26cm,则左管 内气体的温度为多少? 2、如图所示,两端开口、粗细均匀的足够长的玻璃管插在水银槽中,管的上部有一定长度的 水银,两段空气柱被封闭在左右两侧的竖直管中。开启上部连通左右水银的阀门A,当温度为 300 K平衡时水银的位置如图(h1=h2=5 cm,L1=50 cm),大气压为75 cmHg。求: (1)右管内空气柱的长度L2; (2)关闭阀门A,当温度升至405 K时,左侧竖直管内气柱的长度L3。 3、如图所示,截面均匀的U形玻璃细管两端都开口,玻璃管足够长,管内有两段水银柱封闭着一段空气柱,若气柱温度是270C时,空气柱在U形管的左侧,A、B两点之间封闭着的空气柱长为15cm,U形管底边长CD=10cm,AC高为5cm。已知此时的大气压强为75cmHg。 (1)若保持气体的温度不变,从U形管左侧管口处缓慢地再注入25cm长的水银柱,则管内空 气柱长度为多少?某同学是这样解的: 对AB部分气体,初态p1=100cmHg,V1=15S cm3,末态p2=125cmHg,V2=LS cm3, 则由玻意耳定律p1V1=p2V2解得管内空气柱长度L=12cm。 以上解法是否正确,请作出判断并说明理由, 如不正确则还须求出此时管内空气柱的实际长度为多少? (2)为了使这段空气柱长度恢复到15cm,且回到A、B两点之间,可以向U形管中再注入一些水银,且改变气体的温度。问:应从哪一侧管口注入多长的水银柱?气体的温度变为多少? 4、一圆柱形气缸,质量M为10 kg,总长度L为40 cm,内有一厚度不计的活塞,质量m为5 kg,截 面积S为50 cm2,活塞与气缸壁间摩擦不计,但不漏气,当外界大气压强p0为1′105Pa,温度t0为7° C时,如果用绳子系住活塞将气缸悬挂起来,如图所示,气缸内气体柱的高L1为35 cm,g取 10 m/s2.求:①此时气缸内气体的压强;②当温度升高到多少摄氏度时,活塞与气缸将分离. 5、如图所示,两个绝热、光滑、不漏气的活塞A和B将气缸内的理想气体分隔成甲、乙两部分, 气缸的横截面积为S = 500 cm2。开始时,甲、乙两部分气体的压强均为1 atm(标准大气压)、 温度均为27 ℃,甲的体积为V1 = 20 L,乙的体积为V2 = 10 L。现保持甲气体温度不变而使 乙气体升温到127 ℃,若要使活塞B仍停在原位置,则活塞A应向右推多大距离? 6、如图所示,一导热性能良好、内壁光滑的气缸竖直放置,在距气缸底部l=36cm处有一与气缸固定 连接的卡环,活塞与气缸底部之间封闭了一定质量的气体.当气体的温度T0=300K、大气压强p0=1.0 ×105Pa时,活塞与气缸底部之间的距离l0=30cm,不计活塞的质量和厚度.现对气缸加热,使活塞缓 慢上升,求: ①活塞刚到卡环处时封闭气体的温度T1.②封闭气体温度升高到T2=540K时的压强p2. 7、使一定质量的理想气体的状态按图中箭头所示的顺序变化,图线 BC是一段以纵轴和横轴为渐近线的双曲线。 (1)已知气体在状态A的温度T A=300K,问气体在状态B、C和D的温度 各是多大?

理想气体状态方程练习题

选修3-3理想气体状态方程练习题 学号班级姓名 1.关于理想气体,下列说法正确的是( ) A.理想气体能严格遵守气体实验定律 B.实际气体在温度不太高、压强不太大的情况下,可看成理想气体 C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体 D.所有的实际气体任何情况下,都可以看成理想气体 2.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是( ) A.p1=p2,V1=2V2,T1=1 2 T2 B.p1=p2,V1= 1 2 V2,T1=2T2 C.p1=2p2,V1=2V2,T1=2T2 D.p1=2p2,V1=V2,T1=2T2 3.一定质量的理想气体,经历一膨胀过程,这一过程可以用下图上 的直线ABC来表示,在A、B、C三个状态上,气体的温度T A、T B、T C相比 较,大小关系为( ) A.T B=T A=T C B.T A>T B>T C C.T B>T A=T C D.T B

