二次回风空调机组基于焓值的串级控制策略

二次回风空调机组基于焓值的串级控制策略
二次回风空调机组基于焓值的串级控制策略

二次回风空调机组基于焓值的串级控制策略

发表时间:2018-03-13T14:28:47.330Z 来源:《建筑学研究前沿》2017年第30期作者:程美华

[导读] 大型剧场、体育馆、会所等大空间区域的温湿度负荷、地面高差及服务规模负荷流动均较大。

中建深圳装饰有限公司天津 300300

摘要:由于中央空调系统是一个具有多个输入输出参数、典型的强耦合、参数时变性强的非线性系统,在相同的负荷状态下,不同的被控对象随时间的变化也不一样。空调系统控制策略的任务就是通过保证自身逻辑上的完整性,在负荷状态变化时,仍能以高效节能的方式维持空调房间的空气温湿度品质。本文以阿尔及利亚康斯坦丁3000座剧院为背景,研究大空间二次回风空调系统的智能化控制策略。

关键词:二次回风;串级控制策略;温湿度;焓值

1 大空间二次回风空调系统介绍

1.1、大空间空调系统分析

大型剧场、体育馆、会所等大空间区域的温湿度负荷、地面高差及服务规模负荷流动均较大,在满足舒适性要求下,送风温度不宜过低温差不宜大于7℃,采用二次回风中央空调系统结合座椅送风通风方式(如图1所示),能够有效节约能源,同时能提供良好的空调效果和合理的气流分配。在人员密集场所的温度、湿度和空气品质直接影响人体舒适感,但被控对象随着负荷变化或者感染因素的影响,其对象特性参数或者结构发生改变,多个控制目标相互存在耦合,调节一个目标时也会对其他目标产生影响。康斯坦丁3000座剧院项目在通常的温度控制基础上进行了创新,设计了串级控制技术设计控制策略,即“温度-焓值”串级控制,根据实际系统的输入输出数据,系统对空气状态进行实时控制,具有较好的时效性,并根据运行情况不断修正,保证空调效果的同时有效避免了系统的不稳定性、滞后性及非线性、强耦合的弊端。如图1所示气流组织示意图。

图1 某工程大空间气流组织示意图

1.2二次回风空调机组功能介绍

二次回风空调机组主要针对夏季工况而言,引进二次回风的主要目的是提高表冷器之后的空气温度而达到降低送风温差和节约能源的目的,减少二次加热和相应配套设备容量。在冬季或者过渡季,二次回风机组关闭二次回风阀从而转变为一次回风机组或全新风机组,其功能段组合方法有多种。康斯坦丁剧院项目如图2所示的组合方式,避免建立复杂的控制模型,高效、实用,节约项目成本,其系统组成部件及检测参数介绍如下:

a.送、回风是定频风机,检测送、回风的温湿度以及风机的运行状态,不检测风量。

b.一次回风、新风、二次回风量之和等于送风量,且三者之间保持平衡;排风阀打开,保证室内一定的正压且不阻碍新风的引进。

c.新风不做监测,只需保证在满座情况下的最小新风量即可;当室外新风参数发生变化,即室外新风状态点偏离设计值时,针对新风负荷变化的系统动作响应会通过送、回风温、湿度变化得以调节。

d.室内CO2含量不做监测,只需满足满座情况下的最小新风量即可;

e.过滤段主要对前后压差进行检测,当压差高于设定压差值时发出警报信号,及时清洗过滤段。

f.单盘管处理冷热负荷,电动三通阀调节冷冻水流量。

g.加湿器位于送风管上,控制加湿器动作,监测安全恒湿量。

图2 二次回风空调机组功能段示意图

在本空调系统中,空调机组启动初期,温度控制的优先级高于空气品质控制的优先级,即为节约能源空调机组开启时新风阀保持为最小开度(夏季工况),调节二次回风阀和冷水阀使温度尽快达到设定值;在室内温、湿度基本达到设定的要求后改为空气品质的优先级高于温度控制的优先级。

基于以上分析,本文所介绍的控制策略原则如下:a.在满足人体舒适感及卫生要求的同时,保证最小新风量(新风阀门由机组风平衡调试确定);b.在保证室内温度及空气品质的同时,温度控制优先级高于湿度控制;c.避免阀门频繁动作造成系统空气质量的不稳定。

2 工况选择及控制策略

2.1 工况选择

工况分为过渡季、夏季、冬季三种。针对康斯坦丁当地温差加大的特点,为保证室内温、湿度调节在目标范围内,每小时进行一次模

给水控制特点

超临界发电机组以其热能转换效率高、发电煤耗低、环境污染小、蓄热能力小和对电网的尖峰负荷适应能力强等特点而得到广泛应用,已经成为我国火力发电的主力机组。给水控制作为过热汽温调节的基本手段是超临界直流锅炉有别于亚临界汽包锅炉的显著特征。 1、超临界直流锅炉给水控制的特点 超临界直流锅炉没有汽包,工质通过蒸发受热面过程中全部转换为蒸汽,即循环倍率为1[1],且无固定的饱和蒸汽与过热蒸汽的分界点,整个行程的流动阻力均由给水泵克服。 负荷扰动时,超临界直流炉无汽包,蓄热能力小[2],导致主汽压力变化延迟很小,且幅度较大,但主汽温度变化较小,所以超临界机组较亚临界机组更适合变压运行。 直流锅炉的一次性通过特性使得工质流和能量流相互耦合,从而在各个控制回路,如给水、汽温及负荷控制回路之间存在着很强的非线性耦合[3],机炉之间相互关联性强。因此变负荷过程中,不能单独改变燃烧率或者给水流量,给水量与燃料量必须以一定的比例协调动作,即在不同的负荷下要保持一定的煤水比。 过热汽温对给水流量和燃料量的扰动具有很大的滞后性,这样就必须有一个信号能够迅速反映出燃料量和给水流量的变化,防止煤水比失调导致机组超温或者主汽温度急剧下降,我们一般选取分离器出口温度或者焓值作为这个表征量。分离器出口的工质处于微过热状态,在燃料量或给水流量扰动的情况下,微过热汽温变化的滞后性远小于过热汽温。微过热点前包括有各种类型的受热面,工质在该点前

