高频实验报告(一)单调谐回路谐振放大器

高频实验报告(一)单调谐回路谐振放大器
高频实验报告(一)单调谐回路谐振放大器

高频实验报告(一)单调谐回路谐振放大器

深圳大学实验报告

课程名称:高频电路

实验项目名称:实验一单调谐回路谐振放大器

学院:信息工程学院

专业:电子信息

指导教师:陈田明

报告人:学号:班级:电子1班

实验时间:

实验报告提交时间:

一、实验目的与要求: 1.熟悉电子元器件和高频电子线路实验系统。 2.熟悉放大器静态工作点的测量方法。3.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性的影响。 4.掌握用扫频仪测量放大器幅频特性的方法。二、方法、步骤: 1.AS1637函数信号发生器用作扫频仪时的参数予置⑴频率定标频率定标的目的是为频率特性设定频标。每一频标实为某一单频正弦波的频谱图示。 1)频率定标个数:共设8点频率,并存储于第0~7存储单元内。若把中心频率置于第3单元内,且频率间隔取为1MHz,则相应地有:0单元— MHz,1单元— MHz,,7单元— MHz。 2)频率定标方法图1-2 单调谐回路谐振放大器

实验电路①准备工作:对频率范围、工作方式、函数波形作如下设置。 (ⅰ) 频率范围:2MHz~16MHz范围;工作方式:内计数;函数波形:正弦波。②第0单元频率定标与存储 (ⅰ) 调“频率调谐”旋钮,使频率显示为7700;按“STO”键,相应指示灯点亮,再调“频率调谐”旋钮,使存储单元编号显示为0;再按“STO”键,相应指示灯变暗,表明已把 MHz频率存入第0单元内。③第1单元频率定标与存储 (ⅰ) 调“频率调谐”旋钮,使频率显示为8700;按“STO”键,相应指示灯点亮,再调“频率调谐”旋钮,使存储单元编号显示为1;再按“STO”键,相应指示灯变暗,表明已把 MHz频率存入第1单元内。④依此类推,直到把MHz频率存入第7单元内为止。⑵其他参数设置①扫描时间设置为20ms,即示波器上显示的横坐标的扫描时间为20ms。设置方法为:按“工作方式”键,使TIME灯点亮;再调“频率调谐”旋钮,使扫描时间显示为;②工作方式又设置为线性扫描,即示波器上显示的横坐标为线性坐标。设置方法为:再按“工作方式”键,使INT LINEAR灯点亮;

③输出幅度设置为50mV。设置方法为:使“﹣40dB”衰减器工作,并调“输出幅度调节”旋钮,使输出显示为50mV。2.实验准备⑴在箱体左下方插上实验板6,右下方插上实验板1。接通实验箱上电源开关,此时箱体上12V、5V电源指示灯点亮。⑵把实验板1左上方单元的电源开关拨到ON

位置,就接通了+12V电源,即可开始实验。 3.单调谐回路谐振放大器静态工作点测量⑴取射极电阻R4=1k,集电极电阻R3=10k,用万用表测量各点电压VB、VE、VC,并填入表内。⑵当R4分别取510和2kAS1634面板AS1634后板时,重复上述过程,将结果OUTPUT(50Ω)外扫锯齿频标填入表,并进行比较和分输入输出输出析。 4.单调谐回路谐振放大器幅频特性测量混合输出INOUT 一般说来,有两种方法用来对一个系统的幅频特性频标输入信号输入单调谐放大器进行测量:点测法和扫频法。宽带检波器这里采用扫频法,并以AS1637作为扫频仪,步骤示波器如下。 CH1CH2⑴实验准备先按图1-3所示的方法对AS1637、实验板1上的单调图1-3扫频法测量幅频特性实验框图谐放大器单元、实验板6、双踪示波器进行连接,说明如下。 AS1637的输出信号连接到单调谐放大器的IN端,以对输入信号进行放大。单调谐放大器的输出连接到实验板6的信号输入端,以对输入信号进行检波。 AS1637背面板上的频标输出连接到实验板6的频标输入端。实验板6把已检波的信号与频标混合后输出。实验板6的混合输出端连接到双踪示波器CH2端上。 AS1637背面板上的锯齿输出连接到双踪示波器CH1端上。此时需把示波器水平扫描调节旋钮置于“X-Y”档,该CH1输入即用作为外同步信号,便可在示波器上观测到带频标刻度的放大器幅频特性。改变CH1量程可调节横坐

