关于焓值

关于焓值

关于焓值(网上下载)

焓值是温度和湿度的综合,是一个能量单位,他表示在单位空气中温度和湿度综合后的能力刻度,在空调行业,由于主要是对空气进行加热、制冷、加湿、除湿处理,单单比较温度就不全面,甚至是错误的,应为降温需要冷量,除湿也需要冷量,所以要综合计算。

比如在过渡季节对新风阀的开关控制,当室外空气的焓值低于室内空气的焓值,说明不需要制冷就可直接引入。

什么是空气的焓值?怎样计算?

14)什么是空气的焓值?怎样计算?

空气的焓值是指空气所含有的决热量,通常以干空气的单位质量为基准。焓用符号i 表示,单位是kj/kg干空气。湿空气焓值等于1kg干空气的焓值与dkg水蒸气焓值之和。

湿空气焓值计算公式化为:

i=1.01t+(2500+1.84t)d 或i=(1.01+1.84d)t+2500d (kj/kg干空气)

式中: t——空气温度℃

d ——空气的含湿量g/kg干空气

1.01 ——干空气的平均定压比热kj/(kg.K)

1.84 ——水蒸气的平均定压比热kj/(kg.K)

2500 ——0℃时水的汽化潜热kj/kg

由上式可以看出:(1.01+1.84d)t是随温度变化的热量,即“显热”;而2500d 则是0℃时dkg水的汽化潜热,它仅随含湿量而变化,与温度无关,即是“潜热”。

上式经常用来计算冷干机的热负荷。

2.1什么叫露点?它和什么有关?

答:未饱和空气在保持水蒸气分压不变(即保持绝对含水量不变)情况下降低温度,使之达到饱和状态时的温度叫“露点”。温度降至露点时,湿空气中便有凝结水滴析出。

湿空气的露点不仅与温度有关,而且与湿空气中水分含量的多少有关。含水量大的露点高,含水量少的露点低。

焓湿图:

根据干球温度和相对湿度可以查询含湿量、焓、露点温度、湿球温度的表格(Excel格式)。

给水控制特点

超临界发电机组以其热能转换效率高、发电煤耗低、环境污染小、蓄热能力小和对电网的尖峰负荷适应能力强等特点而得到广泛应用,已经成为我国火力发电的主力机组。给水控制作为过热汽温调节的基本手段是超临界直流锅炉有别于亚临界汽包锅炉的显著特征。 1、超临界直流锅炉给水控制的特点 超临界直流锅炉没有汽包,工质通过蒸发受热面过程中全部转换为蒸汽,即循环倍率为1[1],且无固定的饱和蒸汽与过热蒸汽的分界点,整个行程的流动阻力均由给水泵克服。 负荷扰动时,超临界直流炉无汽包,蓄热能力小[2],导致主汽压力变化延迟很小,且幅度较大,但主汽温度变化较小,所以超临界机组较亚临界机组更适合变压运行。 直流锅炉的一次性通过特性使得工质流和能量流相互耦合,从而在各个控制回路,如给水、汽温及负荷控制回路之间存在着很强的非线性耦合[3],机炉之间相互关联性强。因此变负荷过程中,不能单独改变燃烧率或者给水流量,给水量与燃料量必须以一定的比例协调动作,即在不同的负荷下要保持一定的煤水比。 过热汽温对给水流量和燃料量的扰动具有很大的滞后性,这样就必须有一个信号能够迅速反映出燃料量和给水流量的变化,防止煤水比失调导致机组超温或者主汽温度急剧下降,我们一般选取分离器出口温度或者焓值作为这个表征量。分离器出口的工质处于微过热状态,在燃料量或给水流量扰动的情况下,微过热汽温变化的滞后性远小于过热汽温。微过热点前包括有各种类型的受热面,工质在该点前

的焓增占总焓增3/4左右,此比例在燃水比及其他工况发生较大变化时变化并不大。同时,中间点选在两级减温器之前,基本不受减温水流量变化的影响,即使发生减温水量大幅度变化,按省煤器入口水量=给水泵入口流量-减温水量,中间点送出的调节信号仍保证正确的调节方向。因此,通过控制微过热点的汽温(或焓值),以间接控制出口汽温,是比较好的一个控制策略。通过多台机组的实践,我认为微过热蒸汽焓替代该点温度作为燃水比校正是要更好一些,其优点如下: 1)首先我们从焓的定义式[4]来看: h—焓; u—工质内能; p—工质压力; v—工质比容。 在任一平衡状态下,u、p、v都有一定的值,因而焓h也有一定的值,而与达到这一状态的路径无关。内能是温度和压力的函数,固焓也可以表示成温度和压力的函数,即h=f(p,T)。所以用焓“焓增”来分析各受面的吸热分布更为科学; 2)分离器出口焓值对煤水比的变化反映快,可以更好的校正控制系统; 3)焓值代表了过热蒸汽的作功能力,随工况改变焓给定值不但有利于负荷控制,而且也能实现过热汽温粗调。 2 汽水系统的动态特性

