大学物理第二十一章题解

大学物理第二十一章题解
大学物理第二十一章题解

第二十一章 磁介质

21-1.铝的相对磁导率Al 1.000 023r μ=,铜的相对磁导率Cu =0.999 991 2r μ,试求出它们的磁化率并指出它们各属哪类磁介质.

解 1m r χμ=-

所以 Al 1.00002310.0000230m χ=-=> ,属于顺磁质;

0.999991210.00000880mCu χ=-=-< ,属于抗磁质.

21-2.在均匀密绕的螺绕环导线内通20A 的电流,环上线圈共400匝,环的平均周长是40cm ,利用冲击电流计测得环内磁感应强度是1.0T .求:(1)环内平均磁场强度;(2)磁化强度;(3)磁化率;(4)磁化面电流和相对磁导率.

解 (1)以螺绕环中心为圆心,半径为r ,在螺绕环内作环路L ,由安培环路定理

d 2L H l rH NI π?==?

可得 2NI H r π=400200.4

?=42.010(A m)=? (2) 470 1.0 2.010410

B M H μπ-=-=-??57.7610(A m)=? (3)对于非铁磁物质 547.761038.82.010

m M H χ?===? (4)因S M j =,所以2S

S I rj π'=50.47.7610=??53.110(A)=? 139.8r m μχ=+=

21-3.同轴电缆由两同心长导体组成,内层是半径为1R 的导体圆柱,外层是内外半径分别为2R 和3R 的导体圆筒,如图所示.两导体内电流强度均为I ,电流均匀分布在横截面上,两导体电流方向相反.导体的相对磁导率为1r μ,两导体间充满相对磁导率为2r μ的不导电的均匀磁介质.求磁感应强度在各区域的分布.

解 因为电流对圆柱轴线轴对称,故其磁场分布亦对圆柱轴线轴对称.取轴上O 点为圆心,半径为r 的圆周为环路L ,其绕向与内层电流成右手螺旋关系.由安培环路定理

当1r R <时,221d L r H l I R ππ?=?,2

21

2Ir H r R π?= 21

2Ir H R π=,0101212r r B H Ir R μμμμπ== 当12R r R <<时,d L H l I ?=?,2H r I π?=

2I H r π=,02022r r I B H r

μμμμπ==

当23R r R <<时,2222232d L r R H l I I R R ππππ-?=--?,22222322r R H r I I R R π-?=--. 2232232()2R r I

H r R R π-=-,22

0130122322r r I R r B H r R R μμμμπ-==- 当3r R >时,

d 0L H l

?=?,0H =,0B =.

21-4.螺绕环中心周长为10cm ,环上均匀密绕的线圈有200匝,线圈中的电流为0.1A .

(1)若环内充满相对磁导率 4 200r μ=的软铁磁介质,求环内的B 和H 之平均值;

(2)问磁介质中由导线中电流产生的0B 和由磁化电流产生的B '各是多少?

解 (1)以螺绕环中心为圆心,半径为r ,在螺绕环内作环路L ,由安培环路定理

d H l

NI ?=? ,2rH NI π= 2NI H r π=2000.1200(A m)0.1

?== 704104200200r B H μμπ-==??? 1.06(T)=

(2) 0d B l N I

μ?=? 7004102000.120.1

NI B r μππ-???==42.510(T)-=? 40 1.06 2.510 1.06(T)B'B B -=-=-?=

(第二十一章题解结束)

大学物理第7章习题

o b a c d 班级 学号 姓名 第7-1 磁场 磁感应强度 磁场对运动电荷的作用 一.选择题 1. 一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则( ) (A )两粒子的电荷必然同号; (B )粒子的电荷可以同号也可以异号; B (C )粒子的动量必然不同; (D )粒子的运动周期必然不同。 2. 图为四个带电粒子在0点沿相同的方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是( ) (A )oa (B )ob B (C )oc (D )od 二.计算题 3.图所示为一个电子通过大小为1B 和2B 的两个均匀磁场区域的路径。它在每个区域中的路径都是半圆,(a )哪个磁场较强?(b )两个磁场各是什么方向?(c )电子在1B 的区域中所花费的时间是大于、小于、还是等于在2B 的区域中所花费的时间?