标比例,改变CH2量程可调节纵坐标比例。⑵幅频特性测量仍取R3=10k、R4=1k,观测放大器幅频特性,并作如下调试:调实验板6上的“频标幅度”旋钮,可调节频标高度;调实验板1上的单调谐放大器的电容C3,可调节谐振频率点;调AS1637的输出幅度旋钮,可调节频率特性幅度。最后,把谐振频率调节到,记下此时的频率特性,并测量相应的-3dB频率点和带宽。⑶观察静态工作点对单调谐放大器幅频特性的影响改变R4的大小,可改变静态工作点。观察并记录幅频特性曲线的变化规律。⑷观察集电极负载对单调谐放大器幅频特性的影响改变R3的大小,观察并记录幅频特性曲线的变化规律。三、实验过程及内容: 1.用万用表测量晶体管各点电压VB、VE、VC,并计算放大器静态工作点。 2.采用扫频法测量单调谐放大器的幅频特性。 3.用示波器观察静态工作点对单调谐放大器幅频特性的影响。 4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。四、数据处理分析: 1. 用万用表测量晶体管各点电压VB、VE、VC,并计算放大器静态工作点表射极偏置电阻 R4=1k 实测(V) VB VE VC 计算(V,mA) VBE VCE IC 晶体管工作于放大区是是是否集电结反偏,发射结正偏集电结反偏,发射结正偏集电结反偏,发射结正偏理R4=510 R4=2k 是 3.示波器观察静态工作点对于单调谐放大器幅频特性的影响当

射极偏置电阻减小时,中心频率左移,幅值变小,变宽;当射极偏置电阻增大时,中心频率右移,幅值变大,变窄。

4.用示波器观察集电极负载对单调谐放大器幅频特性的影响当集电极负载减小时,中心频率不变,幅值变小,变宽;当集电极负载增大时,中心频率不变,幅值变大,变窄。五、实验结论: 1.对实验数据进行分析,说明静态工作点变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。答:随着静态工作点的升高,幅频特性幅值会增大,同时曲线变“胖”,变平缓,选频特性变差,但同频带变宽。 2.对实验数据进行分析,说明集电极负载变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。答:当接通1R3时,幅频特性幅值减小,曲线变“胖”,品质因数Q降低,通频带加大。当集电极负载增大时,幅频特性幅值加大,曲线变“瘦”,变陡,品质因数Q 增高,通频带减小。 3.总结本实验所获得的体会。答:通过这次实验我不仅熟悉了电子元件和高频电子线路冰洁掌握了单调谐回路谐振放大器的基本工作原理,并熟悉了静态工作点和几点肌肤在对付频曲线的影响。静态工作点就是输入信号为零时,电路处于直流工作状态,这些直流电流、电压的数值在三极管特性曲线上表示为一个确定的点,设置静态工作点的目的就是要保证在被放大的交流信号加入电路时,不论是正半周还是负半周都能满足发射结正向偏置,

集电结反向偏置的三极管放大状态。若静态工作点设置的不合适,在对交流信号放大时就可能会出现饱和失真或截止失真。所谓静态工作点,是指当放大电路处于静态时,电路所处的工作状态。在Ic/UCE 图上表现为一个点,即当确定的UCC、RB、RC和晶体管状态下产生的电路工作状态。当其中一项改变时引起IB变化而引起Q点沿着直流负载线上下移动。指导教师批阅意见:成绩评定:指导教师签字:年月日

双调谐回路谐振放大器实验(精)

实验二双调谐回路谐振放大器实验 一、实验目的: 1. 进一步熟悉高频电路实验箱; 2. 熟悉双调谐回路放大器幅频特性分析方法; 二、预习要求: 1. 复习谐振回路的工作原理; 2. 了解实验电路中各元件作用; 3.了解双调谐回路谐振放大器与单调谐回路谐振放大器的异同之处。 三、实验电路说明: 本实验电路如图 2-1所示。 图 2-1

