矩阵的定义、运算和性质

矩阵的定义、运算和性质
矩阵的定义、运算和性质

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

矩阵的基本概念

§1 矩阵及其运算 教学要求:理解矩阵的定义、掌握矩阵的基本律、掌握几类特殊矩阵(比如零矩阵,单位矩阵,对称矩阵和反对称矩阵 ) 的定义与性质、注意矩阵运算与通常数的运算异同。能熟练正确地进行矩阵的计算。 知识要点: 一、矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写 字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常 用小写字母其元素表示,其中下标都是正整数, 他们表示该元素在矩阵中的位置。比如,或 表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。

当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。若一个阶方阵的主对角线上的元素 都是,而其余元素都是零,则称为单位矩阵,记为,即: 。如一个阶方阵的主对角线上(下)方的元 素都是零,则称为下(上)三角矩阵,例如,是 一个阶下三角矩阵,而则是一个阶上三角 矩阵。今后我们用表示数域上的矩阵构成的集合, 而用或者表示数域上的阶方阵构成的集合。 二、矩阵的运算 1、矩阵的加法:如果是两个同型矩阵(即它们具 有相同的行数和列数,比如说),则定义它们的和 仍为与它们同型的矩阵(即),的元素为和 对应元素的和,即:。

给定矩阵,我们定义其负矩阵为:。这样我们 可以定义同型矩阵的减法为:。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律: ( 1)交换律:; ( 2)结合律:; ( 3)存在零元:; ( 4)存在负元:。 2 、数与矩阵的乘法: 设为一个数,,则定义与的乘积仍 为中的一个矩阵,中的元素就是用数乘中对应的 元素的道德,即。由定义可知:。容易验证数与矩阵的乘法满足下列运算律: (1 ); (2 ); (3 ); (4 )。

第一讲 矩阵的概念、运算

第一讲 Ⅰ 授课题目(章节): §2.1 矩阵的概念; §2.2 矩阵的计算 Ⅱ 教学目的与要求: 理解矩阵概念; 掌握矩阵的线性运算、乘法、转置及其运算规律。 Ⅲ 教学重点与难点: 矩阵的乘法 Ⅳ 讲授内容: §2.1 矩阵 定义2.1 由n m ?个数),,2,,1;,,2,1(n j m a ij =排成的m 行n 列的数表 mn m m n n a a a a a a a a a 21222 21112 11 称为m 行n 列矩阵,简称n m ?矩阵.为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作 ??????? ??=?mn m m n n n m a a a a a a a a a A 212222111211 两个矩阵B A ,,如果都是m 行n 列的,称它们是同型矩阵。否则,称它们是不同型的。 n 行n 列的矩阵n n A ?称为n 阶矩阵(或n 阶方阵) ,简记为n A 。 只有一行的矩阵)(21n a a a A =称为行矩阵,又称行向量.只有一列的矩阵 ?????? ? ??=n b b b B 21 称为列矩阵,又称列向量. 定义2.2 如果)()(ij ij b B a A ==与是同型矩阵,并且它的对应元素相等 ,即

),,2,1;,,2,1(,n j m i b a ij ij === 那么就称矩阵A 与B 相等,记作B A =. 元素都是零的m 行n 列矩阵称为零矩阵,记作n m O ?,简记为O .不同型的零矩阵是 不同的. ??????? ??=100010001 n I 称为n 阶单位矩阵,简记作I .这个矩阵的特点是:从左上角到右下角的直线(叫做主对角线)上的元素都是1,其它元素都是0. §2.2 矩阵的运算 1. 矩阵的加法 定义2.3 设有两个n m ?矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B , 规定为 n m ij ij b a B A ?+=+)( 设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-. 2. 数与矩阵相乘: 定义2.4 数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ?=)(λλ 数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ= )(ii A A A μλμλ+=+)( )(iii B A B A λλλ+=+)( 3. 矩阵与矩阵相乘: 定义 2.5 设)(ij a A =是一个s m ?矩阵,)(ij b B =是一个n s ?矩阵,那么规定矩阵

矩阵的各种运算详解

一、矩阵的线性运算 定义1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义2 数与矩阵A的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律: 设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义3设 矩阵与矩阵的乘积记作, 规定为

其中,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设则 而 于是且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出 或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设 则 但 定义4如果两矩阵相乘, 有 则称矩阵A与矩阵B可交换.简称A与B可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有

命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。 命题2设均为n阶矩阵,则下列命题等价:

矩阵的概念和运算

1。4 矩阵的概念和运算 教学要求 : (1) 掌握矩阵的加减、数与矩阵相乘的运算。 (2) 会矩阵相乘运算掌握其算法规则 ( 以便演示算法规则及行列间的对应关系〉 教学内容: 前面介绍了利用行列式求解线性方程组,即Cramer 法则。但是Cramer 法则有它的局限性: 1.0 2. D ≠?? ?所解的线性方程组存在系数行列式(行数=列数) 同学们接下来要学习的还是关于解线性方程组,即Cramer 法则无法用上的-――用“矩阵”的方法解线性方程组。本节课主要学习矩阵的概念。 一.矩阵的概念 123123123 23124621x x x x x x x x x -+=?? -+-=-??+-=? 它的系数行列式 1 232 4601 1 1 D -=--=- 此时Cramer 法则失效,我们可换一种形式来表示: 123124621111A ?-? ?=--- ? ?-?? 这正是“换汤不换药”, 以上线性方程组可用这张“数表”来表示,二者之间互相翻译。 这种数表一般用圆括号或中括号括起来,排成一个长方形阵式,《孙子兵法》中说道:长方形阵为矩阵。 123246111A -?? ?=-- ? ?-?? 这也是矩阵,是由以上线性方程组的系数按照原来顺序排列而成,称为“系数矩阵” 而“A ”多了一列常数列,称为以上方程组的“增广矩阵”。 注意:虽然D 和A 很相像,但是区别很大。D 是行列式,实质上是一个数,而A 是一张表格,“数是数,表是表,数不是表,表也不是数”,这是本质意义上不同。况且,行列式行数必须与列数相同,矩阵则未必。 关于以上线性方程组我们后面将介绍。 更一般地,对于线性方程组:

矩阵的认识

什么是矩阵 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵” 的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数 的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的 范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一 代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知 的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中 发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本 质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这

矩阵行列式的概念与运算(标准答案)

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ? ?????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列式; 算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的 对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

矩阵的概念及其线性运算

第二章 矩阵 §2.1 矩阵的概念及其线性运算 学习本节内容,特别要注意与行列式的有关概念、运算相区别。 一.矩阵的概念 矩阵是一张简化了的表格,一般地 ?????? ? ??mn m m n n a a a a a a a a a 212222111211 称为n m ?矩阵,它有m 行、n 列,共n m ?个元素,其中第i 行、第j 列的元素 用j i a 表示。通常我们用大写黑体字母A 、B 、C ……表示矩阵。为了标明矩阵的行数m 和列数n ,可用n m ?A 或() i j m n a ?表示。矩阵既然是一张表,就不能象行 列式那样算出一个数来。 所有元素均为0的矩阵,称为零矩阵,记作O 。 两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。记作B A =。 如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。n 阶矩阵有一条从左上角到右下角的主对角线。n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。 在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即 ???? ?? ? ??=100010001 E n ?1矩阵(只有一行)又称为n 维行向量;1?n 矩阵(只有一列)又称为n 维列向量。行向量、列向量统称为向量。向量通常用小写黑体字母a ,b ,x ,y …… 表示。向量中的元素又称为向量的分量。11?矩阵因只有一个元素,故视之为数量,即()a a =。 二.矩阵的加、减运算 如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。分别称为矩阵A 、B 的和与差。B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。例如

矩阵的定义及其运算规则

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母A 、B …来表示。例如一个m 行n 列的矩阵可以简记为:,或 。即: (2-3)我们称(2-3)式中的为矩阵A的元素,a 的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用 表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=

B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此都相等且均为1,

如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩 阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)m ×n 表示矩阵A及B的和,则有: 式中:。即矩阵C的元素等于矩阵A和B 的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A