4.在图中,一带电粒子进入均匀磁场B 的区域,通过半个圆,然后退出该区域。该粒子是质子还是电子。它在该区域内度过130ns 。(a )B 的大小是多少?(b )如果粒子通过磁场被送回(沿相同的初始路径),但其动能为原先的2倍。则它在磁场内度过多长时间? 5. 一质子以速度71 0 1.010m s υ-=??射入 1.5B T =的匀强磁场中,其速度方向与磁场方 向成30角,计算:(1)质子螺旋运动的半径;(2)螺距;(3)旋转频率。 (质子质量2719 1.6710, 1.610e m kg e C --=?=?)

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理习题答案解析第七章

第七章 恒定磁场 7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D ) 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比 因而正确答案为(C )。 7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( ) (A ) (B ) (C ) (D ) 分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( ) (A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。因而正确答案为(B ). 7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) r R B B 2=r R B B =r R B B =2r R B B 4=2 1==R r n n r R B r 2π2B r 2 παB r cos π22 αB r cos π 2 S B ?=m Φ

大学物理第二十章题解

第二十章 稳恒电流的磁场 20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a .(1)设导线所载电流为I ,求P 点的B .(2)当20A I =,0.05m a =,求B . 解 (1)根据毕-萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长”直导线电流,它在P 点产生的磁场为001224I I B a a μμππ= =, 方向垂直纸面向里.根据叠加原理,P 点的磁感应强度 001224I I B a a μμππ= = 方向垂直纸面向里. (2)当20A I =,0.05m a =时 75141020410(T)22005 B .ππ--??=?=?? 20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B . 解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122I B R μ= .由叠加原理,圆心O 处的磁感应强度 04I B R μ= 方向垂直纸面向里. 20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求 各O 点的磁感应强度B . 解 (a )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流

的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加 0000111(1)22224224 I I I I B R R R R μμμμπ πππ= ++=+ ,方向垂直纸面向外. (b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加 000133 (1)224242 I I I B R R R μμμπππ= +=+ ,方向垂直纸面向里. (c )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加 000111222222I I I B R R R μμμππ= ++()024I R μππ=+ ,方向垂直纸面向里. *20-4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的 垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B 的大小为 x a a I B arctan 20πμ= 解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2I I y a = ,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成. y 处的细长条在P 点产生的磁感应强度为d B +,y -处的细长条在P 点产生的磁感应强 度为d B -,二者叠加为沿Oy 方向的d B .所以P 点的磁感应强度B 沿Oy 方向,B 的大小 02 2 2 cos 2a B x y θπ= +? 022 2 2 022a a x y x y π=? ?++? 0220d 2a Ix y a x y μπ=+?001arctan 2a Ix y a x x μπ=0arctan 2I a a x μπ = *20-5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单 层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B . 解 在14圆周的圆弧ab 上,单位长度弧长的线圈匝数为 224N N R R ππ=

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理习题答案解答第七章直流电路

第七章 直流电路 二、填空题 1、0S j dS ?=??或0j ??= 2、非静电力 3、充电,放电 4、串联时,两导线的电流强度相等,即12I I =,因截面积12:3:1S S =,所以电流密度大小121212 ::1:3I I j j S S ==,再由欧姆定律的微分形式j E σ=(其中σ是导体的电导率,通常仅与导体材料和温度有关,此处12σσ=),可得两导线的电场之比为 1 21212::1:3j j E E σσ==; 若将二导线并联,接上同一电池,则12εε=,因导线长度12l l =,注意到导线电动势与电场满足关系El ε=,所以两导线的电场之比为 12 1212::1:1E E l l εε== 因导线的电阻满足l R S ρ =(其中1ρσ =是导体的电阻率,此处12ρρρ==)。所以两导线的电阻之比为 12121212 ::1:3l l R R S S ρρ== 不妨记01R R =,则203R R =,当两导线串联时,总电阻1204R R R R =+=,电源输出功率为 22 1=4P I R R εεε==串 当两导线并联时,由11112R R R ---=+,可得总电阻034 R R =,电源输出功率为 2 2 04=3P R R εε=并