焓值计算表

供热蒸汽焓值计算方法:表1. 过热蒸汽特性参数

用温度和压力分别作为X 和Y ,焓值作为Z 变量,可求出表的规定范围内温度与压力任意组合下的焓值。 所计算的焓值 = 121min) ()(Y Y Y Z Yspan Y Yact Z Z +-?- 式中 1Y Z = m ax )m in,(m in)] m in,(m in)m ax ,([m in)(Y X Z Xspan Y X Z Y X Z X Xact +-?- 2Y Z = m ax )m in,(m ax )] m ax ,(m ax )m in,([m in)(Y X Z Xspan Y X Z Y X Z X Xact +-?- Xact = X 的实际值 Xmin = (紧靠X 实际值)前的X 值 Xmax = (紧靠X 实际值)后的X 值 XSpan = Xmax- Xmin ,紧靠X 实际值前后X 值的范围。 Yact = Y 的实际值。 Ymin = 紧靠Y 实际值之前的Y 值。 Ymax = 紧靠Y 实际值之后的Y 值。 YSpan = Ymax- Ymin ,紧靠Y 实际值前后Y 值的范围。 举个例子: 计算压力为,温度为295℃的焓值。 计算如下: 1Y Z = )5.1,290(290300)] 2.1,290()2.1,300([)290295(Z Z Z +--?- 2Y Z = )5.1,290(290 300)] 5.1,300()5.1,290([)290295(Z Z Z +--?-

所计算的焓值 H = 1212 .15.1) 2.1 3.1()(Y Y Y Z Z Z +--?- 总热量计算公式为: Q m =dt q H m t ***1000*36000 ? 其中,H 为计算值(kJ /kg ) q m 为所测质量流量(t/h ) Qm 为时间积分流量(时间为秒累计)

烟气焓值计算

烟气焓值计算 t C CO2t C N2t C H2O t C CO2t C N2t C H2O t C O2t t烟气焓值CO2N2H2O O2 o C KJ/m3KJ/m3KJ/m3KJ/m3KJ/m3KJ/m3KJ/m3o C Kcal/Nm30.08077140.733620.1210780.06453 100169.70129.60150.5040.6031.0036.0031.5610032.4230.2233 200357.00259.60303.9085.4162.1172.7064.0620065.4064.5533 300558.00391.30461.90133.4993.61110.5097.5030099.1399.4833 400770.80528.50625.30184.40126.44149.59131.74400134.26135.0133 500994.80663.00793.40237.99158.61189.81166.74500169.33171.1433 6001220.60802.60965.60292.01192.01231.00202.46600205.48207.8733 7001458.80944.701,145.30349.00226.00274.00238.79700242.57245.2033 8001701.301,091.001,333.40407.01261.00319.00275.67800280.77283.1333 9001947.901,241.501,521.50466.00297.01364.00313.04900319.80321.6633 10002198.701,391.901,722.20526.00332.99412.01350.851000359.30360.7933 11002453.701542.401922.80587.01369.00460.00388.971100398.91400.5233 12002712.801692.902127.60649.00405.00509.00427.411200438.75440.8533 13002972.001847.602340.80711.00442.01560.00466.031300479.57481.7833 14003235.302006.402554.00774.00480.00611.00511.041400521.61523.3133 15003498.702161.102775.50837.01517.01664.00552.181500562.92565.4433 16003762.002319.902997.10900.00555.00717.01593.921600604.99608.1733 17004029.502478.703222.80964.00592.99771.00636.261700647.30651.5033 18004297.002637.603452.701027.99631.00826.00679.201800689.79695.4333 19004564.602800.603682.601092.01670.00881.00722.741900733.04739.9633 20004836.302959.403920.801157.01707.99937.99766.882000775.90651785.0933

锅炉课程设计 焓值计算表格

烟气或空气温度RO2N2H2O hy0湿空气400771.88526.52626.163143.61028541.76 500994.35663.8794.853985.93835684.15 6001224.66804.12968.884850.57724829.74 7001461.88947.521148.845737.21036978.42 8001704.881093.61334.46643.047841129.12 9001952.281241.551526.047563.989431282.32 10002203.51391.71722.98500.24921437.3 11002458.391543.741925.119450.567391594.89 12002716.561697.162132.2810412.36041753.44 13002976.741852.762343.6411387.10041914.25 14003239.042008.722559.212367.81562076.2 15003503.121662779.0513357.96942238.9 16003768.82324.483001.7614356.08372402.88 17004036.312484.043229.3215363.1022567.34 18004304.72643.663458.3416372.07392731.86 19004574.062804.213690.3717387.44262898.83 20004844.229653925.618406.47223065.6 21005115.393127.534163.2519434.7493233.79 22005386.483289.224401.9820460.34983401.64