4 矩阵的概念与运算

上海市莘庄中学高三数学训练 板块二:向量矩阵行列式 4 矩阵的概念与运算 一.填空题 1.方程组21 320x y x y +=?? -=?对应的增广矩阵为 . 2.若0ln 1a b π?? ??? 是单位矩阵,则a b -= 3.矩阵A=121037695804-?? ? ? ?-?? ,则23a = , 32a = ,22a = ,第二行的行向量为 , 第四列的列向量为 . 4.已知一个关于y x ,的二元线性方程组的增广矩阵是? ?? ? ??-210211,则y x +=_________. 5.关于 x y 、的方程组 { 2542 x my nx y +=-=的增广矩阵经过变换后得到 ()103011,则() m n = . 6.已知 1 4 1 4x+3 y 2y+7 y x y -+???? = ? ????? ,则x y += . 7.已知32 x-3y 1 7,x+y x-y a b x y A B +-????== ? ????? ,若A=B ,则x y a b +++= 8.某东西方向十字路口的红绿灯时间设置如下:绿灯30S ,黄灯3S ,红灯20S ,如果分别用1,0,—1表示绿灯、黄灯、红灯,试用23?矩阵表示该路口的时间设置为 . 9.已知A=754312541?? ? ? ???,B=121211111?? ? ? ?-?? ,则2A+B= 10.设矩阵A 为33?矩阵,且规定其元素,,ij ij i j a i j i j =?=? +≠?,其中,1,2,3i j =,那么A 中所有元素之和为 . 11.若二元一次方程组的增广矩阵为 6 -4 58 -3 2? ? ??? ,则以该方程的解为坐标的点和圆C :2 24x y +=的位置 关系为 . 12.定义 1* 111,11n n n n x x n N y y ++-??????=∈ ? ? ???????, 为向量(,)n n n op x y = 到向量111(,)n n n OP x y +++= 的一个矩阵变换,设向量1(1,0)OP = ,O 为坐标原点,则2013OP 的坐标为 13.已知一个九行九列的矩阵中的元素是由互不相等的 81 个数组成: ? ?? ??a 11 a 12 ? a 19 a 21 a 22 ? a 29 ? ? ? ?a 91 a 92 ? a 99 , 若每行9个数 与每列的9个数按表中顺序分别构成等差数列,且正中间的一个数a 55=7则矩阵中所有元素之和为_____________. 14.设n 阶方阵??????? ? ? ? -+-+-+--+++-+++-=125)1(23)1(21)1(2165434141452321 2125312n n n n n n n n n n n n n n n n A n , 任取n A 中的一个元素,记为1x ;划去1x 所在的行和列,将剩下的元素按原来的位置关系组成1-n 阶方阵 1-n A ,任取1-n A 中的一个元素,记为2x ;划去2x 所在的行和列,……;将最后剩下的一个元素记为n x , 记n n x x x S +++= 21,则n n x x x S +++= 21,则1 lim 3+∞ →n S n n =______________. 二.选择题 15.关于x 、y 的二元一次方程组1, 323,mx y mx my m +=-??-=+? 的系数行列式0D =是该方程组有解的( ). A .充分非必要条件 B .必要非充分条件 C .充分且必要条件 D .既非充分也非必要条件 16.已知A(3,1),B(5,2),则表示AB 的列向量为( ) A 、21?? ? ?? B 、21-?? ?-?? C 、 3 51 2?? ??? D 、 5 32 1?? ? ?? 三.解答题 17.已知矩阵A=3021?? ?-??,矩阵B=2122-?? ??? ,求矩阵X ,使期满足2A -3X-=B. 18.已知(4)n n ≥阶方阵1112131212223 2123 n n n n n nn a a a a a a a a a a a a ?? ? ? ??? 中的各元素均为正数, 其中每行成等差数列,每列都是公比为2的等比数列.已知23348 20a a ==, , (1) 求11a 和ik a 的值; (2) 计算行列式 1112 2122 a a a a 和im ik jm jk a a a a ;

矩阵的概念及其线性运算

.. 第二章 矩阵 §2.1 矩阵的概念及其线性运算 学习本节内容,特别要注意与行列式的有关概念、运算相区别。 一.矩阵的概念 矩阵是一张简化了的表格,一般地 ?????? ? ??mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211 称为n m ?矩阵,它有m 行、n 列,共n m ?个元素,其中第i 行、第j 列的元素 用j i a 表示。通常我们用大写黑体字母A 、B 、C ……表示矩阵。为了标明矩阵的行数m 和列数n ,可用n m ?A 或() i j m n a ?表示。矩阵既然是一张表,就不能象行 列式那样算出一个数来。 所有元素均为0的矩阵,称为零矩阵,记作O 。 两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。记作B A =。 如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。n 阶矩阵有一条从左上角到右下角的主对角线。n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。 在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即 ?????? ? ? ?=10 0010001Λ ΛΛΛΛΛΛE n ?1矩阵(只有一行)又称为n 维行向量;1?n 矩阵(只有一列)又称为n 维列 向量。行向量、列向量统称为向量。向量通常用小写黑体字母a ,b ,x ,y ……表示。向量中的元素又称为向量的分量。11?矩阵因只有一个元素,故视之为数量,即()a a =。 二.矩阵的加、减运算 如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。分别称为矩阵A 、B 的和与差。B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。例如