所以,电池供给的总电功率之比为 22 00 14:=:=3:1643P P R R εε串串 5、零 6、升高,降低。 三、选择题 1、选A 2、选C 3、选B 4、质量为m ,电量为q 的油滴静止时,设其所在位置的电场强度大小为E ,则有 qE mg = 当电荷量减小时,为维持该油滴仍处于静止状态,需要增大其所在位置处的电场强度。因平行板电容器内电场是匀强场,由课本平行板电容器的电容一节可知两极板电势差为 0AB Qd V Ed S ε== 由此可得电容内部电场强度 0Q E S ε= 因所给选项均无法改变电场强度大小,故不选。 5、选D 。 四、计算题 1、解:记四个灯泡的通电电阻为12340 6.0R R R R R =====Ω,电源电动势和内阻分别为ε和r 。 (1)开一盏灯时(不妨设开第一盏灯,则此时10R R =,而234R R R ===∞),四个并联的灯泡总阻//R 满足 111111//12341R R R R R R ------=+++=

大学物理第二章习题及答案知识讲解

第二章 牛顿运动定律 一、选择题 1.下列说法中哪一个是正确的?( ) (A )合力一定大于分力 (B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变 (D )质量越大的物体,运动状态越不易改变 2.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( ) (A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态 3.水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( ) (A )不得小于gR μ (B )不得大于gR μ (C )必须等于 gR μ2 (D )必须大于 gR μ3 4.一个沿x 轴正方向运动的质点,速率为51 s m -?,在0=x 到m 10=x 间受到一个如图所示的y 方向的力的作用,设物体的质量为1. 0kg ,则它到达m 10=x 处的速率为( ) (A )551s m -? (B )1751 s m -? (C )251s m -? (D )751 s m -? 5.质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( ) (A )mg (B )mg μ(C ))(a g m +μ (D ))(a g m -μ 6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( ) (A )1cos =θ (B )1sin =θ

华东理工 大学物理答案 第七章

第七章 热力学基础 1、一定量气体吸热800J ,对外作功500J ,由状态A 沿路径(1)变化到状态B ,问气体的内能改变了多少?如气体沿路径(2)从状态B 回到状态A 时,外界对气体作功300J ,问气体放出热量多少? 解:(1)J 300500800A Q E 11=-=-=? (2)J 600300300A E Q 22-=--=-?-= 2、1mol 氢,在压强为1大气压,温度为200 C 时,体积为V 0,今使其经以下两个过程达到同一状态,试分别计算以下两种过程中吸收的热量,气体对外作功和内能的增量,并在p-V 图上画出上述过程。 (1)先保持体积不变,加热使其温度升高到800C ,然 后令其作等温膨胀,体积变为原体积的2倍; (2)先使其等温膨胀到原体积的2倍,然后保持体积不变,加热到800 C 。 解:由题意知 T 1=273+20=293K ,T 2=273+80=353K (1)J 12466031.82 5 )T T (C E E E 12v 12=??=-=-=? J 20332ln 35331.8V V 2ln RT A A 0 o 223=??=== J 327920331246A E Q =+=+?= (2)J 16872ln 29331.8V V 2ln RT A A 0 0112=?=== J 12466031.82 5 E E E '23=??= -=? J 293312461687E A Q =+=?+= P V P(atm) 00

