中英文外文翻译数据采集系统定

中英文外文翻译数据采集系统定
中英文外文翻译数据采集系统定

数据采集系统

数据采集系统,正如名字所暗示的,是一种用来采集信息成文件或分析一些现象的产品或过程。在最简单的形式中,技术人员将烤箱的温度记录在一张纸上就是数据采集。随着技术的发展,通过电子设备,这个过程已经得到简化和变得比较精确、多用途和可靠。设备从简单的存储器发展到复杂的电脑系统。数据采集产品像聚焦点一样为系统服务,和一系列产品一起,诸如传感器显示温度、水流、程度或者过程。

数据采集技术在过去30到40年以来已经取得了很大的飞跃。举例来说,在40 年以前,在一个著名的学院实验室中,为追踪用青铜做的坩埚中的温度上升情况的装置是由热电偶、继电器、查询台、一捆纸和一支铅笔。

今天的大学学生很可能在PC机上自动处理和分析数据,有很多种可供你选择的方法去采集数据。至于选择哪一种方法取决于多种因素,包括任务的复杂度、你所需要的速度和精度、你想要的证据资料等等。无论是简单的还是复杂的,数据采集系统都能够运行并发挥它的作用。

用铅笔和纸的旧方式对于一些情形仍然是可行的,而且它便宜、易获得、快速和容易开始。而你所需要的就是捕捉到多路数字信息(DMM),然后开始用手记录数据。

不幸的是这种方法容易发生错误、采集数据变慢和需要太多的人工分析。此外,它只能单通道采集数据;但是当你使用多通道DMM时,系统将很快变得非常庞大和呆笨拙。精度取决于誊写器的水平,并且你可能需要自己动手依比例输入。举例来说, 如果DMM 没有配备处理温度的传感器,旧需要动手找比例。考虑到这些限制,只有当你需要实行一个快速实验时,它才是一个可接受的方法。

现代多种版本的长条图表记录仪允许你从多个输入取得数据。他们提供数据的长备纸记录,因为数据是图解的格式,他们易于现场采集数据。一旦建立了长条图表记录仪,在没有操作员或计算机的情况下,大多数记录仪具有足够的内部智能运行。缺点是缺乏灵活性和相对的精度低,时常限制在百分点。你能很清楚地感觉到与笔只有小的改变。在多通道内较长时间的监控,记录仪能发挥很好的作用,除此之外,它们的价值得到限制。举例来说,他们不能够与另外的装置轮流作用。其他的顾虑就是笔和纸的维护,纸的供给和数据的存储,最重要的是纸的滥用和浪费。然而,记录仪相当容易建立和操作,为数据快速而简单的分析提供永久的记录。

一些benchtop DMMs 提供可选择的扫描能力。仪器的背面有一个槽孔接收一张在较多输入时能多重发讯的扫描仪卡片,通常是8到10通道的mux。固

有的在仪器的前面嵌板中的受到限制。它的柔韧性也受到限制,因为它不能超过可用通道数。外部的PC机通常处理数据采集和分析。

PC机插件卡片是单板测量系统,它利用ISA或PCI总线在PC机内扩大插槽。它们时常具有高达每秒1000的阅读速率。8到16通道是普遍的,采集的数据直接存储在电脑里,然后进行分析。因为卡片本质上是计算机的一部分,建立测试是容易的。PC机卡也相对的便宜,一部分地,因为他们以来主机PC去提供能源、机械附件和使用界面。

数据采集的选择

在缺点上,PC机插件卡片时常只有12字的容量,因此你不能察觉输入信号的小变化。此外,PC机内的电子环境经常很容易发出噪声、产生高速率的时钟和总线噪声,电子接触面限制PC机插件卡片的精度。这些插件卡片也测量一定范围的电压。为了测量其他输入信号,如电压、温度和阻力,你也许需要一些外部信号监测的器件。其它关心包括复杂的校正和全部的系统成本,尤其如果你需要购买额外信号监测器件或用PC机适应插件卡片。把这些考虑进去,如果你的需要在卡片的能力和限制范围内变动,PC机插件卡片给数据采集提供吸引人的方法。