理解矩阵:矩阵的意义

理解矩阵(一) 前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。 可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊! 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说:

矩阵的定义及其运算规则

矩阵的定义及其运算规则 This model paper was revised by the Standardization Office on December 10, 2020

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母A 、B …来表示。例如一个m 行n 列的矩阵可以简记为:,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a )的元素仅有一 ij 行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵:

,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij ) m×n 和B=(b ij ) m×n 相加时,必须要有相同的行数和列数。如以C= (c ij ) m ×n 表示矩阵A及B的和,则有: 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。

矩阵行列式的概念与运算标准答案

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵111213212223a a a a a a ?? ??? 中的行向量是()111213a a a a =,()212223b a a a =; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 11111221 11121222111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做 二阶行列式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成

矩阵概念及运算

第一讲 矩阵概念及运算 一、矩阵概念 矩阵是本课程的一个重要概念,在生产活动和日常生活中,我们常常用数表表示一些量或关系,如工厂中的产量统计表,市场上的价目表等等. 例1 某户居民第二季度每个月水(单位:吨)、电(单位:千瓦时)、天然气(单位:立方米)的使用情况,可以用一个三行三列的数表表示为 水 电 气 ?? ?? ??????16210101519010141659 由例1以及教材中的例子可以看到,对于不同的问题可以用不同的数表来表 示,我们将这些数表统称为矩阵. 定义2.1 有m ?n 个数排列成一个m 行n 列,并括以方括弧(或圆括弧)的数表 ????? ???????mn m m n n a a a a a a a a a 212222111211 称为m 行n 列矩阵,简称m ?n 矩阵.矩阵通常用大写字母A , B , C …表示. 记作 [] n m ij a A ?= 其中a ij (i = 1, 2, …, m ;j = 1, 2, …, n )称为矩阵A 的第i 行第j 列元素. 注:矩阵的行数m 与列数n 可能相等,也可能不等. 特别地,当m = 1时,即 A = []n a a a 11211 称为行矩阵.当n = 1时,即 A = ????? ???????121 11m a a a 称为列矩阵.当m = n 时,即 A = ????? ???????nn n n n n a a a a a a a a a 212222111211 称为n 阶矩阵,或n 阶方阵. (再介绍几个特殊矩阵) 所有元素全为零的m ?n 矩阵,称为零矩阵,记作O m n ?或O .例如 4月 5月 6月

矩阵的定义及其运算规则

矩阵得定义及其运算规则 1、矩阵得定义 一般而言,所谓矩阵就就是由一组数得全体,在括号内排列成m行n 列(横得称行,纵得称列)得一个数表,并称它为m×n阵。 矩阵通常就是用大写字母A 、B …来表示。例如一个m 行n 列得矩阵可以简记为:,或 。即: (23) 我们称(23)式中得为矩阵A得元素,a得第一个注脚字母,表示矩阵得行数,第二个注脚字母j(j=1,2,…,n)表示矩阵得列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)得元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同得行数与相同得列数,而且它们得对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j得元素组成得对角线为主对角线,构成这个主对角线得元素称为主对角线元素。 如果在方阵中主对角线一侧得元素全为零,而另外一侧得元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都就是三角形矩阵: , ,, 。 3、单位矩阵与零矩阵 在方阵中,如果只有得元素不等于零,而其她元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有得彼此都相等且均为1,如: ,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有得元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵得加法 矩阵A=(a ij)m×n与B=(b ij)m×n相加时,必须要有相同得行数与列数。如以C=(c ij)m ×n表示矩阵A及B得与,则有: 式中:。即矩阵C得元素等于矩阵A与B得对应元素之与。 由上述定义可知,矩阵得加法具有下列性质(设A、B、C都就是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵得乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中得所有元素都乘上k之后所得得矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都就是m×n矩阵,k、h为任意常数,则: (1) k(A+B)=kA+kB (2)(k+h)A=kA+hA