水的焓值、比容、k热系数计算方法

水的焓值、比容、k 热系数计算方法 CJ128《热量表》以及国内有关热量表法规中没有任何有关热系数或焓值的算法规范性资料, 给研究或生产热量表带来不便,这是咱们法规制定过程中的缺憾。大家一般都是从热量表的规程或标准附录将附录表格中的数据进行差分计算。欧洲标准的第一册将IAPWS-IF97的相关公式列入附录A 作为标准的规范性资料,把摘抄下来,以便大家使用。 来自EN1434-1:2007 附录A (规范性资料) 热系数计算公式 用于热交换回路热交换的测量。热量表利用热系数k(p,θf ,θr )进行热量计算,热系数与物理量压 力p ,供水温度θf ,回水温度θr 有关。 水的热系数公式:r f r f r f h h p k θθνθθ--=1),,( 式中,ν—比容;hf —供水端比焓,hr —回水端比焓 比热焓h 可以按照《水和蒸汽热力学特性工业标准》(IAPWS-IF97),并按1990国际温标(ITS-90) 进行计算得到。(计算时温度使用绝对温度T =t +273.15,压力单位为MPa) 比容ν的计算公式:ππγτπν=RT p ),( π=p /p* ,p*=16.53MPa , i i J l i i i l n )222.1() 1.7(1 341---=-=∑τπγπ 比焓h 计算公式:ττγτπ=RT h ),( τ=T*/T ,T*=1386K ,1341)222.1()1.7(-=--=∑i i J i i l i J n τπγτ 在273.15K ≤T ≤623.15K ;ps(T) ≤p ≤100Mpa 范围内R=461.526J/kg/K 。Ps (T )为饱和压力。 公式中的数据l,j,n: L(1~34)={ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8,21,23,29,30,31,32}; j (34)={ -2, -1, 0, 1, 2, 3, 4, 5, -9, -7,-1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10,-8,-11, -6,-29,-31,-38,-39,-40,-41}; n(34)= 0.14632971213167, -0.84548187169114, -3.756360367204,3.3855169168385, -0.95791963387872, 0.15772038513228,-0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, 3.1679644845054E-05,-2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23,-1.1947622640071E-23,1.8228094581404E-24,-9.3537087292458E-26} 山东省计量院 朱江 QQ :69632265

焓值的定义与计算公式

焓值的定义与计算公式 The Standardization Office was revised on the afternoon of December 13, 2020

焓值的定义与计算公式 空气中的焓值是指空气中含有的总热量,通常以干空气的单位质量为基准,称作比焓。工程中简称为焓,是指一千克干空气的焓和与它相对应的水蒸气的焓的总和。 在工程上,我们可以根据一定质量的空气在处理过程中比焓的变化,来判定空气是得到热量还是失去了热量。 空气的比焓增加表示空气中得到热量;空气的比焓减小表示空气中失去了热量。 在计算气流经过换热器的换热量的时候,气流一侧的换热量计算通过焓差计算相当简便:Q= M*(H_out-H_in) Q是换热量 M是气流质量流量 H为气流比焓值。 其实这不只针对气流,对于气液两相的制冷剂流动,也是同样的计算方法。 空气焓值的定义及空气焓值的计算公式 空气的焓值是指空气所含有的总热量,通常以干空气的单位质量为基准。 焓用符号i表示,单位是kj/kg干空气。 湿空气焓值等于1kg干空气的焓值与d kg水蒸气焓值之和。 湿空气焓值计算公式化: i=+(2500+d = (+)t+2500 d (kj/kg干空气)

式中: t—空气温度℃ d —空气的含湿量 g/kg干空气 —干空气的平均定压比热 kj/ —水蒸气的平均定压比热kj/ 2500—0℃时水的汽化潜热 kj/kg 由上式可以看出: (+)t是随温度变化的热量,即“显热”; 而2500d 则是0℃时d kg水的汽化潜热,它仅随含湿量而变化,与温度无关,即是“潜热”。 上式经常用来计算冷干机的热负荷。

热功率、热负荷、热焓量计算方法

能量单位。1Kcal=每kg 标准状况水开靠1C 能量 除常用的 KW , HP , KJ , Kcal , BTU 之外,表示热功的 单位还有 W , J , cal,和Mw , Mj , Mcal ,也就是瓦,焦耳, 卡和兆瓦,兆卡。他们是 KW 的千分之一和千倍。 三、需要分析的问题。 功率是单位时间作的功,它本身不是能量,只能说明单位时间 热功率、热负荷、热焓量 一、热功率定义及单位。 1、 热功率是加热设备根据事物加热的时间和能量消耗的多少 设计确定物理量,计算单位是 KW ,物理意义是单位时间 所释放的能量。常用的英制单位为马力(正 HP ) 2、 热负荷是加热设备在标准状况下所消耗能源全部转化的能 量,计算单位是千焦耳(KJ ),更常用的单位是千卡(Kcal ) 国外的设备常用英制 BTU 作单位。 3、 热焓量,是指热力传递的函数。通常用来计算气体(蒸汽) 可以释放热能数值,可以用千焦(KJ ),千卡(Kcal )做单 位。我们最常接触能的包含蒸汽的焓值。 二、各种热功率单位表示方法的意义。 1、 千瓦 单位时间所做的功。 1 千瓦=1000 焦耳/秒 1000J/S 2、 马力 单位时间所做的功。 马力=746焦耳/秒 1HP=746J/S 3、 千焦 能量单位。 1KJ=1KNM (千*牛顿*米) 5、 BTU 英制能量单位 1BTU=778.169*bf - ft (磅力?英尺) 4、 6、

