数值计算方法试题集及答案

数值计算方法试题集及答案
数值计算方法试题集及答案

《数值计算方法》复习试题

一、填空题:

1、,则A的LU分解为。

答案:

2、已知,则用辛普生(辛卜生)公式计算求得,用三点式求得。

答案:,

3、,则过这三点的二次插值多项式中的系数为,拉格朗日插值多项式

为。

答案:-1,

4、近似值关于真值有( 2 )位有效数字;

5、设可微,求方程的牛顿迭代格式是( );

答案

6、对,差商( 1 ),( 0 );

7、计算方法主要研究( 截断 )误差和( 舍入 )误差;

8、用二分法求非线性方程f (x)=0在区间(a,b)内的根时,二分n次后的误差限为

( );

9、求解一阶常微分方程初值问题= f (x,y),y(x0)=y0的改进的欧拉公式为

( );

10、已知f(1)=2,f(2)=3,f(4)=,则二次Newton插值多项式中x2系数为( );

11、两点式高斯型求积公式≈( ),代数精度为( 5 );

12、解线性方程组A x=b的高斯顺序消元法满足的充要条件为(A的各阶顺序主子式均

不为零)。

13、为了使计算的乘除法次数尽量地少,应将该表达式改写为,为了减少舍入误差,应将表达式改写为。

14、用二分法求方程在区间[0,1]内的根,进行一步后根的所在区间为,1 ,进行

两步后根的所在区间为,。

15、计算积分,取4位有效数字。用梯形公式计算求得的近似值为,用辛卜生公式

计算求得的近似值为,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为

3 。

16、求解方程组的高斯—塞德尔迭代格式为,该迭代格式的迭代矩阵的谱半径

= 。

17、设,则,的二次牛顿插值多项式为。

18、求积公式的代数精度以( 高斯型 )求积公式为最高,具有( )次代数精

度。

19、已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求≈( 12 )。

20、设f (1)=1,f(2)=2,f (3)=0,用三点式求( )。

21、如果用二分法求方程在区间内的根精确到三位小数,需对分( 10 )次。

22、已知是三次样条函数,则

=( 3 ),=( 3 ),=( 1 )。

23、是以整数点为节点的Lagrange插值基函数,则

( 1 ),( ),当时( )。

24、解初值问题的改进欧拉法是

2 阶方法。

25、区间上的三次样条插值函数在上具有直到_____2_____阶的连续导数。

26、改变函数 ()的形式,使计算结果较精确。

27、若用二分法求方程在区间[1,2]内的根,要求精确到第3位小数,则需要对分 10 次。

28、设是3次样条函数,则

a= 3 , b= -3 , c= 1 。

29、若用复化梯形公式计算,要求误差不超过,利用余项公式估计,至少用 477个求积节点。

30、写出求解方程组的Gauss-Seidel迭代公式,迭代矩阵为,此迭代法是否收敛收敛。

31、设,则 9 。

32、设矩阵的,则。

33、若,则差商 3 。

34、数值积分公式的代数精度为 2 。

35、线性方程组的最小二乘解为。

36、设矩阵分解为,则。

二、单项选择题:

1、Jacobi迭代法解方程组的必要条件是( C )。

A.A的各阶顺序主子式不为零 B.

C. D.

2、设,则为( C ).