图的矩阵表示及习题-答案

177 图的矩阵表示 图是用三重组定义的,可以用图形表示。此外,还可以用矩阵表示。使用矩阵表示图,有利于用代数的方法研究图的性质,也有利于使用计算机对图进行处理。矩阵是研究图的重要工具之一。本节主要讨论无向图和有向图的邻接矩阵、有向图的可达性矩阵、无向图的连通矩阵、无向图和有向图的完全关联矩阵。 定义9.4.1 设 G =是一个简单图,V =?v 1,v 2,…,v n ? A (G )=(ij a ) n ×n 其中: 1j i v v v v a j i j i ij =???=无边或到有边到 i ,j =1,…,n 称A (G )为G 的邻接矩阵。简记为A 。 例如图9.22的邻接矩阵为: ?? ? ? ? ? ? ? ?=011110101101 1010)(G A 又如图9.23(a)的邻接矩阵为: ?? ? ? ? ? ? ? ?=0001101111000010)(G A 由定义和以上两个例子容易看出邻接矩阵具有以下性质: ①邻接矩阵的元素全是0或1。这样的矩阵叫布尔矩阵。邻接矩阵是布尔矩阵。 ②无向图的邻接矩阵是对称阵,有向图的邻接矩阵不一定是对称阵。

178 ③邻接矩阵与结点在图中标定次序有关。例如图9.23(a)的邻接矩阵是A (G ),若将图9.23(a)中的接点v 1和v 2的标定次序调换,得到图9.23(b),图9.23(b)的邻接矩阵是A ′(G )。 ?? ? ? ? ? ? ? ?='001010110001 1100)(G A 考察A (G )和A ′(G )发现,先将A (G )的第一行与第二行对调,再将第一列与第二列对调可 得到A ′(G )。称A ′(G )与A (G )是置换等价的。 一般地说,把n 阶方阵A 的某些行对调,再把相应的列做同样的对调,得到一个新的n 阶方阵A ′,则称A ′与A 是置换等价的。可以证明置换等价是n 阶布尔方阵集合上的等价关系。 虽然,对于同一个图,由于结点的标定次序不同,而得到不同的邻接矩阵,但是这些邻接矩阵是置换等价的。今后略去结点标定次序的任意性,取任意一个邻接矩阵表示该图。 ④对有向图来说,邻接矩阵A (G )的第i 行1的个数是v i 的出度, 第j 列1的个数是v j 的入度。 ⑤零图的邻接矩阵的元素全为零,叫做零矩阵。反过来,如果一个图的邻接矩阵是零矩阵,则此图一定是零图。 设G =为有向图,V =?v 1,v 2,…,v n ?,邻接矩阵为A =(a ij )n ×n 若a ij =1,由邻接矩阵的定义知,v i 到v j 有一条边,即v i 到v j 有一条长度为1的路;若a ij =0,则v i 到v j 无边,即v i 到v j 无长度为1的路。故a ij 表示从v i 到v j 长度为1的路的条数。 设A 2=AA ,A 2=(2 ij a )n ×n ,按照矩阵乘法的定义, nj in j i j i ij a a a a a a a +++= 22112 若a ik a kj =1,则a ik =1且a kj =1,v i 到v k 有边且v k 到v j 有边,从而v i 到v j 通过v k 有一条长 度为2的路;若 kj ik a a =0,则a ik =0或a kj =0,v i 到v k 无边或v k 到v j 无边,因而v i 到v j 通过 v k 无长度为2的路,k =1,…,n 。故2 ij a 表示从v i 到v j 长度为2的路的条数。 设A 3=AA 2,A 3=(3 ij a ) n ×n ,按照矩阵乘法的定义, 22222113nj in j i j i ij a a a a a a a +++= 若2kj ik a a ≠0,则ik a =1且2kj a ≠0,v i 到v k 有边且v k 到v j 有路,由于2kj a 是v k 到v j 长度为2的路的条数,因而2kj ik a a 表示v i 到v j 通过v k 长度为3的路的条数;若2kj ik a a =0, ik a =0或2kj a =0, 则v i 到v k 无边或v k 到v j 无长度为2的路,所以v i 到v j 通过v k 无路,k =1,…,n 。故3 ij a 表示从v i 到v j 长度为3的路的条数。 …… 可以证明,这个结论对无向图也成立。因此有下列定理成立。 定理9.4.1 设A (G )是图G 的邻接矩阵,A (G )k =A (G )A (G )k-1,A (G )k 的第i 行,第j 列元素 k ij a 等于从v i 到v j 长度为k 的路的条数。其中k ii a 为v i 到自身长度为k 的回路数。 推论 设G =是n 阶简单有向图,A 是有向图G 的邻接矩阵,B k =A +A 2+…+A k ,

相关文档
最新文档