3、容器内贮有刚性多原子分子理想气体,经准静态绝热膨胀过程后,压强减为初压强的一半,求始末状态气体内能之比。 解:由绝热方程1 2 2 1 1 1 P T P T -γγ --γγ -=可得 γ -γ- ???? ??=11221P P T T 所以 19 .121P P T T RT 2 i RT 2i E E 3 4134 1122 12 1 2 1=?? ? ??=??? ? ??==νν=--γ -γ- 4、如图所示,1mol 的氦气由状态A (p 1,V 1)沿p-V 图中直线变化到状态B(p 2,V 2),设AB 延长线通过原点,求: (1)这过程内能的变化,吸收的热量和对外作的功; (2)气体的热容量; (3)多方指数。 解:(1)) V P V P (2 3)T T (R 2 3T C M m E 112212v -= -= ?= ? )V V )(P P (21A 1221-+= )V P k (V P V P 2 21 1= = ) V P V P (2 1A 1122-= ∴ ) V P V P (2)V P V P (2 1)V P V P (2 3 A E Q 112211221122-=-+-= +?= (2)PdV dT C dA dE dQ V +=+= 由理想气体方程得 R d T V d P P d V =+ 又 P=kV , dP=kdV R d T P d V 2k V d V P d V V d P P d V ==+=+∴ 即 dT 2R PdV = R d T 2R d T 2 1R d T 23P d V dT C dQ V =+ =+= 热容量 R 2dT dQ C == (3)过程方程 kV P = 即 k PV 1=- 多方指数 n=-1 2)

2015大学物理(下)期末复习题答案

大学物理(下)期末复习题 一、选择题 [ C ] 2.关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 (A) (1)、(2)、(3).(B) (1)、(2)、(4). (C) (2)、(4).(D) (1) 、(4) [ D ] 3. 理想气体卡诺循环过程的两个绝热下的面积大小(图中阴影部分) 分别为S1和S2,则两者的大小关系是 (A)S1>S2 ;(B)S1=S2 ;(C)S1

5. 一定量的的理想气体,其状态改变在P-T图上沿着直线一条沿着 一条直线从平衡态a改变到平衡态b(如图) (A)这是一个绝热压缩过程. (B)这是一个等体吸热过程. (C)这是一个吸热压缩过程. (D)这是一个吸热膨胀热过程. [D] 6.麦克斯韦速率分布曲线如图所示,图中A、B两部分面积相等, 则该图表示 (A)v0为最概然速率;(B)v0为平均速率; (C)v0为方均根速率; (D)速率大于和小于v0的分子数各占一半. [D] 7. 容器中储有定量理想气体,温度为T ,分子质量为m ,则分子速 度在x 方向的分量的平均值为:(根据理想气体分子模型和统计假设讨论) [ A ] 8. 设一部分偏振光由一自然光和一线偏振光混合构成。现通过偏振片观察到这部分偏振光在偏振 60时,透射光强减为一半,试求部分偏振光中自然光和线偏振片由对应最大透射光强位置转过 光两光强之比为 (A) 2:1 .(B) 4:3.(C) 1:1.(D) 1:2.[ C ] 9.如图,一束动量为p的电子,垂直通过缝宽为a的狭缝,问距缝为D处的荧光屏上显示出的衍射图样的中央亮纹的宽度为 (A) 2ha/(Dp).(B) 2Dh/(ap).(C) 2a2/D.(D) 2ha/p.[ B ]10.一氢原子的动能等于氢原子处于温度为T的热平衡时的平均动能,氢原子的质量为m,则此氢原子的德布罗意波长为.

大学物理第七章习题及答案word版本

第七章 振动学基础 一、填空 1.简谐振动的运动学方程是 。简谐振动系统的机械能是 。 2.简谐振动的角频率由 决定,而振幅和初相位由 决定。 3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。 4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3 x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。 5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位 6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4 x t πω=-,其合振动的振幅为 ,初相位为 。 7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01π ω+=t x ,250.05cos()4 x t πω=+,其合振动的振幅为 ,初相位为 。 8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为 2π或32π时,质点轨迹是 。 二、简答 1.简述弹簧振子模型的理想化条件。 2.简述什么是简谐振动,阻尼振动和受迫振动。 3.用矢量图示法表示振动0.02cos(10)6 x t π =+,(各量均采用国际单位).