数据电子自动记录仪是典型的单机仪器,一旦配备它们,就能测量、记录和显示数据而不需要操作员或计算机参与。它们能够处理多信号输入,有时可达120通道。精度可与无与伦比的台式DMMs 匹敌,由于它在22字、0.004个百分率的精度范围内运转。一些数据电子自动记录仪有能力按比例测量,检查结果不受使用者定义的限制,而且输出为控制作信号。

使用数据电子自动记录仪的一个好处就是他们的内部监测信号。大部分能够直接地测量若干不同的输入信号,而不需要额外的信号监测器件。一个通道能够监测热电偶、温阻器(RTD)和电压。

热电偶为准确的温度测量提供具有参考价值的补偿,是很典型的配备了多路插件卡片。内设智能数据电子自动记录仪帮助你设定测量周期和具体指定每个通道的参数。一旦你全部设定好,数据电子自动记录仪就如同无与伦比的装置运行。它们存储的数据分布在内存中,能够容纳500000或更多的阅读量。

与PC机连接容易将数据传送到电脑进行进一步的分析。大多数数据电子自动记录仪可设计为柔性和简单的组态和操作, 而且经由电池包裹或其它方法,多数提供远程位置的操作选项。靠A/ D 转换技术,一定的数据电子自动记录仪阅读的速率比较低,尤其是跟PC机插件卡片比较。然而,每秒250的阅读速率比较少见。要牢记正在测量的许多现象本质上是物理的,如温度、压力和流量,而

且一般有较少的变动。此外,因为数据电子自动记录仪的监测精度,多量且平均阅读没有必要,就像它们经常在PC记插件卡片一样。

前端数据采集经常做成模块而且是典型地与PC机或控制器连接。他们被用于自动化的测试中,为其它测试装备采集数据、控制和循环检测信号。发送信号测试装备的零配件。前端运转的效率是非常高的,能与速度和精度与最好的单机仪器匹敌。前端数据采集在很多模型里都能运行,包括VXI版本,如Agilent E1419A 多功能测量和VXI控制模型,还有专有的卡片升降室。虽然前端器成本已经降低,但是这些系统可能会非常贵,除非你需要提供高的运转,而查找它们的价格是禁止的。另一方面,它们的确能够提供相当多的可挠性和测量能力。

好的、成本低的数据电子自动记录仪有合适的通道数(20-60通道)和扫描速率相对低但对于多数工程师的普遍应用已足够。一些关键的应用包括: ?产品特征

?电子产品的热靠模切削

?环境的测试

环境的监测

?组成物特征

?电池测试

建筑物和计算机容量监测

DATA ACQUISITION SYSTEMS

Data acquisition systems, as the name implies, are products and/or processes used to collect information to document or analyze some phenomenon. In the simplest form, a technician logging the temperature of an oven on a piece of paper is performing data acquisition. As technology has progressed, this type of process has been simplified and made more accurate, versatile, and reliable through electronic equipment. Equipment ranges from simple recorders to sophisticated computer systems. Data acquisition products serve as a focal point in a system, tying together a wide variety of products, such as sensors that indicate temperature, flow, level, or pressure. Some common data acquisition terms are shown below.

Data acquisition technology has taken giant leaps forward over the last 30 to 40 years. For example, 40 years ago, in a typical college lab, apparatus for tracking the temperature rise in a crucible of sodium tungsten- bronze consisted of a thermocouple, a bridge, a lookup table, a pad of paper and a pencil.

Today’s coll ege students are much more likely to use an automated process and analyze the data on a PC Today, numerous options are available for gathering data. The optimal choice depends on several factors, including the complexity of the task, the speed and accuracy you require, and the documentation you want. Data acquisition systems range from the simple to the complex, with a range of performance and functionality.

The old pencil and paper approach is still viable for some situations, and it is inexpensive, readily available, quick and easy to get started. All you need to do is hook up a digital multiple meters (DMM) and begin recording data by hand.

Unfortunately, this method is error-prone, tends to be slow and requires extensive manual analysis. In addition, it works only for a single channel of data; while you can use multiple DMMs, the system will quickly becomes bulky and awkward. Accuracy is dependent on the transcribers level of fastidiousness and you may need to scale input manually. For example, if the DMM is not set up to handle temperature sensors, manual scaling will be required. Taking these limitations into account, this is often an acceptable method when you need to perform a quick experiment.