的焓增占总焓增3/4左右,此比例在燃水比及其他工况发生较大变化时变化并不大。同时,中间点选在两级减温器之前,基本不受减温水流量变化的影响,即使发生减温水量大幅度变化,按省煤器入口水量=给水泵入口流量-减温水量,中间点送出的调节信号仍保证正确的调节方向。因此,通过控制微过热点的汽温(或焓值),以间接控制出口汽温,是比较好的一个控制策略。通过多台机组的实践,我认为微过热蒸汽焓替代该点温度作为燃水比校正是要更好一些,其优点如下: 1)首先我们从焓的定义式[4]来看: h—焓; u—工质内能; p—工质压力; v—工质比容。 在任一平衡状态下,u、p、v都有一定的值,因而焓h也有一定的值,而与达到这一状态的路径无关。内能是温度和压力的函数,固焓也可以表示成温度和压力的函数,即h=f(p,T)。所以用焓“焓增”来分析各受面的吸热分布更为科学; 2)分离器出口焓值对煤水比的变化反映快,可以更好的校正控制系统; 3)焓值代表了过热蒸汽的作功能力,随工况改变焓给定值不但有利于负荷控制,而且也能实现过热汽温粗调。 2 汽水系统的动态特性

组合式空调机组操作手册V1

目录 Content 一、安全须知 (3) I. Safety Tips 二、安装 (5) II. Installation 1. 安装前的准备 (5) 1. Preparation before Installation 2. 散件出厂机组的现场组装和交付 (5) 2. Site Assembly & Delivery of Parts Delivered in Bulks 3. 整机出厂机组的现场吊装和就位 (6) 3. Site Hoisting & Locating of Parts Delivered in Whole Set 4. 机组与风系统的安装和连接 (11) 4. Installation & Connection of Units and Air System 5. 机组与水汽管路系统的安装和连接 (11) 5. Installation & Connection of Units and Water-and-Steam System 6. 机组与电气控制系统的安装和连接 (14) 6. Installation & Connection of Units and Electric Control System 三、调试 (15) III. Commission 1. 调试前的准备 (15) 1. Preparation before Commission 2. 启动关闭机组 (22) 2. Units On & Off 四、运行管理 (26) IV. Operation & Management 1. 性能参数巡检记录 (26) 1. Performance Parameters Inspecting Record 2. 设备运行参数监测 (26) 2. Running Parameters Inspection 3. 设备运行状态监测 (27) 3. Running Status Inspection 五、例行保养和维修 (29) V. Regular Maintenance & Repairing

ZK-J净化组合式空调机组简易样本

表1 -外形尺寸 机组外形尺寸(mm) 额定风量 宽度高度底座机组型号 m3/h W H h 表冷器 管径 加热器 管径 冷凝水 管径 ZK2-J(X)2000 750 720 80 DN40 ?48 DN25 ZK3-J(X)3000 850 820 80 DN40 ?48 DN25 ZK4-J(X)4000 1050 820 80 DN40 ?48 DN25 ZK5-J(X)5000 1150 870 80 DN40 ?48 DN25 ZK6-J(X)6000 1150 1070 80 DN40 ?48 DN25 ZK7-J(X)7000 1250 1070 80 DN40 ?48 DN25 ZK8-J(X)8000 1350 1070 80 DN50 ?60 DN32 ZK10-J(X)10000 1350 1270 80 DN50 ?60 DN32 ZK12-J(X)12000 1350 1470 80 DN50 ?60 DN32 ZK15-J(X)15000 1550 1470 80 DN50 ?60 DN32 ZK18-J(X)18000 1850 1520 80 DN50 ?60 DN32 ZK20-J(X)20000 1950 1570 80 DN50 ?60 DN32 ZK25-J(X)25000 2000 1900 100 2×DN65 2×?76 DN32 ZK30-J(X)30000 2000 2150 100 2×DN65 2×?76 DN32 ZK35-J(X)35000 2250 2250 100 2×DN65 2×?76 DN32 ZK40-J(X)40000 2250 2450 100 2×DN65 2×?76 DN32 ZK45-J(X)45000 2450 2450 100 2×DN65 2×?76 DN32 ZK50-J(X)50000 2650 2450 100 2×DN65 2×?76 DN32 ZK55-J(X)55000 2850 2450 100 2×DN80 2×?89 DN40 ZK60-J(X)60000 3150 2650 100 2×DN80 2×?89 DN40 ZK70-J(X)70000 3450 2650 100 2×DN80 2×?89 DN40 ZK80-J(X)80000 3850 2650 100 2×DN80 2×?89 DN40 ZK90-J(X)90000 4400 2650 100 2×DN80 2×?89 DN40 ZK100-J(X)100000 5000 2650 100 4×DN80 4×?89 DN40 ZK120-J(X)120000 5000 3050 100 4×DN80 4×?89 DN40 单口型

组合式空调机组

ZK系列组合式空调机组吊运安装注意事项: 1、本机组应放在高50-100毫米的大泥凸台上,离墙的一面须留有一米的空间,凸台平面要求平整,水平,各种功能段用螺栓连接,段与段之间用发泡聚乙烯密封,不使漏风现象出现。 2、机组一般是分段运输,对大于ZK60A的机组采用散件运输,现场组装,机组本身已带有100mm高的底脚槽钢。 3、安装前,应取出产品说明书及装箱单核对,并检查各零部件的完好性,把各件擦洗干净,上润滑油脂,检查风阀、风机等转动部件的灵活性。 4、表冷段周围应预留排水沟,用于冷凝水的排出,冷凝水出口处应设水封弯,水封高度80-100mm。 5、安装时,骨架的连接处涂密封胶(或其它填料),防止漏风现象产生。 6、进出水管在机组外必须装有阀门,用以调节流量和检修时切断冷(热)水源。 7、当机组选用加湿段时,加湿段进水管应装阀门,并要求进水水压基本恒定。 8、与机组联接的风道和水管等的重量不得由机组承受。 9、各保温壁板安装前,应检查风机叶轮旋转方向是否正确。 10、本机组全部安装完毕后,应进行试运转,不得在全开风阀的状况下启动,以免起动电流过大烧坏电机,运转8小时无异常现象为合格。 11、机组应有良好的接地。 一、组合式空调机组安装 组合式空调机组是由制冷压缩冷凝机组和空调器两部分组成。组合式空调机组与整体空调机组基本相同,区别是将制冷压缩冷凝机组由箱体内移出,安装在空调器附近。电加热器安装在送风管道内,一般分为三组或四组进行手动或自动调节。电气装置和自动调节元件安装在单独的控制箱内。 组合式空调机组的安装内容有:压缩冷凝机组、空气调节器、风管的电热器、配电箱及控制仪表的安装。各功能段的组装,应符合设计规定的顺序要求。 (一)组合式空调机组安装要求 1.组合式空调机组各功能段的组装,应符合设计规定的顺序和要求。 2.机组应清理干净,箱体内应无杂物。 3.机组应放置在平整的基础上,基础应高于机房地平面。 4.机组下部的冷凝水排放管,应有水封,与外管路连接应正确。 5.组合式空调机组各功能段之间的连接应严密,整体应平直,检查门开启应灵活,水路应畅通。