内可以释放能量的大小。 而焦耳、千卡、BTU 是能量大小值,与时间无关。功率是表示 而能量是表示消耗能源的数值。10KW 的设备1 小时释放的能量与5KW 2 小时释放的能量相同的。功率不等于热功 能量。KW 与KJ,Kcal 之间没有可以换算的可能。 四、换算 1、热量之间的换算,1KJ=0.238846Kcal 1kcal=4.1868KJ 1KJ=0.948BTU 1BTU=1.05506KJ 1Kcal=3.967BTU 1BTU=0.252074Kcal 2、功率与热能的比例关系 常用千瓦时作单位(电度) 1 千瓦时=1KWH=3600KJ 1KJ=859.846Kcal 1KWH=859.846Kcal 1Kcal=0.001163KWh 1KWh=3412.14BTU 1BTU=0.252074Kcal 五、如何计算设备的功率,能耗,热负荷,设备的功率是用千 瓦表示的。热负荷可以用每小时的释放热量千卡来表示。 如28KW 的炉具热负荷为 28KWh=28*859.846 =24000Kcal 或者=95414BTU 利用第四节中的功率与热能的关系1kwh=859.84Kcal 可以方便

饱和蒸汽焓值计算公式

饱和蒸汽焓值计算公式-CAL-FENGHAI.-(YICAI)-Company One1

饱和蒸汽焓值计算公式(0-200度)一阶拟合: Linear model Poly1: f(x) = p1*x + p2 Coefficients (with 95% confidence bounds): p1 = , p2 = 2507 (2504, 2511) Goodness of fit: SSE: 3469 R-square: Adjusted R-square: RMSE: Linear model Poly1: f(x) = p1*x + p2 Coefficients (with 95% confidence bounds): p1 = , p2 = 2504 (2503, 2504) Goodness of fit: SSE: R-square: Adjusted R-square:

RMSE: Linear model Poly1: f(x) = p1*x + p2 Coefficients (with 95% confidence bounds): p1 = , p2 = 2502 (2501, 2503) Goodness of fit: SSE: R-square: Adjusted R-square: RMSE: 二阶拟合: Linear model Poly2: f(x) = p1*x^2 + p2*x + p3 Coefficients (with 95% confidence bounds): p1 = , p2 = , p3 = 2499 (2498, 2500) Goodness of fit: SSE: R-square:

二次回风空调机组基于焓值的串级控制策略

二次回风空调机组基于焓值的串级控制策略 发表时间:2018-03-13T14:28:47.330Z 来源:《建筑学研究前沿》2017年第30期作者:程美华 [导读] 大型剧场、体育馆、会所等大空间区域的温湿度负荷、地面高差及服务规模负荷流动均较大。 中建深圳装饰有限公司天津 300300 摘要:由于中央空调系统是一个具有多个输入输出参数、典型的强耦合、参数时变性强的非线性系统,在相同的负荷状态下,不同的被控对象随时间的变化也不一样。空调系统控制策略的任务就是通过保证自身逻辑上的完整性,在负荷状态变化时,仍能以高效节能的方式维持空调房间的空气温湿度品质。本文以阿尔及利亚康斯坦丁3000座剧院为背景,研究大空间二次回风空调系统的智能化控制策略。 关键词:二次回风;串级控制策略;温湿度;焓值 1 大空间二次回风空调系统介绍 1.1、大空间空调系统分析 大型剧场、体育馆、会所等大空间区域的温湿度负荷、地面高差及服务规模负荷流动均较大,在满足舒适性要求下,送风温度不宜过低温差不宜大于7℃,采用二次回风中央空调系统结合座椅送风通风方式(如图1所示),能够有效节约能源,同时能提供良好的空调效果和合理的气流分配。在人员密集场所的温度、湿度和空气品质直接影响人体舒适感,但被控对象随着负荷变化或者感染因素的影响,其对象特性参数或者结构发生改变,多个控制目标相互存在耦合,调节一个目标时也会对其他目标产生影响。康斯坦丁3000座剧院项目在通常的温度控制基础上进行了创新,设计了串级控制技术设计控制策略,即“温度-焓值”串级控制,根据实际系统的输入输出数据,系统对空气状态进行实时控制,具有较好的时效性,并根据运行情况不断修正,保证空调效果的同时有效避免了系统的不稳定性、滞后性及非线性、强耦合的弊端。如图1所示气流组织示意图。 图1 某工程大空间气流组织示意图 1.2二次回风空调机组功能介绍 二次回风空调机组主要针对夏季工况而言,引进二次回风的主要目的是提高表冷器之后的空气温度而达到降低送风温差和节约能源的目的,减少二次加热和相应配套设备容量。在冬季或者过渡季,二次回风机组关闭二次回风阀从而转变为一次回风机组或全新风机组,其功能段组合方法有多种。康斯坦丁剧院项目如图2所示的组合方式,避免建立复杂的控制模型,高效、实用,节约项目成本,其系统组成部件及检测参数介绍如下: a.送、回风是定频风机,检测送、回风的温湿度以及风机的运行状态,不检测风量。 b.一次回风、新风、二次回风量之和等于送风量,且三者之间保持平衡;排风阀打开,保证室内一定的正压且不阻碍新风的引进。 c.新风不做监测,只需保证在满座情况下的最小新风量即可;当室外新风参数发生变化,即室外新风状态点偏离设计值时,针对新风负荷变化的系统动作响应会通过送、回风温、湿度变化得以调节。 d.室内CO2含量不做监测,只需满足满座情况下的最小新风量即可; e.过滤段主要对前后压差进行检测,当压差高于设定压差值时发出警报信号,及时清洗过滤段。 f.单盘管处理冷热负荷,电动三通阀调节冷冻水流量。 g.加湿器位于送风管上,控制加湿器动作,监测安全恒湿量。 图2 二次回风空调机组功能段示意图 在本空调系统中,空调机组启动初期,温度控制的优先级高于空气品质控制的优先级,即为节约能源空调机组开启时新风阀保持为最小开度(夏季工况),调节二次回风阀和冷水阀使温度尽快达到设定值;在室内温、湿度基本达到设定的要求后改为空气品质的优先级高于温度控制的优先级。 基于以上分析,本文所介绍的控制策略原则如下:a.在满足人体舒适感及卫生要求的同时,保证最小新风量(新风阀门由机组风平衡调试确定);b.在保证室内温度及空气品质的同时,温度控制优先级高于湿度控制;c.避免阀门频繁动作造成系统空气质量的不稳定。 2 工况选择及控制策略 2.1 工况选择 工况分为过渡季、夏季、冬季三种。针对康斯坦丁当地温差加大的特点,为保证室内温、湿度调节在目标范围内,每小时进行一次模