Modern versions of the venerable strip chart recorder allow you to capture data from several inputs. They provide a permanent paper record of the data, and because this data is in graphical format, they allow you to easily spot trends. Once set up, most

recorders have sufficient internal intelligence to run unattended — without the aid of either an operator or a computer. Drawbacks include a lack of flexibility and relatively low accuracy, which is often constrained to a few percentage points. You can typically perceive only small changes in the pen plots. While recorders perform well when monitoring a few channels over a long period of time, their value can be limited. For example, they are unable to turn another device on or off. Other concerns include pen and paper maintenance, paper supply and data storage, all of which translate into paper overuse and waste. Still, recorders are fairly easy to set up and operate, and offer a permanent record of the data for quick and simple analysis.

Some bench top DMMs offer an optional scanning capability. A slot in the rear of the instrument accepts a scanner card that can multiplex between multiple inputs, with 8 to 10 channels of mux being fairly common. DMM accuracy and the functionality inherent in the instruments front panel are retained. Flexibility is limited in that it is not possible to expand beyond the number of channels available in the expansion slot. An external PC usually handles data acquisition and analysis.

PC plug-in cards are single-board measurement systems that take advantage of the ISA or PCI-bus expansion slots in a PC. They often have reading rates as high as 100,000 readings per second. Counts of 8 to 16 channels are common, and acquired data is stored directly into the computer, where it can then be analyzed. Because the card is essentially part of the computer, it is easy to set up tests. PC cards also are relatively inexpensive, in part, because they rely on the host PC to provide power, the mechanical enclosure and the user interface.

In the downside, PC plug-in cards often have only 12 bits of resolution, so you can’t perceive small variations with the input signal. Furthermore, the electrical environment inside a PC tends to be noisy, with high-speed clocks and bus noise radiated throughout. Often, this electrical interference limits the accuracy of the PC plug-in card to that of a handheld DMM .These cards also measure a fairly limited range of dc voltage. To measure other input signals, such as ac voltage, temperature or resistance, you may need some sort of external signal conditioning. Additional concerns include problematic calibration and overall system cost, especially if you need to purchase additional signal conditioning accessories or a PC to accommodate the cards. Taking that into consideration, PC plug-in cards offer an attractive approach to data acquisition if your requirements fall within the capabilities and limitations of the card.

Data loggers are typically stand-alone instruments that, once they are setup, can measure, record and display data without operator or computer intervention. They can handle multiple inputs, in some instances up to 120 channels. Accuracy rivals that found in standalone bench DMMs, with performance in the 22-bit, 0.004-percent accuracy range. Some data loggers have the ability to scale measurements, check results against user-defined limits, and output signals for control.

One advantage of using data loggers is their built-in signal conditioning. Most are able to directly measure a number of different inputs without the need for additional signal conditioning accessories. One channel could be monitoring a thermocouple, another a resistive temperature device (RTD) and still another could be looking at voltage.

Thermocouple reference compensation for accurate temperature measurement is typically built into the multiplexer cards. A data logger built-in intelligence helps you set up the test routine and specify the parameters of each channel. Once you have completed the setup, data loggers can run as standalone devices, much like a recorder. They store data locally in internal memory, which can accommodate 50,000 readings or more.

PC connectivity makes it easy to transfer data to your computer for in-depth analysis. Most data loggers are designed for flexibility and simple configuration and operation, and many provide the option of remote site operation via battery packs or other methods. Depending on the A/D converter technique used, certain data loggers take readings at a relatively slow rate, especially compared to many PC plug-in cards. Still, reading speeds of 250 readings/second are not uncommon. Keep in mind that many of the phenomena being monitored are physical in nature —such as temperature, pressure and flow —and change at a fairly slow rate. Additionally, because of a data logger superior measurement accuracy, multiple readings and averaging are not necessary, as they often are in PC plug-in solutions.

Data acquisition front ends are often modular and are typically connected to a PC or controller. They are used in automated test applications for gathering data and for controlling and routing signals in other parts of the test setup. Front end performance can be very high, with speed and accuracy rivaling the best standalone instruments. Data acquisition front ends are implemented in a number of formats, including VXI versions, such as the Agilent E1419A multifunction measurement and control VXI module, and proprietary card cages.. Although front-end cost has been decreasing,

these systems can be fairly expensive, and unless you require the high performance they provide, you may find their price to be prohibitive. On the plus side, they do offer considerable flexibility and measurement capability.