A. 2 B. 5 C. 7 D. 3

3、三点的高斯求积公式的代数精度为( B )。

A. 2 B.5 C. 3 D. 4

4、求解线性方程组A x=b的LU分解法中,A须满足的条件是( B )。

A.对称阵B.正定矩阵

C.任意阵 D.各阶顺序主子式均不为零

5、舍入误差是( A )产生的误差。

A.只取有限位数 B.模型准确值与用数值方法求得的准确值

C.观察与测量 D.数学模型准确值与实际值

6、是π的有( B )位有效数字的近似值。

A. 6 B. 5 C. 4 D. 7

7、用 1+x近似表示e x所产生的误差是( C )误差。

A.模型 B.观测C.截断 D.舍入

8、解线性方程组的主元素消去法中选择主元的目的是( A )。

A.控制舍入误差 B.减小方法误差

C.防止计算时溢出 D.简化计算

9、用1+近似表示所产生的误差是( D )误差。

A.舍入 B.观测 C.模型D.截断

10、-324.7500是舍入得到的近似值,它有( C )位有效数字。

A. 5 B. 6 C. 7 D. 8

11、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x2的系数为( A )。

A.–0.5 B. 0.5 C. 2 D. -2

12、三点的高斯型求积公式的代数精度为( C )。

A. 3 B. 4 C. 5 D. 2

13、( D )的3位有效数字是×102。

(A) ×103 (B) ×10-2 (C) (D) ×10-1

14、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=?(x),则f(x)=0的

根是( B )。

(A) y=?(x)与x轴交点的横坐标(B) y=x与y=?(x)交点的横坐标

(C) y=x与x轴的交点的横坐标 (D) y=x与y=?(x)的交点

15、用列主元消去法解线性方程组?

?

?

?

?

-

=

+

-

-

=

-

+

-

=

+

-

1

3

4

9

2

1

4

3

3

2

1

3

2

1

3

2

1

x

x

x

x

x

x

x

x

x

,第1次消元,选择主元为

( A ) 。

(A) -4 (B) 3 (C) 4 (D)-9

16、拉格朗日插值多项式的余项是( B ),牛顿插值多项式的余项是( C ) 。

(A) f(x,x0,x1,x2,…,xn)(x-x1)(x-x2)…(x-xn-1)(x-xn),

(B)

)!1()

()()()()1(+=

-=+n f x P x f x R n n n ξ (C) f(x,x0,x1,x2,…,xn)(x-x0)(x -x1)(x -x2)…(x-xn -1)(x -xn),

(D) )

()!1()

()()()(1)1(x n f x P x f x R n n n n +++=-=ωξ

17、等距二点求导公式f?(x1) ?( A )。

1011

0101

0010

101)()()

D ()()()

C ()()()

B ()

()()

A (x x x f x f x x x f x f x x x f x f x x x f x f +--+----

18、用牛顿切线法解方程f(x)=0,选初始值x0满足( A ),则它的解数列

{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。

)()()D (0

)()()C (0

)()()B (0

)()()A (0000<'<''>'>''x f x f x f x f x f x f x f x f

19、为求方程x3―x2―1=0在区间[,]内的一个根,把方程改写成下列形式,并建立相

应的迭代公式,迭代公式不收敛的是(A )。

(A)

1

1:,1

1

12-=-=+k k x x x x 迭代公式

(B)21211:,11k

k x x x x +=+

=+迭代公式

(C)

3

/12123)

1(:,1k k x x x x +=+=+迭代公式

(D)

11:,12

2

1

2

3+++==-+k k k

k x x x x x x 迭代公式

20、求解初值问题??

?=='0

0y x y y x f y )(),(欧拉法的局部截断误差是();改进欧拉法的局部截断误差

是();四阶龙格-库塔法的局部截断误差是( A )

(A)O(h2) (B)O(h3) (C)O(h4) (D)O(h5)

21、解方程组的简单迭代格式收敛的充要条件是( )。 (1), (2) , (3) , (4)

22、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1), (2), (3), (4),

(1)二次; (2)三次; (3)四次; (4)五次

24、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。

(1), (2), (3), (4)

25、取计算,下列方法中哪种最好()

(A); (B); (C) ; (D) 。

26、已知是三次样条函数,则的值为( )

(A)6,6; (B)6,8; (C)8,6; (D)8,8。

28、形如的高斯(Gauss)型求积公式的代数精度为()

(A); (B); (C) ; (D) 。

29、计算的Newton迭代格式为( )

(A) ;(B);(C) ;(D) 。

30、用二分法求方程在区间内的实根,要求误差限为,则对分次数至少为( )

(A)10; (B)12; (C)8; (D)9。

31、经典的四阶龙格—库塔公式的局部截断误差为 ( )

(A); (B); (C) ; (D) 。

32、设是以为节点的Lagrange插值基函数,则( )

(A);(B);(C);(D)。

33、5个节点的牛顿-柯特斯求积公式,至少具有( )次代数精度

(A)5; (B)4; (C)6; (D)3。

34、已知是三次样条函数,则的值为( )

(A)6,6; (B)6,8; (C)8,6; (D)8,8。

35、已知方程在附近有根,下列迭代格式中在不收敛的是( )

(A); (B); (C); (D)。

(A) 4; (B)2; (C)1; (D)3。

37、5个节点的Gauss型求积公式的最高代数精度为( )

(A)8; (B)9; (C)10; (D)11。

三、是非题(认为正确的在后面的括弧中打?,否则打?)