W、 R1、 R2和 Re1为直流偏置电路,调节 W 可改变直流工作点。 C2、 C3、L1、 C10、 C9、 L2构成双谐振回路, C7、 C8为耦合电容。 RL 为负载电阻。 四、实验仪器: 1. 双踪示波器 2. 数字频率计 3. 实验箱及单、双调谐放大模块 4、高频信号发生器 五、实验内容和步骤: 1. 测量双调谐回路谐振放大器的频率特性: 1拨动开关 K1,选中 C7=8p;拨动开关 K2至“ RL ”档; 2检查无误后接通电源; 3高频信号源输出端接到双调谐回路谐振放大器电路的输入端 TP1,示波器接电路输出端 TP3; 4使高频信号源的正弦信号输出幅度为 300mV 左右 (峰峰值 ,输出频率在 8MHz ,反复调节 C2、 C10、 W 使双调谐回路谐振放大器的输出电压幅度最大且波形不失真; 5 以此时回路的谐振频率 8MHz 为中心频率,保持高频信号源的信号 输出幅度不变, 改变频率由中心频率向两边偏离, 测得在不同频率时对应的输出电压 表 2-1

6 选 C8=12pF,重复第 3---5 步的过程。 六、实验报告要求: 1.画出实验电路的交流等效电路; 2. 整理各实验步骤所得的数据和图形, 绘制出双调谐回路接不同耦合电容时的幅频特性和通频带,分析原因; 3.比较单、双调谐回路的优缺点。 4.谈谈实验的心得体会。

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

LC谐振放大器

LC谐振放大器(D题) 目录 摘要 (2) 一、方案论证与比较 (3) 1、总体设计方案 (3) 2、衰减器部分方案与选择 (3) 3、LC谐振选频网络 (3) 4、AGC自动增益控制 (4) 二、硬件单元电路部分 (4) 1、固定衰减器 (4) 2、LC谐振 (4) 3、固定增益放大 (5) 4、AGC可控增益放大 (5) 三、理论分析与计算 (6) 1、LC谐振部分参数 (6) 2、系统总增益 (6) 3、带宽与矩形系数 (7) 四、测试方案与测试结果及分析 (7) 1、调试与测试所用仪器 (7)

2、测试条件` (7) 3、测试方法、测试数据及测试结果分析 (7) 五、总结 (9) 六、参考文献 (9) 七、附录 (10) LC谐振放大器(D题) 摘要 本系统以硬件电路为主体,主要由双π衰减电路、LC谐振放大电路、固定增益模块、AGC自动增益控制模块组成。双π衰减电路作为衰减器部分完成 =15MHz为中心频率,带40 2dB的衰减量;LC谐振放大电路主要是选出以f 宽为300kHz的频带;固定增益模块实现一定的增益以保证电路有大于等于40dB 的固定增益;AGC自动增益控制模块实现大于40dB的控制范围。整个系统在低压、低功耗的条件下实现高频小信号的传输,放大器增益大于80dB,且在最大增益情况下尽可能减小矩形系数K 。 1.0r 关键词:双π衰减电路;LC谐振放大;AGC自动增益控制;

一、方案论证与比较 1、总体设计方案 本系统设计完全由硬件电路实现,具体框图如图1-1所示: 2、衰减器部分方案与选择 方案一、采用现成的集成产品衰减器。此方案不合本课题宗旨,故不采用。 方案二、采用有源衰减电路。采用高频带运算放大器(如OPA642)搭建反向衰减电路,合理选择电阻阻值使其衰减倍数为40dB 。但由于题目要求衰减器部分特性阻抗为50Ω,用运放搭建该衰减电路难以实现。 方案三、采用无源衰减网络。该部分由纯电阻搭建,有两种基本电路模型T 型、Π型网络。 如上图(a )为T 型网络,(b )为Π型网络。若衰减器的电压衰减倍数N=(2 1U U ) 和特性阻抗给定,则元件参数可由(2-1)式或(2-1)式决定。 对T 型网络有 R 1=N Z 21N * 2 c - 1 1* c 2-+=N N Z R (2-1) 对Π型网络有 R 1=1 1-N * c +N Z 1 2* 2 c 2-=N N Z R (2-2) 通常这种无源衰减网络接于信号源与负载之间,这种由纯电阻元件组成的四 端网络,其特性阻抗、衰减值都是与频率无关的常数,相移等于零。 综上,我们选择方案三,搭建一个双Π型网络。 3、LC 谐振选频网络 方案一、采用单级调谐放大器,即单级LC 谐振网络。

音频功率放大器实验报告_音频功率放大器课程设计报告.docx

音频功率放大器实验报告_音频功率放大器课程设计报告 本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。(3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um =