如何查及计算郎肯系统中各点的焓值

关于P88例题5-1中,如何查水蒸气热力性质图和表,计算得到以下四组数据: (习题5中的求解类似) 12343214.5/,2144.2/,191.84/,195.3/h kJ kg h kJ kg h kJ kg h kJ kg ==== (1) 1h 在课本P86中,如图5-3, 点1为过热蒸汽,114,400p MPa t C ==?,故查附录14中 3,400p MPa t C ==?时,13133231.6/, 6.9231/()h kJ kg s kJ kg K == 5,400p MPa t C ==?时,15153196.9/, 6.6486/()h kJ kg s kJ kg K == 利用内插法,求得 114,400p MPa t C ==?时,11?/,?/()h kJ kg s kJ kg K == (2) 2h 由图5-3,知点1和点2的熵一样,故 21?/()s s kJ kg K == 点2为湿饱和蒸汽,由饱和水与饱和蒸汽组成,在条件为20.01p MPa =时,即可通过点2 的熵2s 反求出该点的干度: 2''(1)''(''')s xs x s s x s s =+-=+-,得?x = 再利用干度求出该点的焓2h : 2''(1)''(''')h xh x h h x h h =+-=+- (其中:'0.6493/(),''8.1505/(), '191.84/,''2584.4/s kJ kg K s kJ kg K h kJ kg h kJ kg ==== ) (3) 3h 在图5-3中,点3为饱和水,在条件为20.01p MPa =,查附录13,得3191.84/h kJ kg =。 (4) 4h 点3与点4重合,两者的熵一样,即430.6493/()s s kJ kg K == ,而点4为未饱

关于焓值的介绍

关于焓值的介绍 焓值是温度和湿度的综合,是一个能量单位,他表示在单位空气中温度和湿度综合后的能力刻度,在空调行业,由于主要是对空气进行加热、制冷、加湿、除湿处理,单单比较温度就不全面,甚至是错误的,应为降温需要冷量,除湿也需要冷量,所以要综合计算。 比如在过渡季节对新风阀的开关控制,当室外空气的焓值低于室内空气的焓值,说明不需要制冷就可直接引入。 随着中央空调系统应用的日益普及,其能耗问题、环境舒适度的控制问题,越来越受到关注。采用焓值控制比采用温度控制更节能,并且能满足对环境舒适度的要求。 有这样一种控法: 焓差并不作为主控变量,而是作为工况判断的辅助条件之一。 通常,焓差控制用于过渡季节,新回风(比)阀的开度调节,目的是最大程度利用室外新风,享受免费空调。 其主控变量为温度。 将新风阀作为一级制冷源或者加热源。 如果:室外焓>室内焓and 控制系统工作在供热工况,根据温度pid计算,输出控制新风阀开度(回风阀相应反之动作)。当新风阀开满后,逐渐开大热水阀。(这种工况很少出现)如果:室外焓<室内焓and 控制系统工作在供热工况,新风阀最小开度。温度控制回路控制热水阀。 如果:室外焓<室内焓and 控制系统工作在制冷工况,根据温度pid计算,输出控制新风阀开度(回风阀相应反之动作)。当新风阀开满后,逐渐开大冷水阀。(过度季节经常出现此工况) 如果:室外焓>室内焓and 控制系统工作在制冷工况,新风阀最小开度。温度控制回路控制冷水阀。 仅供参考! 最后,做个广告:西门子的synco系列控制器已经内置了以上功能模块,无需编程,激活即可。另外该系列控制器提供简化控制方案,将焓差比较简化为温差比较,控制逻辑同上。另外可以提供数字量切换(也就是说可以手动切换)。 同时该系列提供焓差、焓值、绝对湿度和露点温度计算器sez220。 简单来说,就是把室内焓值看作相对不变量,当室外在高温高湿、高温低湿、低温高湿、低温低湿4种条件下,与室内进行比较,以控制新风风门的开度。