组合式空调机组知识及设计选型

组合式空调机组知识、设计选用、ZK型 目录 概述 第一章换热器(表冷器)如何设计 第二章风机和风机电机的设计选型 第三章加湿器的知识和设计选型 第四章风阀及电动执行器的设计选型 第五章过滤器的知识和设计选型 第六章消声器知识和设计选型 第七章减震器的知识和设计选型 第八章转轮热回收装置的知识和设计选型 第九章框架防冷桥原理介绍 第十章挡水板的设计选型方法和工作原理

概述 组合式空调机组的型号很多,不同公司的产品也不一样,功能段包括混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、各种加湿、风机段、消声段等二十余种功能段。 组合式空调机组的具体命名方法可参阅组合式空调机组产品分类与型号命名(QMZ-J20.011-2007) 组合式空调机组的基本设计工况: 混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、加湿段、风机段、消声段等进行自由组合,对空气的进行处理,满足客户对空气洁净度和舒适度、环境噪声的需求。 第一章换热器设计计算方法

换热器用来实现空气与热源载体——水进行能量交换的设备,是空调末端产品中最重要的部件之一。主要构件有进出水管、集水管、铜管、翅片、U 型管、端板等,下面主要介绍表冷器大小、翅片形式、铜管大小等的选择,其结构上的知识不做介绍。 我们公司换热器的命名方法: 换热器的中文名称加三个主参数,即:换热器 M*N*L ,M 表示换热器厚度方向铜管排数,N 表示换热器高度方向的铜管数,L 表示换热器有效长度(即换热铜管长度),如:换热器 4*20* 1500,表示4排换热器,高度方向有20根管,换热器铜管的有效长度为1500。换热器的其他构件相关尺寸都是以这三个基本参数为依据换算而来。 换热器的系列代号方法如下: 完整的换热器的表示方法如下: MK .HRQ3Z 换热器M ×N ×L (换热器系列部件图样代号及名称) MK .HRQ3Z 换热器8×24×2015 (换热器系列部件图样代号及名称) 表示换热管规格为φ16、总水管通径为DN65(3型管)、8排(M=8)换热管、每排管数 为24(N=24)、换热器迎风面长度或换热管有效长度为2015mm (L=2015)的左式换热器。 具体名称命名方式可参阅换热器命名 。 换热器的设计: 一、 基本参数的设计: M 一般尽量按客户要求选择,在客户没有要求的情况下,我们根据N 、L 的值,加上我们的经验公式(见后)进行计算。 N 、L 根据我们规划的段位尺寸,保证换热器在表冷段中便于安装,且有最大的换热面积和迎风面积,具体的段位尺寸见组合空调标准段位图。 二 、翅片和铜管的选择 目前我们公司有波纹片、开窗片、平片三种翅片形式。波纹片主要是与φ16铜管配套,开窗片、平片与φ9.52铜管配套。风机盘管主要采用φ9.52铜管套平片,空调箱按风量区 换热器基本代号,换热器汉语拼音缩写,用HRQ表示 空调末端产品基本代号,美的空调汉语拼音缩写,用MK表示MK ·HRQ 部件分隔符,用“·”表示 □换热管代号,φ16换热管缺省不表示,φ9.52用U表示 □换热器总水管代号,用1、2、3、4表示,分别代表通径 为DN40、DN50、DN65、DN80的总水管 □ 左、右式换热器区别代号,左式用Z表示、右式用Y表示。

组合式空气处理机样本20121105

组合式空气处理机组 机组介绍 美意MAH组合式空调箱积累在公司多年的生产制造、工程应用和对市场需求的基础之上。我们最新一代的MAH组合式空调箱,采用先进的模块化箱体结构,高强度防冷桥铝合金型材框架,聚氨酯发泡隔热面板。该产品设计生产参照欧洲EN1886测试标准,机组具有高强度,无冷桥,低漏风率等特 点,产品性能达到国际先进水平。 组合式空气处理机组以冷(热)水或蒸汽作为冷、热源,以功能段为组合单元,由风 机导流室内空气,从而完成空气的输送、混合、加热、冷却、去湿、加湿、消声和空气洁 净等处理功能,以达到调节室内空气质量的目的。美意MAH组合式空调箱有29个规格(风 量从2000m3/h~120000m3/h),每种标准规格机型都可以针对客户需求,配置不同的功能 段。美意组合式空调箱机组具有功能齐全,选型组合灵活方便的特点。可以广泛应用于电 子、仪表、机械、交通、能源等工业领域的工艺性空调系统;也可用于高层建筑、宾馆、 酒店、影剧院、商场、体育馆等大型公共建筑的舒适性空调系统。 机组型号命名 MAH 06 08 H 50 L 1 2 3 4 5 6 第1位:组合式空调机组(Air Handling Unit) 第2位:高度模数 第3位:宽度模数 第4位: 机组布置形式H: 卧式,V:立式 第5位:面板厚度 30:30mm,50:50mm 第6位:机组方向 L-左向机组,R-右向机组 机组方向判断