实验1__单调谐回路谐振放大器

—、实验准备 1.做本实验时应具备的知识点:(1)放大器静态工作点(2)LC并联谐振回路(3)单调谐放大器幅频特性 2.做本实验时所用到的仪器:单调谐回路谐振放大器模块、双踪示波器、万用表、频率计、高频信号源 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐回路谐振放大器的基本工作原理; 3. 熟悉放大器静态工作点的测量方法; 4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响; 5.掌握测量放大器幅频特性的方法。 三、实验内容 1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性; 3.用示波器观察静态工作点对单调谐放大器幅频特性的影响; 4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。 四、基本原理 1.单调谐回路谐振放大器原理 小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。 为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

BG Cb C Ce Cc Re OUT Rb 2Rb 1Rc L IN 图1-1 单调谐回路放大器原理电路

1R1 1R21Q01 9018 1R3 1C25-20p F 1C04 1R41C03 1R5 1C05 1C06 1R6 1Q029018 1R8 1C07 +12V1 1 GND1 X 1Y 2 1V01X 1 Y 2 1VO21W 01 1W 02 1D01 L E D 1R9 VCC GND +12V 12V VCC GND +12V -12V 1K01 +12V1 +12V C O M M O N 2 N C 1 N O 31K02 1C01 4 466 33 22 11 1T 01T RANS6 1L 01 1C02 1C08 IN OUT 1 1T P01 1 1T P02 输入 输出 图1-2 单调谐回路谐振放大器实验电路图 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,1C 2用来调谐,1K 02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q 值)的影响。1W 01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q 值)的影响。1Q 02为射极跟随器,主要用于提高带负载能力,1W 02用来改变1Q 02的基极偏置。 五、实验步骤 1.实验准备 ⑴ 插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K 01 接通电源,此时电源指示灯亮。 2.单调谐回路谐振放大器静态工作点测量 调整1W 01,使放大器工作于饱和状态、截止状态、放大状态。用万用表测量各点(对地)电压V B 、V E 、V C ,并填入表1.1内(发射极电阻1R4=1K Ω)。 表1.1 调整 1W01 实测(V) 计算(V,mA) V B V E V C V BE V CE I e 饱和状态 截止状态 放大状态 3.单调谐回路谐振放大器幅频特性测量 测量幅频特性通常有两种方法,即扫频法和点测法。扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。步骤如下: (1)1K 02置“off “位,即断开集电极电阻1R3,调整1W 01,使放大器工作于放大状态。高频信号源输出连接到单调谐放大器的输入端(1V01)。示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰——峰值)为100mv (示波器CH1监测)。调整单调谐放大器的电容IC 2,使放大器的输出为最大值(示波器CH2监测)。此时回路谐振于6.3MHZ 。

年全国电子设计大赛d题lc谐振放大器设计报告

年全国电子设计大赛d题 l c谐振放大器设计报告 Prepared on 22 November 2020

全国电子设计大赛 LC谐振放大器 方案设计报告 2011-9-3 课题名称:LC谐振放大器 指导老师:孙继昌 小组成员:朱培军,赵磊,蔡翔 目录 摘要 (3) Abstract (3) 一、系统方案 (5) 1、整体方案的论证与比较 (5) 2、系统设计方案 (6) 二、设计与论证 (6) 1、理论分析 (6) 三、单元电路的分析 (10) 1、系统组成 (10) 2、衰减器模块的设计 (11) 3、“高感磁芯”选频模块的设计 (12) 4、运放级联放大模块的设计 (13) 四、系统测试 (14) 1、使用的仪器和设备 (14)

五、过程中遇到的困难和注意事项 (14) 六、参考文献 (15) 附录(元件清单、电路图) (16) 摘要 本文采用自制的电源对系统供电,系统经过衰减器后,输入信号通过“高感磁芯”(具有高品质因数)构成的选频网络选择出符合题目要求的频率(15MHZ)与带宽(300KHZ),且此选频网络对信号有一定的放大作用;再将得到的信号经过双运放OPA2354正向放大接入以达到放大60DB 以上的指标。 完成以上基本要求后就是对发挥部分的操作(此题发挥部分基本上为对几根要求部分指标的提高);在设计系统时满足LC谐振放大器低压、低功耗。 关键字:衰减器、选频网络、LC谐振、高品质因数、低压、低功耗 Abstract In this paper, homemade power supply system, the system through the attenuator, the input signal through the “high sense of core”(high quality factor) consisting of frequency-selective network choose topics that meet the requirements of frequency (15MHZ) and bandwidth (300KHZ), and this election has a certain frequency network signal amplification; then get the signal through the OPA2354 dual op amp in order to achieve positive amplification amplified 60DB access more indicators.