A good, low-cost data logger with moderate channel count (20 - 60 channels) and a relatively slow scan rate is more than sufficient for many of the applications engineers commonly face. Some key applications include:

? Product characterization

? Thermal profiling of electronic products

? Environmental testing; environmental monitoring

? Component characterizati on

? Battery testing

? Building and computer room monitoring

机械专业外文翻译(中英文翻译)

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important considerations in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems covering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11-and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

机械手机械设计论文中英文资料对照外文翻译

中英文资料对照外文翻译 机械设计 摘要: 机器由机械和其他元件组成的用来转换和传输能量的装置。比如:发动机、涡轮机、车、起重机、印刷机、洗衣机和摄影机。许多机械方面设计的原则和方法也同样适用于非机械方面。术语中的“构造设计”的含义比“机械设计”更加广泛,构造设计包括机械设计。在进行运动分析和结构设计时要把产品的维护和外形也考虑在机械设计中。在机械工程领域中,以及其它工程领域,都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。 关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实用性,现有的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需能够完全或部分代替以前人的功能,比如计算、装配、维修。 在设计的初级阶段,应该充分发挥设计人员的创意,不要受到任何约束。即使有一些不切实际的想法,也可以在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,必须提出几套设计方案,然后进行比较。很有可能在这个计划最后指定使用某些不在计划方案内的一些想法的计划。 一般当产品的外型和组件的尺寸特点已经显现出来的时候,就可以进行全面的设计和分析。接着还要客观的分析机器性能、安全、重量、耐用性,并且成本也要考虑在内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分的平衡。 选择原材料和工艺的方法。通过力学原理来分析和实现这些重要的特性,如稳定和反应的能量和摩擦力的利用,动力惯性、加速度、能量;包括材料的弹性强度、应力和刚度等物理特性,以及流体的润滑和驱动器的流体力学。设计的过程是一个反复与合作的过程,无论是正式的还是非正式的,对设计者来说每个阶段都很重要。。产品设计需要大量的研究和提升。许多的想法,必须通过努力去研究成为一种理念,然后去使用或放弃。

英文文献翻译

中等分辨率制备分离的 快速色谱技术 W. Clark Still,* Michael K a h n , and Abhijit Mitra Departm(7nt o/ Chemistry, Columbia Uniuersity,1Veu York, Neu; York 10027 ReceiLied January 26, 1978 我们希望找到一种简单的吸附色谱技术用于有机化合物的常规净化。这种技术是适于传统的有机物大规模制备分离,该技术需使用长柱色谱法。尽管这种技术得到的效果非常好,但是其需要消耗大量的时间,并且由于频带拖尾经常出现低复原率。当分离的样本剂量大于1或者2g时,这些问题显得更加突出。近年来,几种制备系统已经进行了改进,能将分离时间减少到1-3h,并允许各成分的分辨率ΔR f≥(使用薄层色谱分析进行分析)。在这些方法中,在我们的实验室中,媒介压力色谱法1和短柱色谱法2是最成功的。最近,我们发现一种可以将分离速度大幅度提升的技术,可用于反应产物的常规提纯,我们将这种技术称为急骤色谱法。虽然这种技术的分辨率只是中等(ΔR f≥),而且构建这个系统花费非常低,并且能在10-15min内分离重量在的样本。4 急骤色谱法是以空气压力驱动的混合介质压力以及短柱色谱法为基础,专门针对快速分离,介质压力以及短柱色谱已经进行了优化。优化实验是在一组标准条件5下进行的,优化实验使用苯甲醇作为样本,放在一个20mm*5in.的硅胶柱60内,使用Tracor 970紫外检测器监测圆柱的输出。分辨率通过持续时间(r)和峰宽(w,w/2)的比率进行测定的(Figure 1),结果如图2-4所示,图2-4分别放映分辨率随着硅胶颗粒大小、洗脱液流速和样本大小的变化。

机械工程外文翻译(适用于毕业论文外文翻译+中英文对照)