5 有两个容积相等的容器,里面盛有同种气体,用一段水平玻璃管把它们连接起来。在玻璃管的正中央有一段水银柱,当一个容器中气体的温度是0℃,另一个容器中气体的温度是20℃时,水银柱保持静止。如果使两容器中气体的温度都升高10℃,管中的水银柱会不会移动?如果移动的话,向哪个方向移动? 6一艘位于水面下200m 深处的潜水艇,艇上有一个容积为3 2m 的贮气筒,筒内贮有压缩空气,将筒内一部分空气压入水箱(水箱有排水孔和海水相连),排出海水3 10m ,此时筒内剩余气体的压强是95atm 。设在排水过程中温度不变,求贮气钢筒里原来压缩空气的压强。(计算时 可取Pa atm 5 101=,海水密度2 3 3 /10,/10s m g m kg ==ρ)

高中物理第八章气体第3节理想气体的状态方程教学案新人教选修3-3

第3节 理想气体的状态方程 1.理想气体:在任何温度、任何压强下都遵从气体实 验定律的气体,实际气体在压强不太大、温度不太低时可看作理想气体。 2.理想气体状态方程: p 1V 1T 1=p 2V 2T 2或pV T =C 。 3.适用条件:一定质量的理想气体。 一、理想气体 1.定义 在任何温度、任何压强下都严格遵从气体实验定律的气体。 2.理想气体与实际气体 在温度不低于零下几十摄氏度、压强不超过大气压的几倍时,可以把实际气体当成理想气体来处理。 如图8-3-1所示。 图8-3-1 二、理想气体的状态方程 1.内容 一定质量的某种理想气体,在从一个状态变化到另一个状态时,压强跟体积的乘积与热力学温度的比值保持不变。 2.公式 p 1V 1T 1=p 2V 2T 2或pV T =C (恒量)。 3.适用条件 一定质量的理想气体。

1.自主思考——判一判 (1)实际气体在常温常压下可看作理想气体。(√) (2)一定质量的理想气体从状态1变化到状态2,经历的过程不同,状态参量的变化不同。(×) (3)pV T =C 中的C 是一个与气体p 、V 、T 有关的常量。(×) (4)一定质量的气体,体积、压强不变,只有温度升高。(×) (5)一定质量的气体,温度不变时,体积、压强都增大。(×) (6)一定质量的气体,体积、压强、温度都可以变化。(√) 2.合作探究——议一议 (1)在实际生活中理想气体是否真的存在?有何意义? 提示:不存在。是一种理想化模型,不会真的存在,是对实际气体的科学抽象。 (2)对于一定质量的理想气体,当其状态发生变化时,会不会只有一个状态参量变化,其余两个状态参量不变呢,为什么? 提示:不会。根据理想气体状态方程,对于一定质量的理想气体,其状态可用三个状态参量p 、V 、T 来描述,且pV T =C (定值)。只要三个状态参量p 、V 、T 中的一个发生变化,另外两个参量中至少有一个会发生变化。故不会发生只有一个状态参量变化的情况。 (3)在理想气体状态方程的推导过程中,先后经历了等温变化、等容变化两个过程,是否表示始末状态参量的关系与中间过程有关? 提示:中间过程只是为了应用学过的规律(如玻意耳定律、查理定律等),研究始末状态参量之间的关系而采用的一种手段,结论与中间过程无关。 理想气体状态方程的应用 1.理想气体状态方程的分态式 (1)一定质量的理想气体的pV T 值,等于其各部分pV T 值之和。用公式表示为pV T =p 1V 1T 1+ p 2V 2 T 2 +…+ p n V n T n 。 (2)一定质量理想气体各部分的pV T 值之和在状态变化前后保持不变,用公式表示为 p 1V 1T 1+p 2V 2T 2+…=p 1′V 1′T 1′+p 2′V 2′ T 2′ +… (3)当理想气体发生状态变化时,如伴随着有气体的迁移、分装、混合等各种情况,使