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

实验一 小信号调谐(单调谐)放大器实验

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器B1的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

LC谐振放大器的实验报告

LC谐振放大器设计报告 (D题) 内容摘要: 本文介绍了LC谐振放大器的设计原理,分析了有可能影响LC 谐振放大器的因素以及采取的针对性措施。在此设计中我们运用衰减器来减小输入电压的值进而方便了放大器电路的测量。中周电感和聚酯电容来提取频率为15MHz的波。用三极管来放大电路,并使用其他措施来减小电路误差。整个系统的-3dB带宽为300kHz。在较低的外部电压下,放大器电路的整体功耗很小。 关键词:LC谐振放大器衰减器中周电感 第一章绪论 1.1:设计任务 设计并制作一台LC谐振放大器。设计的大体示意图如下所示:

1.2:设计要求 1.2.1:基本要求 (1)衰减器指标:衰减量40±2dB,特性阻抗50Ω,频带与放大器相适应。 (2)放大器指标: (a)谐振频率:f0=15MHz;允许偏差±100KHz; (b)增益:不小于60dB; (c)-3dB带宽:2Δf0.7=300KHz;带内波动不大于2dB; (d)输入电阻:Rin=50Ω; (e)失真:负载电阻为200Ω,输出电压1v时,波形无明显失真。(3)放大器使用3.6v稳压电源供电(电源自备)。最大不允许超过360mW, 尽可能减小功耗。 1.2.2:发挥部分 (1)在-3dB 带宽不变条件下,提高放大器增益到大于等于80dB。(2)在最大增益情况下,尽可能减小矩形系数Kr0.1。

(3)设计一个自动增益控制(AGC)电路。AGC控制范围大于40dB。AGC控制范围为20lg(Vomin/Vimin)-20lg(Vomax/Vimax) (dB)。(4)其他。 附录:图二是LC谐振放大器的特性曲线,矩形系数Kr0.1=2Δf0.1/2Δf0.7 第二章方案的比较与论证 本系统主要有以下几个模块:自制电源衰减器LC谐振放大器等三大功能模块。 2.1自制电源模块: 方案一:线性稳压源。采用效率较高的串联电路,尤其是采用集成三端稳压器,输出电压波纹小,可靠性高,性价比高。可为后面的谐振放大电路提供不失真保障。 方案二:开关稳压电源。此方案效率高,但电路复杂,开关稳压

实验一小信号调谐(单双调谐)放大器实验

实验一高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验原理 1-1a1-1b (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1(a)所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对

于图1-1(a )所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 ie oe C P C P C C 2221++=∑ 式中,C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,∑g 为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o而是为180o+Φfe 。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1(a )中输出信号V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0=V 0/V i 或A V0=20 lg (V 0/V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

LC谐振放大器 (D题)

2011年全国大学生电子设计竞赛 设计报告 题目:LC谐振放大器 (D题) 队号:512077

LC 谐振放大器 摘要:本系统以高频小信号LC 谐振放大电路为核心,设计制作了振荡频率为15MHz 的谐振放大器。系统第一部分输入信号通过π型电阻网络衰减电路实现信号衰减dB 240±的功能,同时完成电路阻抗匹配,使信号能够很好的传给下一级放大电路。综合考虑功耗、通频带、选择性噪声影响及工作稳定等因素,第二部分设计了两级高频小信号单调谐放大电路相串联来完成60dB 的放大。每级高频小信号放大电路均采用分立元件搭建而成,使用三极管S9018作为高频放大管,谐振负载采用LC 并联谐振回路。通过各个模块间的配合使用,实现了谐振频率达15MHz ,上下偏差不超过100KHz ,并且系统带宽为KHz f 30027.0=?,带内波动不大于dB 2,同时又降低了整个系统的成本及提高了系统的可实现性。总的来说,本系统基本符合指标的要求。 关键词:衰减器 谐振回路 高级小信号放大 阻抗匹配