Mechanical engineering 1.The porfile of mechanical engineering Engingeering is a branch of mechanical engineerig,it studies mechanical and power generation especially power and movement. 2.The history of mechanical engineering 18th century later periods,the steam engine invention has provided a main power fountainhead for the industrial revolution,enormously impelled each kind of mechznicalbiting.Thus,an important branch of a new Engineering –separated from the civil engineering tools and machines on the branch-developed together with Birmingham and the establishment of the Associantion of Mechanical Engineers in 1847 had been officially recognized.The mechanical engineering already mainly used in by trial and error method mechanic application technological development into professional engineer the scientific method of which in the research,the design and the realm of production used .From the most broad perspective,thedemend continuously to enhance the efficiencey of mechanical engineers improve the quality of work,and asked him to accept the history of the high degree

机械设计外文翻译(中英文)

机械设计理论 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。 应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。 一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。 新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。即使产生了许多不切实际的想法,也会在设计的早期,即绘制图纸之前被改正掉。只有这样,才不致于堵塞创新的思路。通常,要提出几套设计方案,然后加以比较。很有可能在最后选定的方案中,采用了某些未被接受的方案中的一些想法。

机械设计制造及其自动化外文翻译外文文献英文文献普通钻床改造为多轴钻床复习过程

普通钻床改造为多轴钻床 目前,我国中、小型企业的产品质量和生产效率都需要有一个新的提高, 但是加工手段却远远不能满足需要, 许多中小型企业都结合自己的实际对设备的技术状态进行改进,通过强化自身, 以求自我发展普通钻床为单轴机床,但安装上多轴箱就会成为多轴的钻床,改造成多轴钻床后,能大大地缩短加工时间,提高生产效率。 多轴加工应用:据统计,一般在车间中普通机床的平均切削时间很少超过全部工作时间的15%。其余时间是看图、装卸工件、调换刀具、操作机床、测量以及清除铁屑等等。使用 数控机床虽然能提高85%,但购置费用大。某些情况下,即使生产率高,但加工相同的零件,其成本不一定比普通机床低。故必须更多地缩短加工时间。不同的加工方法有不同的特点,就钻削加工而言,多轴加工是一种通过少量投资来提高生产率的有效措施。 多轴加工优势:虽然不可调式多轴头在自动线中早有应用,但只局限于大批量生产。即使采用可调式多轴头扩大了使用范围,仍然远不能满足批量小、孔型复杂的要求。尤其随着工业的发展,大型复杂的多轴加工更是引人注目。例如原子能发电站中大型冷凝器水冷壁管板有15000个“ 20孔,若以摇臂钻床加工,单单钻孔与锪沉头孔就要842.5小时,另外还要 划线工时151.1 小时。但若以数控八轴落地钻床加工,钻锪孔只要171.6 小时,划线也简单,只要1.9 小时。因此,利用数控控制的二个坐标轴,使刀具正确地对准加工位置,结合多轴加工不但可以扩大加工范围,而且在提高精度的基础上还能大大地提高工效,迅速地制造出原来不易加工的零件。有人分析大型高速柴油机30 种箱形与杆形零件的2000 多个钻孔操作中,有40%可以在自动更换主轴箱机床中用二轴、三轴或四轴多轴头加工,平均可减少20%的加工时间。1975年法国巴黎机床展览会也反映了多轴加工的使用愈来愈多这一趋势。 多轴加工的设备:多轴加工是在一次进给中同时加工许多孔或同时在许多相同或不同工件上各加工一个

机械类外文翻译

机械类外文翻译 塑料注塑模具浇口优化 摘要:用单注塑模具浇口位置的优化方法,本文论述。该闸门优化设计的目的是最大限度地减少注塑件翘曲变形,翘曲,是因为对大多数注塑成型质量问题的关键,而这是受了很大的部分浇口位置。特征翘曲定义为最大位移的功能表面到表面的特征描述零件翘曲预测长度比。结合的优化与数值模拟技术,以找出最佳浇口位置,其中模拟armealing算法用于搜索最优。最后,通过实例讨论的文件,它可以得出结论,该方法是有效的。 注塑模具、浇口位臵、优化、特征翘曲变形关键词: 简介 塑料注射成型是一种广泛使用的,但非常复杂的生产的塑料产品,尤其是具有高生产的要求,严密性,以及大量的各种复杂形状的有效方法。质量ofinjection 成型零件是塑料材料,零件几何形状,模具结构和工艺条件的函数。注塑模具的一个最重要的部分主要是以下三个组件集:蛀牙,盖茨和亚军,和冷却系统。拉米夫定、Seow(2000)、金和拉米夫定(2002) 通过改变部分的尼斯达到平衡的腔壁厚度。在平衡型腔充填过程提供了一种均匀分布压力和透射电镜,可以极大地减少高温的翘曲变形的部分~但仅仅是腔平衡的一个重要影响因素的一部分。cially Espe,部分有其功能上的要求,其厚度通常不应该变化。 pointview注塑模具设计的重点是一门的大小和位臵,以及流道系统的大小和布局。大门的大小和转轮布局通常被认定为常量。相对而言,浇口位臵与水口大小布局也更加灵活,可以根据不同的零件的质量。 李和吉姆(姚开屏,1996a)称利用优化流道和尺寸来平衡多流道系统为multiple 注射系统。转轮平衡被形容为入口压力的差异为一多型腔模具用相同的蛀牙,也存