三、计算题 7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求: (1)振动的圆频率,周期,初相位及速度与加速度的最大值; (2)最大恢复力,振动能量; (3)t=1s ,2s ,5s ,10s 等时刻的相位是多少? (4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。 7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为: (1)X 0=-A ; (2)过平衡位置向正向运动; (3)过X=A/2处向负向运动; (4)过X=2A 处向正向运动。 试求出相应的初相位之值,并写出振动方程。 7.3 做简谐振动的小球速度的最大值为0.03m ·s -1,振幅为0.02m ,若令速度具有正最大值的时刻为t=0,试求: (1)振动周期; (2)加速度的最大值; (3)振动的表达式。

大学物理1章习题解答03

1-3.一粒子按规律32395x =t -t -t +沿x 轴运动,试分别求出该粒子沿x 轴正向运动;沿x 轴负向运动;加速运动;减速运动的时间间隔。 [解] 由运动方程59323+--=t t t x 可得质点的速度 ()()133963d d 2x +-=--== t t t t t x v (1) 粒子的加速度 ()16d d -==t t v a (2) 由式(1)可看出 当t >3s 时,v >0,粒子沿x 轴正向运动; 当t <3s 时,v <0,粒子沿x 轴负向运动。 由式(2)可看出 当t >1s 时,a >0,粒子的加速度沿x 轴正方向; 当t <1s 时,a <0,粒子的加速度沿x 轴负方向。 因为粒子的加速度与速度同方向时,粒子加速运动,反向时,减速运动,所以,当t >3s 或0

《大学物理》第七章 复习资料.

§11.1 磁感应强度 磁场的高斯定理 一、电场线与磁感应线的区别: 1、电场线是不闭合线,电场是有源场。 ?= ?0εq S d E 0=?? l d E 2、磁感应线是闭合线,磁场是无源场。 0=??S d B I l d B L ∑?=?0μ 二、毕奥-萨伐尔定律: ??=204r e l Id B r π μ ??? ???? ⊥⊥??=) ,( sin 4 20r r e e B l d B l Id r Idl B 方向:大小:α πμ 计算B 的解题步骤: 1. 取l Id ,求B d (大小、方向); 2. 将B d 分解成y x dB dB 、 ;分析对称性; 3. 求B 的大小和方向。

载流长直导线的磁感应强度: a I B πμ20= 载流圆线圈圆心处的磁感应强度:R I B 20μ= 运动电荷的磁场: 204r e v q B r ?=πμ B 题 1. 磁场环路定理的表达式为______;它表明磁场是________场。磁场高斯定理的表达式为______;它表明磁场的磁感应线是_______的。 2.如图,两段共心圆弧与半径构成一闭合载流回路,圆心角为θ,电流强度为I 。求圆心处的磁感应强度。

3. 内外半径分别为a 、b 的圆环,其 匀带有面密度为σ 的电荷,圆环以角速度ω 绕通过圆环中心垂直于环面的 轴转动,求: μo σω(b 4.如图,两段共心圆弧与半径构成一闭合载流回路,圆心角为θ,电流强度为I 。求圆心处的磁感应强度。 方向向内) (444sin 42 1020 202 012 020B B B a Idl B b Idl B r Idl r Idl dB a b -=====??θθπμπμπμαπμ 如图,一无限长薄平板导体,宽为a , 通有电流I ,求和导体共面的距导体 DDD 一边距离为d 的P 点的磁感应强度。 ? +==== d a d dB B dr ar I dB dr dI a I r dI dB πμπμ2200 dI