机组左右方向判断: 顺气流面对进风端,接管在左为左向机组,接管在右为右向机组 机组特点 高强度,高隔热 铝型材外框铝型材外框 PVC PVC 铝型材内框铝型材内框 机组箱体由采用铝合金型材框架、面板及密封条组成,面板和框架为扣押连接方式。高强度铝合金型材框架由内框和外框构成,中间采用PVC隔热条挤压连接,型材表面阳极氧化处理,耐腐蚀。型材中空充注聚氨酯隔热材料。 内面板 聚氨酯隔热材料 外面板 箱体面为双层结构,外板为冷轧钢板经磷化、静电喷涂处理,内板为镀锌钢板,内、外面板间用优质绝热材料隔开,中间充注发泡聚氨脂内面板可根据产品用途不同采用彩钢板、不锈钢板或其他材料。 ■高强度的铝合金型材框架结构,使机组具有更高承压能力,保证长期运行不变形 ■链接内框和外框的PVC隔热条,型材中空充注聚氨酯隔热材料,杜绝冷桥发生 ■面板和框架压扣连接,机组密封效果好,低漏风率 ■无螺钉安装,现场可快速安装和拆卸,解决了组合空调因螺钉生锈而无法拆卸面板,大大简化了组合空调机组的现场安装和维护管理 ■阳极氧化处理的型材框架,优质的彩钢,使机组具有高效的防腐性能,并在彩钢面覆膜,

组合式空调机组GBT14296-2008

组合式空调机组 1、范围 本标准规定了组合式空调机组(简称机组)的术语和定义、分类与标记、材料、要求、试验方法、检验规则、标志、包装、运输和贮存、产品样本和说明书的基本内容等。 本标准适用于以功能段为组合单元,能够完成空气运输、混合、加热、冷却、去湿、过滤、消声、热回收等一种或几种处理功能的机组。 冷媒为盐水、乙二醇和直接蒸发盘管以及采用电加热的机组,可参照适用。 本标准不适用于自带冷、热源的空调机(器)、风机盘管机组、暖风机等。 1、规范性引用文件 下列文件红的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励本剧本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不住日期的引用文件,其最新版本适用于本标准。 GB/T 1236-2000工业通风机用标准化风道进行性能试验 GB/T 2624.3-2006 用安装在圆形截面管道中的差压装置测量满管流体流量第3部分:喷嘴和文丘里喷嘴 GB/T 9068-1988 采暖通风与空气调节设备噪声声功率级的测定工程法 GB/T14296 空气冷却器和空气加热器 GB/T16803 采暖、通风、空调、净化设备术语 JB/T 9064盘管耐压试验和密封性检查 JG/T 21-1999 空气冷却器和空气加热器性能试验方法

2、术语和定义 GB/T16803 确定的以及下列术语和定义适用于本标准。 3.1 组合式空调机组central station air handling units 由各种空气处理功能段组装而成的一种空气设备。适用于阻力大于等于100Pa的空调系统。 3.2 机组空气处理功能段functional section of units 具有对空气进行一种或几种处理功能的单元体。 机组功能段有:空气混合、均流、过滤、冷却、一次和二次加热、去湿、加湿、送风机、回风机、喷水、消毒、热回收等单元体。 3.3 额定风量Rated air flow rate 在标准空气状态下,单位时间通过机组的空气体积流量,单位为m3/h或m3/s。 3.4 机外静压unit external static pressure 机组在额定风量时克服自身阻力后,机组进出风口静压差,单位为Pa。3.5 机组全静压total static pressure 机组自身阻力和机外静压之和,单位为Pa。 3.6

组合式空调机组

组合式空调机组 组合式空调机组是由各种空气处理功能段组装而成的一种空气处理设备。适用于阻力大于100Pa的空调系统。机组空气处理功能段有空气混合、均流、过滤、冷却、一次和二次加热、去湿、加湿、送风机、回风机、喷水、消声、热回收等单元体。 中文名 组合式空调机组 适用于 阻力大于100Pa的空调系统 多种场合 纯水车间、医院手术部、ICU等 各功能段 新回风混合段 目录 1.1简介 2.2空调机组各功能段 1.?新回风混合段 2.?新排风段 3.?能量回收段 4.?中间段(检修段) 1.?二次回风段 2.?表冷段 简介 组合式洁净空调机组风量从3500m3/h至200000m3/h计30种规格共12种功能段供用户自由选择组合。主要适用于各种洁净厂房的空气净化系统,如工业电子厂、精密机械制造厂、纺织车间、汽车喷涂车间、GMP制药厂、化妆品、食品厂、纯水车间、医院手术部、ICU等多种场合。

按结构型式分类,可分为卧式、立式和吊顶式;按用途特征分类,可分为通用机组、新风机组、净化机组和专用机组(如屋顶机组、地铁用机组和计算机房专用机组等等);还可以按规格分类,机组的基本规格可用额定风量表示。 净化机组功能段的设置要根据生产工艺或洁净室要求确定,这是基本原则。净化机组功能段的合并及取舍要与空调房的设计紧密结合起来。 必须对净化机组中的微生物污染点进行控制,由于结构、温湿度较适宜细菌等微生物的滋长,净化机组的箱体、过滤器、消声器、加湿器等成了潜在的微生物污染点,必须对其进行控制。如机组箱体应无破损、无锈蚀、耐消毒、保温及密封性能好,可使用如在冰箱上已广泛应用的抗菌材料;过滤器性能指标符合要求,消声器、加湿器等不滞留可凝物,机组内经常清洗或消毒。 空调机组各功能段 新回风混合段 1、新回风口位置按设计要求可分别在端部、顶部或左右各侧面设置,如与本样本不一致时,要提供具体开口位置。在新回风口上可装配调节阀,执行机构有手动、电动和气动三种型式,由用户任选。 2、过滤段有初、中效过滤两种,配有菱形袋式,四峰袋式,也可配用自动卷绕式,滤料用优质涤轮无纺布,并采用过滤器快速装拆机构,压盖显示及报警装置。 新排风段 (也称平顶分风混合段)本段箱体内设有一次回风阀,阀门前后的箱顶各设一排风口和新风口,并配调节阀,其功能是:当有回风机时,供空调机排出部分回风,使新风与一次回风按要求比例混合;当过渡季节采用直流系统时,应关闭一次回风阀,全开排风阀和新风阀。