文献翻译-机械加工中心

附录1 中文名称:机械加工中心英文名称:machining center 其他名称:自动换刀数控机床 定义:能自动更换工具,对一次装夹的工件进行多工序加工的数控机床。机械加工中心,简称cnc,是由机械设备与数控系统组成的使用于加工复杂形状工件的高效率自动化机床。加工中心又叫电脑锣。加工中心备有刀库,具有自动换刀功能,是对工件一次装夹后进行多工序加工的数控机床。加工中心是高度机电一体化的产品,工件装夹后,数控系统能控制机床按不同工序自动选择、更换刀具、自动对刀、自动改变主轴转速、进给量等,可连续完成钻、镗、铣、铰、攻丝等多种工序,因而大大减少了工件装夹时间、测量和机床调整等辅助工序时间,对加工形状比较复杂,精度要求较高,品种更换频繁的零件具有良好的经济效果。按控制轴数可分为:(1)三轴加工中心 (2)四轴加工中心 (3)五轴加工中心。 项目二机械加工中心设备技术分类加工中心的品种、规格较多,这里仅从结构上对其作一分类。 一、立式加工中心指主轴轴线为垂直状态设置的加工中心。其结构形式多为固定立柱式,工作台为长方形,无分度回转功能,适合加工盘、套、板类零件。一般具有三个直线运动坐标,并可在工作台上安装一个水平轴的数控回转台,用以加工螺旋线零件。立式加工中心装夹工件方便,便于操作,易于观察加工情况,但加工时切屑不易排除,且受立柱高度和换刀装置的限制,不能加工太高的零件。立式加工中心的结构简单,占地面积小,价格相对较低,应用广泛。 二、卧式加工中心指主轴轴线为水平状态设置的加工中心。通常都带有可进行分度回转运动的工作台。卧式加工中心一般都具有三个至五个运动坐标,常见的是三个直线运动坐标加一个回转运动坐标,它能够使工件在一次装夹后完成除安装面和顶面以外的其余四个面的加工,最适合加工箱体类零件。卧式加工中心调试程序及试切时不便观察,加工时不便监视,零件装夹和测量不方便,但加工时排屑容易,对加工有利。与立式加工中心相比,卧式加工中心的结构复杂,占地面积大,价格也较高。

机械类英文文献+翻译)

机械工业出版社2004年3月第1版 20.9 MACHINABILITY The machinability of a material usually defined in terms of four factors: 1、Surface finish and integrity of the machined part; 2、Tool life obtained; 3、Force and power requirements; 4、Chip control. Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone. Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below. 20.9.1 Machinability Of Steels Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels. Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels. Phosphorus in steels has two major effects. It strengthens the ferrite, causing