大学物理上海交通大学20章课后习题答案

习题20 20-1.从某湖水表面反射来的日光正好是完全偏振光,己知湖水的折射率为33.1。推算太阳在地平线上的仰角,并说明反射光中光矢量的振动方向。 解:由布儒斯特定律:tan n i =,有入射角:arctan1.3353i ==o , ∴仰角9037i θ=-=o o 。 光是横波,光矢量的振动方向垂直于入射光线、折射光线和法线在所在的平面。 20-2.自然光投射到叠在一起的两块偏振片上,则两偏振片的偏振化方向夹角为多大才能使: (1)透射光强为入射光强的3/1; (2)透射光强为最大透射光强的3/1。(均不计吸收) 解:设两偏振片的偏振化方向夹角为α,自然光光强为0I 。 则自然光通过第一块偏振片之后,透射光强012I ,通过第二块偏振片之后:α 20cos 21 I I =, (1)由已知条件,透射光强为入射光强的13,得:200 11 cos 2 3I I α=,有: (2)同样由题意当透射光强为最大透射光强的3/1时,得:200111cos () 232I I α=,有: arccos 54.733α==o 。 20-3.设一部分偏振光由一自然光和一线偏振光混合构成。现通过偏振片观察到这部分偏振光在偏振片由对应最大透射光强位置转过ο 60时,透射光强减为一半,试求部分偏振光中自 然光和线偏振光两光强各占的比例。 解:由题意知: max 012max 011211cos 6022I I I I I I =?????+=+??o ?max 01max 0112111224I I I I I I ????=+=+????01I I =, ∴即得0111I I =::。 20-4.由钠灯射出的波长为589.0nm 的平行光束以ο 50角入射到方解石制成的晶片上,晶 片光轴垂直于入射面且平行于晶片表面,已知折射率 1.65o n =, 1.486e n =,求: (1)在晶片内o 光与e 光的波长; (2)o 光与e 光两光束间的夹角。 解:(1)由c n v =,而c λν=,有:c o o n λλ=,c e e n λ λ= ∴589.0356.971.65c o o nm n λλ===,589.0396.371.486 c e e nm n λλ===; (2)又∵sin sin i n γ= ,有:sin 50arcsin 27.66o o n γ==o o ,sin 50arcsin 31.03e e n γ==o o , ∴o 光与e 光两光束间的夹角为: 3.37e o γγγ?=-=o 。 20-5.在偏振化方向正交的两偏振片1 P , 2 P 之间,插入一晶片,其光轴平行于表面且与起 偏器的偏振化方向成ο 35,求:

大学物理同步训练第2版第七章静电场中的导体详解

第七章 静电场中的导体和电介质 一、选择题 1. (★★)一个不带电的空腔导体球壳,内半径为R 。在腔内离球心的 距离为a 处(a

(完整版)大学物理下册期末考试A卷.doc

**大学学年第一学期期末考试卷 课程名称大学物理(下)考试日期 任课教师 ______________试卷编号_______ 考生姓名学号专业或类别 题号一二三四五六七总分累分人 签名题分40 10 10 10 10 10 10 100 得分 考生注意事项:1、本试卷共 6 页,请查看试卷中是否有缺页。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 部分常数:玻尔兹曼常数 k 1.38 10 23 J / K , 气体普适常数 R = 8.31 J/K.mol, 普朗克常量h = 6.63 10×34 J·s,电子电量e 1.60 10 19 C; 一、填空题(每空 2 分,共 40 分) 1. 一理想卡诺机在温度为 27℃和 127℃两个热源之间运转。若得分评卷人 使该机正循环运转,如从高温热源吸收1200J 的热量,则将向低 温热源放出热量 ______J; 2.1mol 理想气体经绝热自由膨胀至体积增大一倍为止,即 V22V1则在该过程中熵增S_____________J/k。 3.某理想气体的压强 P=105 Pa,方均根速率为 400m/s,则该气 体的密度 _____________kg/m3。 4.AB 直导体长为 L 以图示的速度运动,则导体中非静电性场强大小 ___________,方向为 __________,感应电动势的大小为 ____________。