采用控制中间点焓值的直流炉给水控制系统

采用控制中间点焓值的直流炉给水控制系统 华北电力大学(保定 071003) 何同祥 牛玉广 沈阳电力专科学校(沈阳 110036) 王存旭 韩希昌 Once-through Boiler Feed Water Control System Using Intermediate Enthalpy Point Control Mode He Tongx iang,N iu Yuguang North China Electric Pow er Univ ersity Baoding071003 W ang Cunx u,Han X ichang Shenyang Electric Pow er Traning Schoo l Shenyang110036 关键词 直流锅炉 给水控制系统 中间点 焓值 摘 要 对给水控制系统的基本方案、焓值测量实现方法、焓值定值的产生及部分技术措施进行了介绍与分析。 Key words o nce-thro ug h boiler feedw ater contr ol system inte rmediate point enthalpy Abstract The basic sch em e of feedwa ter co ntro l system,methods of enthalph measurement,productio n of definite va lue o f enthalpy,a nd some technical measures are intro duced a nd ana ly sed. 神头第一电厂6号炉为捷制670t/h直流炉,燃烧系统采用直吹式制粉系统,给水系统采用3台50%容量的电动调速泵,配100%主给水调节门和30%旁路调节门。为解决锅炉经常爆管问题,汽水分离器改为满水位运行方式,6号炉为实际意义上的纯直流炉。原控制仪表为捷克产组装仪表,现用IN FI90分散控制系统对6号机组CCS系统进行了改造。 在协调控制方式下的给水控制系统具有多重控制任务:保证给水稳定、保证水燃比、满足负荷要求及实现过热汽温粗调。经过多次优化调整,确定了一套以控制中间点(微过热蒸汽)焓值为基础的串级给水控制系统,取得了良好的控制效果,为协调控制系统顺利投运打下良好的基础。 1 基本控制方案 1.1 控制中间点温度存在的问题 由于纯直流炉水—汽转换一次完成,负荷和各级过热汽温对给水比较敏感,给水控制系统必须首先保证给水及时跟随燃料量,保证水燃比。当水燃比失调时,不但影响中间点温度(微过热汽温),而且影响各级过热汽温。当负荷变化时,由于锅炉蓄热量小,必须靠燃料、水协调动作来响应负荷变化要求。因此,给水控制系统具有多重控制任务:维持中间点温度在适当范围内;快速跟随燃料量,保证水燃比,共同满足负荷要求;实现过热汽温粗调。 在调试初期曾采用中间点温度串级控制系统,在稳定负荷时取得了较好的控制效果;但是当运行人员中间点温度定值偏置较低、且遇到较大幅度减负荷时,由于给水相对燃料有一定滞后,可能造成中间点进入饱和区甚至不饱和区。 中间点进入饱和区后,在一定范围内加减给水流量(如20t/h),不会造成中间点温度变化;进入不饱和区后,温度/给水流量变化率也较小。这样,一旦中间点进入饱和区或不饱和区,在较长时间内不能退出。 另外,由于中间点温度长时间存在偏差,积分作用逐渐累积,往往会造成退出饱和区时减水过量,中间点温度超温,减温水流量突增,实际负荷 26 华东电力1999年第2期

饱和蒸汽焓值计算公式

饱和蒸汽焓值计算公式公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

饱和蒸汽焓值计算公式(0-200度) 一阶拟合: Linear model Poly1: f(x) = p1*x + p2 Coefficients (with 95% confidence bounds): p1 = 1.569 (1.528, 1.61) p2 = 2507 (2504, 2511) Goodness of fit: SSE: 3469 R-square: 0.9916 Adjusted R-square: 0.9914 RMSE: 8.414 Linear model Poly1: f(x) = p1*x + p2 Coefficients (with 95% confidence bounds): p1 = 1.67 (1.659, 1.682) p2 = 2504 (2503, 2504) Goodness of fit: SSE: 252.6 R-square: 0.9994 Adjusted R-square: 0.9994 RMSE: 2.271

Linear model Poly1: f(x) = p1*x + p2 Coefficients (with 95% confidence bounds): p1 = 1.777 (1.765, 1.789) p2 = 2502 (2501, 2503) Goodness of fit: SSE: 295.6 R-square: 0.9993 Adjusted R-square: 0.9993 RMSE: 2.456 二阶拟合: Linear model Poly2: f(x) = p1*x^2 + p2*x + p3 Coefficients (with 95% confidence bounds): p1 = -0.002719 (-0.002911, -0.002526) p2 = 2.036 (2.002, 2.071) p3 = 2499 (2498, 2500) Goodness of fit: SSE: 195.7 R-square: 0.9995 Adjusted R-square: 0.9995 RMSE: 2.019