目录 一、系统方案论证 (4) 1、衰减器方案论证 (4) 2、LC谐振放大器方案论证 (4) 二、理论分析与计算 (4) 三、电路设计 (5) 1、衰减电路设计 (5) 2、LC谐振放大电路设计 (6) 四、系统测试 (7) 1、放大性能测试 (7) 2、通频带测试 (8) 3、矩形系数 (9) 4衰减电路测试 (10) 五、总结 (10)

一、系统方案论证 经过仔细地分析和论证,根据题目要求,将本次谐振放大器由分为两大部分:即衰减电路和LC 谐振放大电路。 1、衰减器方案论证 方案一:采用集成运放构成有源衰减器,但这种衰减器输出容易产生超调或振荡现象,这种衰减器用常于自动增益和斜率控制电路中,电路比较复杂,不容易实现。 方案二:采用π型电阻网络衰减器,这种衰减器又称为无源衰减器。利用这种衰减电路不仅可以对信号进行准确衰减而且还能进行阻抗匹配,从而提高测量准确度。π型衰减器可以在规定的频率范围内实现较理想阻抗变换而且π型衰减器尺寸小、成本低、功耗低、电路简单、易于实现等诸多优点。因此在本设计中,我们选择π型衰减器。 2、LC 谐振放大器方案论证 方案一:直接利用集成运算放大器构成高频谐振放大器对信号进行放大。这种放大电路具有体积小,电路结构简单等优点,但它对器件依赖性强,信号保真度差,而且价格昂贵,更为重要的是使用运放芯片后会大大提高电路的功耗,所以本设计不选择该方案。 方案二:利用分立元器件搭成高频小信号LC 谐振放大电路。采用S9018三极管作为高频放大管,LC 并联谐振回路作为谐振负载。考虑到放大倍数和通频带等因素,采用两级放大相串联的形式,每级放大35dB 。从放大器选择性的角度来看单谐回路的选择性不如双调谐回路,但是双调谐回路的调整相对比较麻烦,因此谐振负载仍采用单调谐回路。该种方案不仅价格便宜,电路简单,而且对于电路的调节也相对方便,因此我们选择方案二。 系统的总体框图如图1所示。 图1 系统总体框图 二、理论分析与计算 按基本要求增益需要达到60dB ,因此增益部分采用两级串联放大。每级放大电路均使用单谐振回路谐振放大电路的典型接法,其中采用9018作为高频放大管。该放大电路的静态工作点主要由2R 、2W R 、3R 、6R 和CC V 确定,利用这种分压偏置方式可以很好的稳定工作点。对于小信号高频放大,为防止出现在波

实验2 双调谐回路谐振放大器

实验2 双调谐回路谐振放大器 —、实验准备 1.做本实验时应具备的知识点: ●双调谐回路 ●电容耦合双调谐回路谐振放大器 ●放大器动态范围 2.做本实验时所用到的仪器: ●双调谐回路谐振放大器模块 ●双踪示波器 ●万用表 ●频率计 ●高频信号源 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.熟悉耦合电容对双调谐回路放大器幅频特性的影响; 3.了解放大器动态范围的概念和测量方法。 三、实验内容 1.采用点测法测量双调谐放大器的幅频特性; 2.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响; 3.用示波器观察放大器动态范围。

四、基本原理 1.双调谐回路谐振放大器原理 顾名思义,双调谐回路是指有两个调谐回路:一个靠近“信源”端(如晶体管输出端),称为初级;另一个靠近“负载”端(如下级输入端),称为次级。两者之间,可采用互感耦合,或电容耦合。与单调谐回路相比,双调谐回路的矩形系数较小,即:它的谐振特性曲线更接近于矩形。电容耦合双调谐回路谐振放大器原理图如图2-1所示。 与图1-1相比,两者都采用了分压偏置电路,放大器均工作于甲类,但图2-1中有两个谐振回路:L1、C1组成了初级回路,L2、C2组成了次级回路;两者之间并无互感耦合(必要时,可分别对L1、L2加以屏蔽),而是由电容C3进行耦合,故称为电容耦合。 2.双调谐回路谐振放大器实验电路 双调谐回路谐振放大器实验电路如图2-2所示,其基本部分与图2-1相同。图中,2C04、2C11用来对初、次级回路调谐,2K02用以改变耦合电容数值,以改变耦合程度。2K01用以改变集电极负载。2K03用来改变放大器输入信号,当2K03往上拨时,放大器输入信号为来自天线上的信号,2K03往下拨时放大器的输入信号为直接送入。 图 2-2 双调谐回路谐振放大器实验电路 五、实验步骤 1.实验准备 在实验箱主板上插上双调谐回路谐振放大器模块。接通实验箱上电源开关,按下模块上