5 5.平行板电容器的电容 C为 20.0 μ F,两板上的电压变化率为 dU/dt=1.50 × 10V/s ,则电容器两平行板间的位移电流为___________A。 6. 长度为 l ,横截面积为 S 的密绕长直螺线管通过的电流为I ,管上单位长度绕有n 匝线圈,则管内的磁能密度w 为 =____________ ,自感系数 L=___________。 7.边长为 a 的正方形的三个顶点上固定的三个点电荷如图所示。以无穷远为零电 势点,则 C 点电势 U C =___________;今将一电量为 +q 的点电荷 从 C点移到无穷远,则电场力对该电荷做功 A=___________。 8.长为 l 的圆柱形电容器,内半径为R1,外半径为R2,现使内极 板带电 Q ,外极板接地。有一带电粒子所带的电荷为q ,处在离 轴线为 r 处( R1r R2),则该粒子所受的电场力大小F_________________;若带电粒子从内极板由静止飞出,则粒子飞到外极板时,它所获得的动能E K________________。 9.闭合半圆型线圈通电流为 I ,半径为 R,置于磁感应强度为B 的均匀外磁场中,B0的方向垂直于AB,如图所示。则圆弧ACB 所受的磁力大小为 ______________,线圈所受磁力矩大小为__________________。 10.光电效应中,阴极金属的逸出功为2.0eV,入射光的波长为400nm ,则光电流的 遏止电压为 ____________V。金属材料的红限频率υ0 =__________________H Z。11.一个动能为40eV,质量为 9.11 × 10-31 kg的电子,其德布 罗意波长为nm。 12.截面半径为R 的长直载流螺线管中有均匀磁场,已知 dB 。如图所示,一导线 AB长为 R,则 AB导线中感生 C (C 0) dt 电动势大小为 _____________,A 点的感应电场大小为E。

《大学物理》-第二版-课后习题答案--第七章

习题精解 7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图7.6所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。 解(1)如图7.6所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。 根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 02 4Idl dB R μπ= 方向垂直纸面向内。半圆弧在O 点产生的磁感应强度为 000220 444R I Idl I B R R R R πμμμπππ= == ? 方向垂直纸面向里。 (2)如图7.6(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。 根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 02 4Idl dB R μπ= 方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为 0002 220 4428R I Idl I R B R R R πμμμπππ= ==? 方向垂直纸面向里。 7.2 如图7.7所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。 解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为 0120 (cos cos )4I B r μθθπ= - 式中120,,2 r a π θθπ= == 。所以 500(cos cos ) 4.010()42 I B T a μπ ππ= -=? 方向垂直纸面向里。 7-3 如图7.8所示,用毕奥—萨伐尔定律计算图中O 点的磁感应强度。 解 圆心 O 处的磁感应强度可看作由3段载流导线的磁场叠加而成, AB 段在P 点所产生的磁感应强度为 ()0120 cos cos 4I B r μθθπ= -

大学物理学第版 修订版北京邮电大学出版社上册第七章习题答案

习 题 7 7.1选择题 (1) 容器中贮有一定量的理想气体,气体分子的质量为m ,当温度为T 时,根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值是: (A) 2x υ= . (B) 2x υ= [ ] (C) 23x kT m υ= . (D) 2x kT m υ= . [答案:D 。2222x y z υυυυ=++, 22 221 3x y z υυυυ===,23kT m υ=。] (2) 一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们 [ ] (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强. [答案:C 。由32 w kT =,w w =氦氮,得T 氦=T 氮 ; 由mol pM RT ρ= ,ρρ=氦氮,T 氦=T 氮 ,而M M 氦氮。]

(3) 在标准状态下,氧气和氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为: [ ] (A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3. [答案:C 。由2mol M i E RT M = 2 i pV =,得111112222256E i pV i V E i pV i V ==?=。] (4) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线,其延长线过E ~V 图的原点,题7.1图所示,则此直线表示的过程为: [ ] (A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程. [答案:B 。由图得E =kV , 而2i E pV = ,i 不变,2 i k p =为一常数。] (5) 在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为 [ ] (A) Z 与T 无关. (B).Z 与T 成正比 . (C) Z 与T 成反比. (D) Z 与T 成正比.

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

相关文档
最新文档