二次回风空调机组基于焓值的串级控制策略

二次回风空调机组基于焓值的串级控制策略 发表时间:2018-03-13T14:28:47.330Z 来源:《建筑学研究前沿》2017年第30期作者:程美华 [导读] 大型剧场、体育馆、会所等大空间区域的温湿度负荷、地面高差及服务规模负荷流动均较大。 中建深圳装饰有限公司天津 300300 摘要:由于中央空调系统是一个具有多个输入输出参数、典型的强耦合、参数时变性强的非线性系统,在相同的负荷状态下,不同的被控对象随时间的变化也不一样。空调系统控制策略的任务就是通过保证自身逻辑上的完整性,在负荷状态变化时,仍能以高效节能的方式维持空调房间的空气温湿度品质。本文以阿尔及利亚康斯坦丁3000座剧院为背景,研究大空间二次回风空调系统的智能化控制策略。 关键词:二次回风;串级控制策略;温湿度;焓值 1 大空间二次回风空调系统介绍 1.1、大空间空调系统分析 大型剧场、体育馆、会所等大空间区域的温湿度负荷、地面高差及服务规模负荷流动均较大,在满足舒适性要求下,送风温度不宜过低温差不宜大于7℃,采用二次回风中央空调系统结合座椅送风通风方式(如图1所示),能够有效节约能源,同时能提供良好的空调效果和合理的气流分配。在人员密集场所的温度、湿度和空气品质直接影响人体舒适感,但被控对象随着负荷变化或者感染因素的影响,其对象特性参数或者结构发生改变,多个控制目标相互存在耦合,调节一个目标时也会对其他目标产生影响。康斯坦丁3000座剧院项目在通常的温度控制基础上进行了创新,设计了串级控制技术设计控制策略,即“温度-焓值”串级控制,根据实际系统的输入输出数据,系统对空气状态进行实时控制,具有较好的时效性,并根据运行情况不断修正,保证空调效果的同时有效避免了系统的不稳定性、滞后性及非线性、强耦合的弊端。如图1所示气流组织示意图。 图1 某工程大空间气流组织示意图 1.2二次回风空调机组功能介绍 二次回风空调机组主要针对夏季工况而言,引进二次回风的主要目的是提高表冷器之后的空气温度而达到降低送风温差和节约能源的目的,减少二次加热和相应配套设备容量。在冬季或者过渡季,二次回风机组关闭二次回风阀从而转变为一次回风机组或全新风机组,其功能段组合方法有多种。康斯坦丁剧院项目如图2所示的组合方式,避免建立复杂的控制模型,高效、实用,节约项目成本,其系统组成部件及检测参数介绍如下: a.送、回风是定频风机,检测送、回风的温湿度以及风机的运行状态,不检测风量。 b.一次回风、新风、二次回风量之和等于送风量,且三者之间保持平衡;排风阀打开,保证室内一定的正压且不阻碍新风的引进。 c.新风不做监测,只需保证在满座情况下的最小新风量即可;当室外新风参数发生变化,即室外新风状态点偏离设计值时,针对新风负荷变化的系统动作响应会通过送、回风温、湿度变化得以调节。 d.室内CO2含量不做监测,只需满足满座情况下的最小新风量即可; e.过滤段主要对前后压差进行检测,当压差高于设定压差值时发出警报信号,及时清洗过滤段。 f.单盘管处理冷热负荷,电动三通阀调节冷冻水流量。 g.加湿器位于送风管上,控制加湿器动作,监测安全恒湿量。 图2 二次回风空调机组功能段示意图 在本空调系统中,空调机组启动初期,温度控制的优先级高于空气品质控制的优先级,即为节约能源空调机组开启时新风阀保持为最小开度(夏季工况),调节二次回风阀和冷水阀使温度尽快达到设定值;在室内温、湿度基本达到设定的要求后改为空气品质的优先级高于温度控制的优先级。 基于以上分析,本文所介绍的控制策略原则如下:a.在满足人体舒适感及卫生要求的同时,保证最小新风量(新风阀门由机组风平衡调试确定);b.在保证室内温度及空气品质的同时,温度控制优先级高于湿度控制;c.避免阀门频繁动作造成系统空气质量的不稳定。 2 工况选择及控制策略 2.1 工况选择 工况分为过渡季、夏季、冬季三种。针对康斯坦丁当地温差加大的特点,为保证室内温、湿度调节在目标范围内,每小时进行一次模

关于焓值的介绍

关于焓值的介绍 焓值是温度和湿度的综合,是一个能量单位,他表示在单位空气中温度和湿度综合后的能力刻度,在空调行业,由于主要是对空气进行加热、制冷、加湿、除湿处理,单单比较温度就不全面,甚至是错误的,应为降温需要冷量,除湿也需要冷量,所以要综合计算。 比如在过渡季节对新风阀的开关控制,当室外空气的焓值低于室内空气的焓值,说明不需要制冷就可直接引入。 随着中央空调系统应用的日益普及,其能耗问题、环境舒适度的控制问题,越来越受到关注。采用焓值控制比采用温度控制更节能,并且能满足对环境舒适度的要求。 有这样一种控法: 焓差并不作为主控变量,而是作为工况判断的辅助条件之一。 通常,焓差控制用于过渡季节,新回风(比)阀的开度调节,目的是最大程度利用室外新风,享受免费空调。 其主控变量为温度。 将新风阀作为一级制冷源或者加热源。 如果:室外焓>室内焓and 控制系统工作在供热工况,根据温度pid计算,输出控制新风阀开度(回风阀相应反之动作)。当新风阀开满后,逐渐开大热水阀。(这种工况很少出现)如果:室外焓<室内焓and 控制系统工作在供热工况,新风阀最小开度。温度控制回路控制热水阀。 如果:室外焓<室内焓and 控制系统工作在制冷工况,根据温度pid计算,输出控制新风阀开度(回风阀相应反之动作)。当新风阀开满后,逐渐开大冷水阀。(过度季节经常出现此工况) 如果:室外焓>室内焓and 控制系统工作在制冷工况,新风阀最小开度。温度控制回路控制冷水阀。 仅供参考! 最后,做个广告:西门子的synco系列控制器已经内置了以上功能模块,无需编程,激活即可。另外该系列控制器提供简化控制方案,将焓差比较简化为温差比较,控制逻辑同上。另外可以提供数字量切换(也就是说可以手动切换)。 同时该系列提供焓差、焓值、绝对湿度和露点温度计算器sez220。 简单来说,就是把室内焓值看作相对不变量,当室外在高温高湿、高温低湿、低温高湿、低温低湿4种条件下,与室内进行比较,以控制新风风门的开度。