高中物理《理想气体的状态方程》优质课教案、教学设计

理想气体的状态方程教学设计 本堂课使用的教学方法: 讲授法、归纳法、互动探究法、实验法。 教学过程设计: (一)情景导入、展示目标 教师提出问题:瘪了的乒乓球如何恢复原状? 演示:把乒乓球放入热水中,乒乓球恢复原样。 请同学们猜想解释:为何能够恢复原状? 你知道如何应用气体知识解释这个现象吗? 引入新课:理想气体状态方程 (二)回顾复习提问: 1、玻意耳定理(气体等温变化):PV=C 2、查理定律(气体等容变化):P/T=C 3、盖---吕萨克定律(气体等压变化):V/T=C (三)新课探究、精讲点拨 1、理想气体: 问题探究一:教师通过引导学生分析表格数据,引导学生得出理想气体概念,通过对理想模型的说明对学生进行物理思想方法的培养。 2、理想气体状态方程: 问题探究二: 老师通过联系乒乓球的实际引导学生寻找P、V、T 三个状态参量同时变化时它们之间的关系。 (1)乒乓球内的气体可以看做理想气体

(2) 瘪了的乒乓球对应的三个状态参量分别为:P 1、V 1、T 1,放入热水复原后的乒乓球对应的三个状态参量分别为:P 2、V 2、T 2 这种情况下初末状态的这三个状态参量会遵循什么关系呢? 教师引导点拨: 直接寻找初末状态各参量的关系比较困难,我们能否想办法寻找一个中间状态作为中转站,把一个不熟悉的比较复杂的过程化解成两个熟悉的简单的过程去解决? 教师引导学生探究讨论, 并应用气体实验定律和相关数学知识推导, 并让学生展示推导过程。 教师引导学生反思总结: 比较以上探究过程,你能发现什么? 虽然经历的过程不同,但是得出了相同的结论:一定质量的某种理想气体,在状态发生变化时,它的压强 P 和体积 V 的乘积与热力学温度 T 的比值相等 说明:这里的 1、2 是气体的任意两个状态,具有普遍意义,所以,可以得出结论: 对于一定质量的某种理想气体,满足: PV =C T 学生总结以上理论推导,得出结论: 理想气体状态方程教师引导学生深入探究: 常数 C 和什么有关呢? 教师设计提出问题: 质量为m 的空气,在温度为T 1,压强为P 1 时,对应的体积为 V 1, 如何求其标况下对应的体积 V 2(设标况下温度为 T 0,压强为 P 0)? 如果设标况下空气的摩尔体积为 V 0,摩尔质量为M ,请写出V 2 和V 0 的关系式。 引导学生得出: P 1V 1 T 1 =P 0V 2 T 0 =nP 0V 0 T 0 =nR =C

气体实验定律-理想气体的状态方程

气体实验定律-理想气体的状态方程

[课堂练习] 1.一定质量的理想气体处于某一初始状态,现要使它的温度经过状态变化后,回到初始状态的温度,用下列哪个过程可以实现( ) A .先保持压强不变而使体积膨胀,接着保持体积不变而减小压强 B .先保持压强不变而使体积减小,接着保持体积不变而减小压强 C .先保持体积不变而增大压强,接着保持压强不变而使体积膨胀 D . 先保持体积不变而减少压强,接着保持压强不变而使体积减小 2.如图为 0.2mol 某 种气体的压强与 温度关系.图中 p 0为标准大气压.气体在B 状态时的体积是_____L .

3.竖直平面内有右图所示的均匀玻 璃管,内用两段水银柱封闭两段空气 柱a、b,各段水银柱高度如图所示.大 气压为p0,求空气柱a、b的压强各多大? 4.一根两端封闭,粗细均匀的玻璃管,内有一小段水银柱把管内空气柱分成a、b两 部分,倾斜放置时,上、下两段空气 柱长度之比L a/L b=2.当两部分气体的 温度同时升高时,水银柱将如何移 动? 5.如图所示,内径均匀的U型玻璃管竖直放置,截面积为5cm2,管右侧上端封闭,左侧上端开口,内有用细线栓住的活塞.两管中分别封入L=11cm 的空气柱A和B,活塞上、下气体压强相等为76cm 水银柱产生的压强,这时两管内的水银面的高度

差h=6cm,现将活塞用细线缓慢地向上拉,使两管内水银面相平.求: (1)活塞向上移动的距离是多少? (2)需用多大拉力才能使活塞静止在这个位置上? 6、一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是() A.p1 =p2,V1=2V2,T1= 21T2 B.p1 =p2,V1=21V2,T1= 2T2 C.p1=2p2,V1=2V2,T1= 2T2 D.p1 =2p2,V1=V2,T1= 2T2 7、A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银 槽组成,除玻璃泡在管上的位置

相关文档
最新文档