探讨双风机空调系统焓值的控制方式

探讨双风机空调系统焓值的控制方式 摘要:双风机空调系统采用可变新风比的焓值控制方,调节新风量的大小以达到节能的目的。采用焓值控制比采用温度控制或者是二氧化碳控制更能节省能源的消耗,并且能满足对环境舒适度的要求。本文就焓值的定义、焓值控制原理、方法以及双风机空调系统焓值的控制方式进行讨论分析。 关键词:双风机;焓值;空调系统;控制方式 abstract: double fan air conditioning system using variable enthalpy control of fresh air than party, adjust the size of the new air volume in order to achieve the purpose of saving energy. the enthalpy control than the temperature control is carbon dioxide or more control of the save the energy consumption, and can meet the requirements of the environmental comfort. this paper the definition, enthalpy enthalpy control principle, method and dual fan air conditioning system of control mode enthalpy discussed analysis. keywords: double fan; enthalpy; air conditioning system; control mode 随着社会市场经济的快速发展,科学技术水平的不断提高,人们

热功率、热负荷、热焓量计算方法

热功率、热负荷、热焓量 一、热功率定义及单位。 1、热功率是加热设备根据事物加热的时间和能量消耗的多少 设计确定物理量,计算单位是KW,物理意义是单位时间所释放的能量。常用的英制单位为马力(正HP) 2、热负荷是加热设备在标准状况下所消耗能源全部转化的能 量,计算单位是千焦耳(KJ),更常用的单位是千卡(Kcal)国外的设备常用英制BTU作单位。 3、热焓量,是指热力传递的函数。通常用来计算气体(蒸汽) 可以释放热能数值,可以用千焦(KJ),千卡(Kcal)做单位。我们最常接触能的包含蒸汽的焓值。 二、各种热功率单位表示方法的意义。 1、千瓦单位时间所做的功。1千瓦=1000焦耳/秒 1000J/S 2、马力单位时间所做的功。马力=746焦耳/秒 1HP=746J/S 3、千焦能量单位。 1KJ=1KNM(千*牛顿*米) 4、千卡能量单位。 1Kcal=每kg标准状况水开靠1℃能量 5、BTU 英制能量单位 1BTU=*bf·ft(磅力·英尺) 6、除常用的KW,HP,KJ,Kcal,BTU之外,表示热功的单位 还有W,J,cal,和Mw,Mj,Mcal,也就是瓦,焦耳,卡 和兆瓦,兆卡。他们是KW的千分之一和千倍。 三、需要分析的问题。 功率是单位时间作的功,它本身不是能量,只能说明单位时间

内可以释放能量的大小。 而焦耳、千卡、BTU是能量大小值,与时间无关。功率是表示设备的强度,力量。而能量是表示消耗能源的数值。10KW的设备1小时释放的能量与5KW 2小时释放的能量相同的。功率不等于热功能量。KW与KJ,Kcal之间没有可以换算的可能。 四、换算 1、热量之间的换算, 1KJ= 1kcal= 1KJ= 1BTU= 1Kcal= 1BTU= 2、功率与热能的比例关系 常用千瓦时作单位(电度) 1千瓦时=1KWH=3600KJ 1KJ= 1KWH= 1Kcal= 1KWh= 1BTU= 五、如何计算设备的功率,能耗,热负荷,设备的功率是用千瓦表示的。热负荷可以用每小时的释放热量千卡来表示。

重要---------焓值 显热 潜热 vav

14)什么是空气的焓值?怎样计算? 空气的焓值是指空气所含有的决热量,通常以干空气的单位质量为基准。焓用符号i 表示,单位是kj/kg 干空气。湿空气焓值等于1kg干空气的焓值与dkg水蒸气焓值之和。 湿空气焓值计算公式化为: i=1.01t+(2500+1.84t)d 或i=(1.01+1.84d)t+2500d (kj/kg干空气) 式中: t——空气温度℃ d ——空气的含湿量g/kg干空气 1.01 ——干空气的平均定压比热kj/(kg.K) 1.84 ——水蒸气的平均定压比热kj/(kg.K) 2500 ——0℃时水的汽化潜热kj/kg 由上式可以看出:(1.01+1.84d)t是随温度变化的热量,即“显热”;而2500d 则是0℃时dkg水的汽化潜热,它仅随含湿量而变化,与温度无关,即是“潜热”。 上式经常用来计算冷干机的热负荷。由上可知,知道了温湿度,再知道含湿量d,就可计算空气焓值。 在湿空气中,1kg干空气含有水蒸气的重量叫做“含湿量”,常用d来表示,单位:g/kg干空气。 含湿量怎样计算? d=622 ×Ps/(P-Ps)或 d = 622 ×фPsb/(P-фPsb) 式中:P—空气压力(Pa),Ps—水蒸气分压力(Pa), ф—相对湿度(%)(例,60%=0.6)。Psb-饱和水蒸汽的分压力(Pa) 从上式可以看出,含湿量d几乎同水蒸气分压力Ps成正比,而同空气总压力P成反比。D确切反映了空气中含有水蒸气量的多少。由于某一地区,大气压力基本上是定值。所以空气含湿量仅同水蒸气分压力Ps有关。含湿量d,由上公式得知,知道相对湿度,再根据当前空气温度查下表,得到对应的饱和蒸汽压力,再乘相对湿度,就得知空气的分蒸汽压力,大气压是一定的,1.01*100000Pa,最后可以得出含湿量。 例,室外温度30,湿度60%时,d=16.76,由第一个公式i=(1.01+1.84d)t+2500d,可以看出,d 对于焓值影响很大,温度影响较小,但从d = 622 ×фPsb/(P-фPsb)看出,饱和蒸汽压力的确定直接影响d的数值,根据下表,在20-30摄氏度区间,温度差1度饱和蒸汽压力大概差5% ,温度对d的影响很大,因此,温、湿度数据的准确度,对焓值计算影响很大。