组合式空调机组的特点及功能段介绍

空调机组的特点: 1、铝型材骨架,钢架结构两种结构,外形美观。 2、表面磷化,高压静电喷涂(喷塑)处理,耐腐蚀性能卓越。 3、壁板聚胺脂发泡保温,保温效果特佳。 4、热交换器为进口流水线生产,性能属世界一流,可旋转型热交换器降低阻力,回收能量,节能效果明显。 5、高压喷雾加湿,方便、节省汽源。 6、过滤器快速脱落,清洗简捷方便。 7、风机进口、国产任选。 8、计算机自动调控,可实现无人管理。 9、整体服务,本公司的经营宗旨:向用户提供完善的售前售后服务。 结构: 槽钢底盘,散装体最大尺寸不超过3300*2500*2500(长mm*宽mm*高mm),用户需考虑设备进入机房的空间。 空调机组各功能段介绍: 各种规格的空调机组都有以下功能,可供设计单位和用户按需要进行组合选用,同时,可根据用户需要进行非标空调机组设计和制造。 1、新回风混合段新回风口位置按设计要求可分别在端部、顶部或左右各侧面设置,如与本样本不一致时,要提供具体开口位置。在新回风口上可装配调节阀,执行机构有手动、电动和气动三种型式,由用户任选。 2、过滤段有初、中效过滤两种,配有菱形袋式,四峰袋式,也可配用自动卷绕式,滤料用优质涤轮无纺布,并采用过滤器快速装拆机构,压盖显示及报警装置。 3、新排风段(也称平顶分风混合段)本段箱体内设有一次回风阀,阀门前后的箱顶各设一排风口和新风口,并配调节阀,其功能是:当有回风机时,供空调机排出部分回风,使新风与一次回风按要求比例混合;当过渡季节采用直流系统时,应关闭一次回风阀,全开排风阀和新风阀。 4、能量回收段供双风机系统中作交叉分风混合和排风能量回收用。本段箱体内设有一次回风阀,顶部为能量回收器,它是一种利用排风的冷(热)来间接冷却(加热)新风,新风经过板式能量回收装置,可回收排风显热能量的60%左右。同时,排风和新风不直接接触,特别适用于排除室内有害气体的直流空调系统的能量回收。作直流系统使用时,应关闭一次回风阀门。有剧毒气体场所应单独设排风系统,不宜使用该段。

采用控制中间点焓值的直流炉给水控制系统

采用控制中间点焓值的直流炉给水控制系统 华北电力大学(保定 071003) 何同祥 牛玉广 沈阳电力专科学校(沈阳 110036) 王存旭 韩希昌 Once-through Boiler Feed Water Control System Using Intermediate Enthalpy Point Control Mode He Tongx iang,N iu Yuguang North China Electric Pow er Univ ersity Baoding071003 W ang Cunx u,Han X ichang Shenyang Electric Pow er Traning Schoo l Shenyang110036 关键词 直流锅炉 给水控制系统 中间点 焓值 摘 要 对给水控制系统的基本方案、焓值测量实现方法、焓值定值的产生及部分技术措施进行了介绍与分析。 Key words o nce-thro ug h boiler feedw ater contr ol system inte rmediate point enthalpy Abstract The basic sch em e of feedwa ter co ntro l system,methods of enthalph measurement,productio n of definite va lue o f enthalpy,a nd some technical measures are intro duced a nd ana ly sed. 神头第一电厂6号炉为捷制670t/h直流炉,燃烧系统采用直吹式制粉系统,给水系统采用3台50%容量的电动调速泵,配100%主给水调节门和30%旁路调节门。为解决锅炉经常爆管问题,汽水分离器改为满水位运行方式,6号炉为实际意义上的纯直流炉。原控制仪表为捷克产组装仪表,现用IN FI90分散控制系统对6号机组CCS系统进行了改造。 在协调控制方式下的给水控制系统具有多重控制任务:保证给水稳定、保证水燃比、满足负荷要求及实现过热汽温粗调。经过多次优化调整,确定了一套以控制中间点(微过热蒸汽)焓值为基础的串级给水控制系统,取得了良好的控制效果,为协调控制系统顺利投运打下良好的基础。 1 基本控制方案 1.1 控制中间点温度存在的问题 由于纯直流炉水—汽转换一次完成,负荷和各级过热汽温对给水比较敏感,给水控制系统必须首先保证给水及时跟随燃料量,保证水燃比。当水燃比失调时,不但影响中间点温度(微过热汽温),而且影响各级过热汽温。当负荷变化时,由于锅炉蓄热量小,必须靠燃料、水协调动作来响应负荷变化要求。因此,给水控制系统具有多重控制任务:维持中间点温度在适当范围内;快速跟随燃料量,保证水燃比,共同满足负荷要求;实现过热汽温粗调。 在调试初期曾采用中间点温度串级控制系统,在稳定负荷时取得了较好的控制效果;但是当运行人员中间点温度定值偏置较低、且遇到较大幅度减负荷时,由于给水相对燃料有一定滞后,可能造成中间点进入饱和区甚至不饱和区。 中间点进入饱和区后,在一定范围内加减给水流量(如20t/h),不会造成中间点温度变化;进入不饱和区后,温度/给水流量变化率也较小。这样,一旦中间点进入饱和区或不饱和区,在较长时间内不能退出。 另外,由于中间点温度长时间存在偏差,积分作用逐渐累积,往往会造成退出饱和区时减水过量,中间点温度超温,减温水流量突增,实际负荷 26 华东电力1999年第2期