外文翻译英文

A Distributed Approach for Track Occupancy Detection Abstract This paper investigates the problem of track occupancy detection in distributed settings. Track occupancy detection determines which tracks are occupied in a railway system. For each track, the Neyman–Pearson structure is applied to reach the local decision. Globally, it is a multiple hypotheses testing problem. The Bayesian approach is employed to minimize the probability of the global decision error. Based on the prior probabilities of multiple hypotheses and the approximation of the prior probabilities of multiple hypotheses and the approximationofthereceiving operation characteristic curve of the local detector, a person-by-person optimization method is implemented to obtain the fusion rule and the local strategies off line. The results are illustrated through an example constructed from in situ devices. Key Words:Track occupancy detection,Neyman–Pearson, Generalized likelihood ratio test, Bayesian approach,Distributed detection 1Introduction With respect to the majority of railway systems in China, a quasi-moving block method is employed to specify the safe zone of a train. A key piece of knowledge to be determined is the set of track segments that are occupied, i.e., track occupancy detection. Then the speed restriction curves for the following trains are calculated accordingly. When there are misdetections, collisions may happen; additionally, false alarms may lead to declines of line capacity. Track occupancy detection is achieved by a set of track circuits. The track circuit is a crucial device mainly composed of a transmitter–receiver pair and a track segment. The measurement is the receiving signal at the end of the track. For each segment, a decision is made locally and individually, which leads to frequent ambiguities on which tracks are occupied for the whole line. It means that the false alarm rate of the line increases greatly. Besides, for the next generation of railway systems, a moving block method is adopted. Such a method requires the exact position and velocity of the train. However, those data are not provided in the current detection mechanism.

扫雪机的历史外文文献翻译、环卫机械设备中英文翻译、外文翻译

中国地质大学长城学院 本科毕业论文外文资料翻译 系别:工程技术系 专业:机械设计制造及其自动化 姓名:郝晓蒂 学号: 05211429 2015年 4 月 3 日

History Of The Snowblower So who did invent the snowblower or snowthrower? We need to begin by qualifying that question since there are a number of answers depending on your interest. Some notable firsts would be: ●The first machine to clear snow by throwing or blowing it ●The first fully mobile snow clearing machine? ●The first domestic walk-behind snow blower The latter is the one people generally think of and have the most interest in. It is also the one that has the most elusive answer. Chapter 1 So where did it all begin? Looking back in time we need to consider where would there be a need to remove snow while having a source of power available? The need and the enabling power were found on the railways of the U.S. snowbelt and in Canada. The earliest documented art belongs to a Toronto dentist known as J/W Elliot. His 1869 patent #390 design was never built. The story next takes us to Orangeville Ontario, Canada where we find Orange Jull, a gristmill operator and inventor. In 1884 he applied for a patent and was subsequently granted patent #18506. Jull did not have the means to build and commercialize his invention so he contracted the local Leslie brothers to build the machines. The Jull/Leslie machines were self powered but not self propelled. A locomotive was used to move the machine. The Jull design consisted of 2 large inline fans rotating in opposite directions. The lead fan chewed into and pulverized the snow while blowing it back into the discharge fan, which propelled it into the sky. Due to clogging problems it was simplified to a single fan. Further changes to effectively control the discharge were made including a movable deflector and pitching impeller blades. Production was moved to the Cook locomotive works in several locations. Additional machines were built under license. Finally 5 machines were "home built" by end users with the last one finished in 1971. In all 146 were built. Later work consisted of fortifying the design to deal with the hazards of the unknown. Tracks were often blocked with fallen trees and other debris that were concealed in the snow. Legend has it that in one case a herd of cattle were trapped and buried under the snow on the rail bed. As the rotary snowplow progressed forward beefsteaks were flying. They remained in production into the 1950s and a few are still in service today. Many survive as museum pieces with an occasional demonstration. Following his collaboration with the Leslie Brothers Orange Jull went on to create a next generation machine. This design utilized a screw auger to collect the snow. It was not as effective,

机械设计外文翻译(中英文)

Machine design theory The machine design is through designs the new product or improves the old product to meet the human need the application technical science. It involves the project technology each domain, mainly studies the product the size, the shape and the detailed structure basic idea, but also must study the product the personnel which in aspect the and so on manufacture, sale and use question. Carries on each kind of machine design work to be usually called designs the personnel or machine design engineer. The machine design is a creative work. Project engineer not only must have the creativity in the work, but also must in aspect and so on mechanical drawing, kinematics, engineerig material, materials mechanics and machine manufacture technology has the deep elementary knowledge. If front sues, the machine design goal is the production can meet the human need the product. The invention, the discovery and technical knowledge itself certainly not necessarily can bring the advantage to the humanity, only has when they are applied can produce on the product the benefit. Thus, should realize to carries on before the design in a specific product, must first determine whether the people do need this kind of product Must regard as the machine design is the machine design personnel carries on using creative ability the product design, the system analysis and a formulation product manufacture technology good opportunity. Grasps the project elementary knowledge to have to memorize some data and the formula is more important than. The merely service data and the formula is insufficient to the completely decision which makes in a good design needs. On the other hand, should be earnest precisely carries on all operations. For example, even if places wrong a decimal point position, also can cause the correct design to turn wrongly. A good design personnel should dare to propose the new idea, moreover is willing to undertake the certain risk, when the new method is not suitable, use original method. Therefore, designs the personnel to have to have to have the patience, because spends