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

单调谐回路谐振放大器及通频带展宽实验说课讲解

课程名称:高频电子线路 题目:单调谐回路谐振放大器及通频带展宽实验 学生姓名: 专业:电子信息科学与技术 班级: 学号: 指导教师: 日期: 2013 年 6 月 28 日

实验三单调谐回路谐振放大器及通频带展宽实验 一、实验目的: 1. 熟悉高频电路实验箱的组成及其电路中各元件的作用; 2. 熟悉并联谐振回路的通频带与选择性等相关知识; 3. 熟悉负载对谐振回路的影响,从而了解频带扩展; 4. 熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。 二、预习要求: 1. 复习选频网络的特性分析方法; 2. 复习谐振回路的工作原理; 3. 了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。 三、实验电路说明: 本实验电路如图7-3所示。 图7-3 W、R1、R2和Re1(Re2)为直流偏置电路,调节W可改变直流工作点。C2、L1构成谐振回路,R3为回路电阻,RL为负载电阻。 四、实验仪器: 1.双踪示波器 2.数字频率计 3.万用表 4.实验箱及单、双调谐放大模块 5.高频信号发生器 五、实验内容和步骤:

1.测量谐振放大器的谐振频率: 1)拨动开关K3至“RL”档; 2)拨动开关K1至“OFF”档,断开R3 ; 3)拨动开关K2,选中Re2; 4)检查无误后接通电源; 5)调整谐振放大器的动态工作点; 6)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3; 7)使高频信号发生器的正弦信号输出幅度为300mV左右(本实验指导书中所说幅度都是指峰峰值),其频率在2—11MHz之间变化,找到谐振放大器输出电压幅度最大且波形不失真的频率并记录下来;(注意:如找不到不失真的波形,应同时调节W来配合;幅度最大不失真的输出频率在8.3MHZ左右。) 2.测量放大器在谐振点的动态范围: 1)拨动开关K1,接通R3; 2)拨动开关K2,选中Re1; 3)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3; 4)调节高频信号发生器的正弦信号输出频率为8MHz,调节C2使谐振放大器输出电压幅度u0 最大且波形不失真。此时调节高频信号发生器的信号输出幅度由300mV变化到1V,使谐振放大器的输出经历由不失真到失真的过程,记录下最大不失真的u0值(如找不到不失真的波形, 表3-1 5)再选Re1=2KΩ,重复第4)步的过程; 6)在相同的坐标上画出不同Ic(由不同的Re决定)时的动态范围曲线,并进行分析和比较。 3.测量放大器的通频带: 1)拨动开关K1,接通R3; 2)拨动开关K2,选中Re2; 3)拨动开关K3至“RL”档;

LC谐振放大器

LC谐振放大器 摘要 高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,而且通信距离越远,要求输出功率越大。所以为了获得足够大的高频输出功率,必须采用高频功率放大器。由于高频功率放大器的工作频率高,相对频带窄,所以一般采用选频网络作为负载回路。 本次设计先是对高频功率放大器有关理论知识作了一些简要的介绍,然后在性能指标分析基础上进行单元电路设计,最后设计出整体电路图,在软件中仿真验证是否达到技术要求,对仿真结果进行分析,最后焊接并调试电路。 关键词:高频谐振功率放大器谐振回路耦合回路工作状态

Abstract High frequency power amplifier is an important part of the equipment to send one of communication, circuit, in order to make up for in process of wireless transmission signal attenuation requirements with greater transmitter output power and communications, the farther the distance, the greater the output power requirements. So in order to get enough high frequency output power, must use high frequency power amplifier. Due to the high frequency power amplifier high frequency band, relatively narrow, so the general use of the web as a load circuit choose frequency. The first design of the high frequency power amplifier theory knowledge about some briefly introduced, and then the performance index analysis in based on the circuit design, and in the end the design unit circuit diagram, a whole in software simulation verify whether attain the technical requirements of the simulation results on analysis, the final installation and debugging circuit circuit. Keywords:High-frequency resonant power amplifier Resonant circuit Coupling Loop Working condition

相关文档
最新文档