探讨双风机空调系统焓值的控制方式

探讨双风机空调系统焓值的控制方式 摘要:双风机空调系统采用可变新风比的焓值控制方,调节新风量的大小以达到节能的目的。采用焓值控制比采用温度控制或者是二氧化碳控制更能节省能源的消耗,并且能满足对环境舒适度的要求。本文就焓值的定义、焓值控制原理、方法以及双风机空调系统焓值的控制方式进行讨论分析。 关键词:双风机;焓值;空调系统;控制方式 abstract: double fan air conditioning system using variable enthalpy control of fresh air than party, adjust the size of the new air volume in order to achieve the purpose of saving energy. the enthalpy control than the temperature control is carbon dioxide or more control of the save the energy consumption, and can meet the requirements of the environmental comfort. this paper the definition, enthalpy enthalpy control principle, method and dual fan air conditioning system of control mode enthalpy discussed analysis. keywords: double fan; enthalpy; air conditioning system; control mode 随着社会市场经济的快速发展,科学技术水平的不断提高,人们

组合式空调器系列技术手册

组合式空调器系列技术手册山东凌顿人工环境设备有限公司

一、产品概述 “凌顿”牌组合式空调器,是山东凌顿人工环境设备有限公司经多年研发,已形成能满足各种要求的系列产品。其风量范围从3000m3/h-120000m3/h,可以满足冷却、加热、加湿、除湿、净化等各种要求。机组采用组合式框架板结构。空气处理性能齐备,组装灵活,运输方便,根据客户要求,可直接在现场安装,具有结构新颖,外观美观,安装维修方便,刚性好,漏风量小等特点,此机组可用于恒温恒湿空调系统及空调净化等工程的空气处理系统,此机组与自动控制装置相配合,可实现温度和湿度的自动调节。 此产品可广泛应用于精密机械制造、精密计量、仪器仪表、航空航天工业、电子工业、冶金、化工、纺织、医院、食品等工业部门集中送风的空气处理系统,也适用于宾馆、饭店、办公大楼、影剧院、商场、体育馆等公共建筑舒适性空调系统的空气处理。 二、产品特点 1)框架: 采用铝合金框架,外表美观大方。框架由特殊制作的角连接件采用插入方式牢固的连接在一起,连接方便牢固 2)面板: 机组面板采用内外双层彩色钢板结构,两层板之间充注为高密度聚氨酯或聚苯乙烯发泡保温材料,导热系数小于(m.℃),密度达到45kg/m3,具有导热系数小,强度高的特点,适用于各种环境条件。保温材料中加入阻燃材料,其防火指标达到或超过国家防火要求,面板有30mm和50mm两种厚度可选择。 3)风机: 风机采用国产或进口名牌双进风离心风机。采用进口轴承,每台风机均经过严格的动、静平衡试验,确保风机能在各种情况下很好的运转。风机有前弯和后弯两种系列多种规格,满足不同风量和风压的场合。风机和电机采用皮带传动,可通过更换皮带轮方便的调节风机转速从而改变风量和风压。 4)电机: 电机采用国产或进口名牌电机,防护等级IP54,绝缘等级F级。 5)表冷器: 表冷器采用优质铜管和波纹翅片,经机械胀管焊接而成,管片结合紧密,传热效率高。每个表冷器均经过的试压和检漏测试,确保表冷器安全、可靠运行。

重要---------焓值 显热 潜热 vav

14)什么是空气的焓值?怎样计算? 空气的焓值是指空气所含有的决热量,通常以干空气的单位质量为基准。焓用符号i 表示,单位是kj/kg 干空气。湿空气焓值等于1kg干空气的焓值与dkg水蒸气焓值之和。 湿空气焓值计算公式化为: i=1.01t+(2500+1.84t)d 或i=(1.01+1.84d)t+2500d (kj/kg干空气) 式中: t——空气温度℃ d ——空气的含湿量g/kg干空气 1.01 ——干空气的平均定压比热kj/(kg.K) 1.84 ——水蒸气的平均定压比热kj/(kg.K) 2500 ——0℃时水的汽化潜热kj/kg 由上式可以看出:(1.01+1.84d)t是随温度变化的热量,即“显热”;而2500d 则是0℃时dkg水的汽化潜热,它仅随含湿量而变化,与温度无关,即是“潜热”。 上式经常用来计算冷干机的热负荷。由上可知,知道了温湿度,再知道含湿量d,就可计算空气焓值。 在湿空气中,1kg干空气含有水蒸气的重量叫做“含湿量”,常用d来表示,单位:g/kg干空气。 含湿量怎样计算? d=622 ×Ps/(P-Ps)或 d = 622 ×фPsb/(P-фPsb) 式中:P—空气压力(Pa),Ps—水蒸气分压力(Pa), ф—相对湿度(%)(例,60%=0.6)。Psb-饱和水蒸汽的分压力(Pa) 从上式可以看出,含湿量d几乎同水蒸气分压力Ps成正比,而同空气总压力P成反比。D确切反映了空气中含有水蒸气量的多少。由于某一地区,大气压力基本上是定值。所以空气含湿量仅同水蒸气分压力Ps有关。含湿量d,由上公式得知,知道相对湿度,再根据当前空气温度查下表,得到对应的饱和蒸汽压力,再乘相对湿度,就得知空气的分蒸汽压力,大气压是一定的,1.01*100000Pa,最后可以得出含湿量。 例,室外温度30,湿度60%时,d=16.76,由第一个公式i=(1.01+1.84d)t+2500d,可以看出,d 对于焓值影响很大,温度影响较小,但从d = 622 ×фPsb/(P-фPsb)看出,饱和蒸汽压力的确定直接影响d的数值,根据下表,在20-30摄氏度区间,温度差1度饱和蒸汽压力大概差5% ,温度对d的影响很大,因此,温、湿度数据的准确度,对焓值计算影响很大。