相对湿度计算含湿量焓值

根据相对湿度计算含湿量的公式 op d ( 622B )) op /( 其中:o为相对湿度,百分比 P为水蒸气饱与分压力,可查水蒸气表,与温度一一对应,pa B为大气压,不同的海拔与地区不一样。一般为101325pa 温度与湿空气的水蒸气饱与分压力的拟合公式(我们一般用到的范围为(0~50°),拟合范围越小,则精度越高。 饱与水蒸气表 Linear model Poly3: f(x) = p1*x^3 + p2*x^2 + p3*x + p4 Coefficients (with 95% confidence bounds): p1 = 0、07394 (0、06667, 0、08122) p2 = -0、2556 (-0、8097, 0、2985) p3 = 62、49 (50、92, 74、06) p4 = 581、9 (518、4, 645、4) Goodness of fit: SSE: 6391 R-square: 1 Adjusted R-square: 0、9999 RMSE: 30、21

空气焓值的定义及空气焓值的计算公式: 空气的焓值就是指空气所含有的决热量,通常以干空气的单位质量为基准。焓用符号i 表示,单位就是kj/kg干空气。湿空气焓值等于1kg干空气的焓值与dkg水蒸气焓值之与。 湿空气焓值计算公式化: i=1、01t+(2500+1、84t)d 或i=(1、01+1、84d)t+2500d (kj/kg干空气) 式中: t—空气温度℃ d —空气的含湿量g/kg干空气 1、01 —干空气的平均定压比热kj/(kg、K) 1、84 —水蒸气的平均定压比热kj/(kg、K) 2500 —0℃时水的汽化潜热kj/kg 由上式可以瞧出:(1、01+1、84d)t就是随温度变化的热量,即“显热”;而2500d 则就是0℃时dkg水的汽化潜热,它仅随含湿量而变化,与温度无关,即就是“潜热”。 上式经常用来计算冷干机的热负荷。 MATLAB程序 T=30 O=0、6 B=101325 P=0、07394*T^3-0、02*T^2+62、49*T+581、9 d=622*(O*P/(B-O*P)) i=1、01*T+(1、84*T+2500)*d/1000 计算结果 T = 30 O =0、6000 B = 101325 P = 4、4350e+003 d =16、7755 i = 73、1647 空气焓值计算器的计算结果

暖通自控设计要求

自控设计: 1.本工程采用直接数字式监控系统(DDC系统),它由中央电脑及终端设备加上若干个 DDC控制盘组成。在控制中心能显示打印空调、通风、制冷等各系统设备的运行状态及主要运行参数,具体控制内容为: 制冷系统采用二次泵方式,一次泵定流量,二次泵变频变流量控制。体育馆内区冬季供冷板式换热器为恒温控制运行,其冷水泵和冷却水泵变频控制。空调机组和新风机组回水管上设动态平衡电动二通调节阀,通过调节表冷器的过水量以控制室温或新风机组送风温度。风机盘管设三速开关,由室温控制器控制回水管上的电动二通阀开度,以控制房间温度。 空调机组、新风机组和风机盘管上的电动二通调节阀与风机做联锁控制。同时冬季空调机组、新风机组停机时,电动二通调节阀应保持5%开度,以防加热器冻裂。 冷热源、空调系统、通风系统采用集散式直接数字控制系统(DDC系统),微机控制中心设在制冷机房控制室内,具体控制要求如下: 1.空调系统: 1)。冷源: (1).制冷机房内所有设备启停控制(联锁启停顺序为:先开启冷水电动阀及冷水泵,再开启冷却水电动阀及冷却水泵,然后开启冷却塔风机,最后开启冷水机组。 停机顺序反之)及状态显示、事故报警。 (2)。冷水温度、压力、流量、冷量等参数记录、显示。 (3)。冷水机组台数控制。 (4).二次冷水泵变频变流量控制。 2). 体育馆内区冬季供冷板式换热器: (1)。热交换器出水温度控制; (2).运行设备、温度、压力、流量、热量等参数显示、记录; (3).冬季冷水泵和冷却水泵变频变流量控制。 3). 空调机组、新风机组: (1)。风机启停控制及状态显示、故障报警; (2).温度、湿度等参数显示,超限报警; (3).温度、湿度及防冻保护控制; (4).风过滤器堵塞报警控制; (5).过渡季、冬季调节新风比的焓值控制; 2. 通风系统: 通风系统启停控制;风机运行状态显示、故障报警。

相关文档
最新文档