机械图纸中英文翻译汇总

近几年,我厂和英国、西班牙的几个公司有业务往来,外商传真发来的图纸都是英文标注,平时阅看有一定的困难。下面把我们积累的几点看英文图纸的经验与同行们交流。 1标题栏 英文工程图纸的右下边是标题栏(相当于我们的标题栏和部分技术要求),其中有图纸名称(TILE)、设计者(DRAWN)、审查者(CHECKED)、材料(MATERIAL)、日期(DATE)、比例(SCALE)、热处理(HEAT TREATMENT)和其它一些要求,如: 1)TOLERANCES UNLESS OTHERWISE SPECIFIAL 未注公差。 2)DIMS IN mm UNLESS STATED 如不做特殊要求以毫米为单位。 3)ANGULAR TOLERANCE±1°角度公差±1°。 4)DIMS TOLERANCE±0.1未注尺寸公差±0.1。 5)SURFACE FINISH 3.2 UNLESS STATED未注粗糙度3.2。 2常见尺寸的标注及要求 2.1孔(HOLE)如: (1)毛坯孔:3"DIAO+1CORE 芯子3"0+1; (2)加工孔:1"DIA1"; (3)锪孔:锪孔(注C'BORE=COUNTER BORE锪底面孔); (4)铰孔:1"/4 DIA REAM铰孔1"/4; (5)螺纹孔的标注一般要表示出螺纹的直径,每英寸牙数(螺矩)、螺纹种类、精度等级、钻深、攻深,方向等。如: 例1.6 HOLES EQUI-SPACED ON 5"DIA (6孔均布在5圆周上(EQUI-SPACED=EQUALLY SPACED均布) DRILL 1"DIATHRO' 钻1"通孔(THRO'=THROUGH通) C/SINK22×6DEEP 沉孔22×6 例2.TAP7"/8-14UNF-3BTHRO' 攻统一标准细牙螺纹,每英寸14牙,精度等级3B级 (注UNF=UNIFIED FINE THREAD美国标准细牙螺纹) 1"DRILL 1"/4-20 UNC-3 THD7"/8 DEEP 4HOLES NOT BREAK THRO钻 1"孔,攻1"/4美国粗牙螺纹,每英寸20牙,攻深7"/8,4孔不准钻通(UNC=UCIFIED COARSE THREAD 美国标准粗牙螺纹)

外文翻译(英文)

Title: Modelling of transport costs and logistics for on-farm milk segregation in New Zealand dairying Material Source: Computers and Electronics in Agriculture Author: A. E. Dooley, Parker, H. T. Blair Abstract On-farm milk segregation to keep milk with high value properties separate from bulk milk will affect transport logistics. Separate milk collection, either as independent runs for different milk types,or storage of distinct milk types in the truck and trailer units, may increase the length and number of runs required. Two contrasting regions,with different farm sizes and roading networks were modelled,at two stages of lactation over 20 years. Thirty farms in each region were modelled with 0, 25, 50 and 100% of farms per region changing milk types over a transition period of up to 18 years. Genetic algorithm software was used to search for the order of the farm milk collection pick-ups which gave an optimal, least cost solution for milk collection for each prescribed set of inputs. Milk collection costs within scenario were variable over time depending on the amounts of the different milk types, increasing whenever another run was required, then decreasing over time as the milk load increased. Milk collection cost is small relative to milk income, with the status quo (SQ) cost for milk collection being less than NZ$9.61/kl for the North Island and NZ$13.53/kl for the South Island farm sets. The increased transport costs associated with collecting two milk types ranged from 4.5 to 22.0% more for the different scenarios. The extra cost to an average size North Island farm changing systems (25% farms changing), compared to an equivalent status quo farm, would be between NZ$307 and NZ$1244 per year. Fewer farms changing to differentiated milk production increased the costs per kilolitre of differentiated milk. Keywords: Milk transport; Scheduling; Milk segregation; Collection costs 1.Introduction

相关文档
最新文档