暖通自控设计要求

自控设计: 1.本工程采用直接数字式监控系统(DDC系统),它由中央电脑及终端设备加上若干个 DDC控制盘组成。在控制中心能显示打印空调、通风、制冷等各系统设备的运行状态及主要运行参数,具体控制内容为: 制冷系统采用二次泵方式,一次泵定流量,二次泵变频变流量控制。体育馆内区冬季供冷板式换热器为恒温控制运行,其冷水泵和冷却水泵变频控制。空调机组和新风机组回水管上设动态平衡电动二通调节阀,通过调节表冷器的过水量以控制室温或新风机组送风温度。风机盘管设三速开关,由室温控制器控制回水管上的电动二通阀开度,以控制房间温度。 空调机组、新风机组和风机盘管上的电动二通调节阀与风机做联锁控制。同时冬季空调机组、新风机组停机时,电动二通调节阀应保持5%开度,以防加热器冻裂。 冷热源、空调系统、通风系统采用集散式直接数字控制系统(DDC系统),微机控制中心设在制冷机房控制室内,具体控制要求如下: 1.空调系统: 1)。冷源: (1).制冷机房内所有设备启停控制(联锁启停顺序为:先开启冷水电动阀及冷水泵,再开启冷却水电动阀及冷却水泵,然后开启冷却塔风机,最后开启冷水机组。 停机顺序反之)及状态显示、事故报警。 (2)。冷水温度、压力、流量、冷量等参数记录、显示。 (3)。冷水机组台数控制。 (4).二次冷水泵变频变流量控制。 2). 体育馆内区冬季供冷板式换热器: (1)。热交换器出水温度控制; (2).运行设备、温度、压力、流量、热量等参数显示、记录; (3).冬季冷水泵和冷却水泵变频变流量控制。 3). 空调机组、新风机组: (1)。风机启停控制及状态显示、故障报警; (2).温度、湿度等参数显示,超限报警; (3).温度、湿度及防冻保护控制; (4).风过滤器堵塞报警控制; (5).过渡季、冬季调节新风比的焓值控制; 2. 通风系统: 通风系统启停控制;风机运行状态显示、故障报警。

组合式空调机组常识

空调常识: (湿)空气=干空气+水蒸气 空气的温度是表示空气冷热程度的参数,温度的高低用温标来衡量,国际上通用的有热力学温标(绝对温标)的摄氏温标。 干球温度是温度计在通空气中所测出的温度,即我们一般天气预报里常说的气温。 湿球温度是指同等焓值空气状态下,空气中水蒸汽达到饱和时的空气温度,在空气焓湿图上是由空气状态点沿等焓线下降至100%相对湿度线上,对应点的干球温度。用湿纱布包扎普通温度计的感温部分,纱布下端浸在水中,以维持感温部位空气湿度达到饱和,在纱布周围保持一定的空气流通,使于周围空气接近达到等焓。示数达到稳定后,此时温度计显示的读数近似认为湿球温度。 露点(或霜点)温度:露点温度指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。 一般常见温度计工作原理: 液体温度计的原理很简单--就是因为水银的热涨冷缩(水银、酒精、煤油) 还有一些工业用的温度计: 压力式温度计的原理----依据液体膨胀定律,即一定质量的液体,在体积不变的条件下,液体的压力与温度呈线形。压力式温度计是由充有感温介质的温包、传压元件(毛细管)及压力敏感元件(弹簧管)组成。 红外线测温计的原理:红外线测温计由光学系统,光电探测器,信号放大器及信号处理.显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,红外能量聚焦在光电探测器上并转变为相应的电信号,该信号再经换算转变为被测目标的温度值. 热电偶温度计的原理:热电偶温度计的原理是将「电流计-铜线-铁线-铜线」串联成一个回路,此时铁线的两端和铜线连接处,会形成两个「接合处」,如果这两个接合处的温度不同,它们之间就会产生电压,在微安培计可测量出流经铁线和铜线上的微弱电流。 热电阻测温计:是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。 双金属温度计工作原理:两种金属热膨胀系数不同,双金属片在温度改变时,两面的热胀冷缩程度不同,因此在不同的温度下,其弯曲程度发生改变。 大气压力:地球表面的空气层在地面单位面积上所形成的压力 表压力:空气的压力是用仪表测出的,称为表压力,表压力不是真正压力,而是系统中的空气压力与当地大气压力的差值。空气中的真正数值称为绝对压力 绝对压力=当地大气压力+表压力 表压力低于当地大气压力时,表压力称为真空度 绝对压力=当地大气压力—表压力 大气是由干空气与水蒸气组成的混合气体。大气压力应等于干空气分压力与水蒸气分压力之和

组合式空调机组

1、范围 本标准规定了组合式空调机组(简称机组)的术语和定义、分类与标记、材料、要求、试验方法、检验规则、标志、包装、运输和贮存、产品样本和说明书的基本内容等。 本标准适用于以功能段为组合单元,能够完成空气运输、混合、加热、冷却、去湿、过滤、消声、热回收等一种或几种处理功能的机组。 冷媒为盐水、乙二醇和直接蒸发盘管以及采用电加热的机组,可参照适用。 本标准不适用于自带冷、热源的空调机(器)、风机盘管机组、暖风机等。 1、规范性引用文件 下列文件红的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励本剧本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不住日期的引用文件,其最新版本适用于本标准。 GB/T 1236-2000工业通风机用标准化风道进行性能试验 GB/T 用安装在圆形截面管道中的差压装置测量满管流体流量第3部分:喷嘴和文丘里喷嘴 GB/T 9068-1988 采暖通风与空气调节设备噪声声功率级的测定工程法 GB/T14296 空气冷却器和空气加热器 GB/T16803 采暖、通风、空调、净化设备术语 JB/T 9064盘管耐压试验和密封性检查

JG/T 21-1999 空气冷却器和空气加热器性能试验方法 2、术语和定义 GB/T16803 确定的以及下列术语和定义适用于本标准。 组合式空调机组 central station air handling units 由各种空气处理功能段组装而成的一种空气设备。适用于阻力大于等于100Pa的空调系统。 机组空气处理功能段 functional section of units 具有对空气进行一种或几种处理功能的单元体。 机组功能段有:空气混合、均流、过滤、冷却、一次和二次加热、去湿、加湿、送风机、回风机、喷水、消毒、热回收等单元体。 额定风量 Rated air flow rate 在标准空气状态下,单位时间通过机组的空气体积流量,单位为m3/h或m3/s。 机外静压 unit external static pressure 机组在额定风量时克服自身阻力后,机组进出风口静压差,单位为Pa。

相关文档
最新文档