1、已知观察值,用最小二乘法求n次拟合多项式时,的次数n可以任意取。

( )

2、用1-近似表示cos x产生舍入误差。 ( )

3、表示在节点x1的二次(拉格朗日)插值基函数。 ( ? )

4、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插值的结果。

( ? )

5、矩阵A=具有严格对角占优。 ( )

四、计算题:

1、用高斯-塞德尔方法解方程组,取,迭代四次(要求按五位有效数字计算)。

答案:迭代格式

2、求A、B使求积公式的代数精度尽量高,并求其代数精度;利用此公式求(保留四位

小数)。

答案:是精确成立,即

求积公式为

当时,公式显然精确成立;当时,左=,右=。所以代数精度为3。

3、已知

分别用拉格朗日插值法和牛顿插值法求的三次插值多项式,并求的近似值(保留四位小数)。

答案:

差商表为

4、取步长,用预估-校正法解常微分方程初值问题

答案:解:

5、已知

求的二次拟合曲线,并求的近似值。

答案:解:

6、已知区间[,]的函数表

如用二次插值求的近似值,如何选择节点才能使误差最小并求该近似值。

答案:解:应选三个节点,使误差

尽量小,即应使尽量小,最靠近插值点的三个节点满足上述要求。即取节点最好,实际计算结果

7、构造求解方程的根的迭代格式,讨论其收敛性,并将根求出来,。

答案:解:令 .

且,故在(0,1)内有唯一实根.将方程变形为

则当时

故迭代格式

收敛。取,计算结果列表如下:

且满足 .所以.

8﹑利用矩阵的LU分解法解方程组。

答案:解:

令得,得.

9﹑对方程组

(1)试建立一种收敛的Seidel迭代公式,说明理由;

(2)取初值,利用(1)中建立的迭代公式求解,要求。解:调整方程组的位置,使系数矩阵严格对角占优

故对应的高斯—塞德尔迭代法收敛.迭代格式为

取,经7步迭代可得:

.

10、已知下列实验数据

试按最小二乘原理求一次多项式拟合以上数据。

解:当0

要求近似值有5位有效数字,只须误差 .

由,只要

即可,解得

所以,因此至少需将 [0,1] 68等份。

11、用列主元素消元法求解方程组。

解:

回代得。

12、取节点,求函数在区间[0,1]上的二次插值多项式,并估计误差。解:

故截断误差。

13、用欧拉方法求

在点处的近似值。

解:等价于

()

记,取,.

则由欧拉公式

,

可得 ,

14、给定方程

1) 分析该方程存在几个根;

2) 用迭代法求出这些根,精确到5位有效数字;

3)说明所用的迭代格式是收敛的。

解:1)将方程(1)

改写为

(2)

作函数,的图形(略)知(2)有唯一根。

2) 将方程(2)改写为

构造迭代格式

计算结果列表如下:

3) ,

当时,,且

所以迭代格式对任意均收敛。

15、用牛顿(切线)法求的近似值。取x0=, 计算三次,保留五位小数。

解:是的正根,,牛顿迭代公式为

,即

取x0=, 列表如下:

165)的近似值,取五位小数。

解:

17、n=3,用复合梯形公式求的近似值(取四位小数),并求误差估计。

解:

,时,

至少有两位有效数字。

18、用Gauss-Seidel迭代法求解线性方程组 =,

取x(0)=(0,0,0)T,列表计算三次,保留三位小数。

解:Gauss-Seidel迭代格式为:

系数矩阵严格对角占优,故Gauss-Seidel迭代收敛.

取x(0)=(0,0,0)T,列表计算如下:

19

解:预估—校正公式为

其中,,h=,,代入上式得:

20

解:

解方程组

其中

解得:所以,

21、(15分)用的复化梯形公式(或复化 Simpson公式)计算时,试用余项估计其误差。用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。

解:

22、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。

解:(1),,故收敛;

(2),,故收敛;

(3),,故发散。

选择(1):,,,,,

23、(8分)已知方程组,其中

(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。

(2)求出Jacobi迭代矩阵的谱半径。

解:Jacobi迭代法:

Gauss-Seidel迭代法:

24、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。

解:改进的欧拉法:

所以;

经典的四阶龙格—库塔法:

,所以。

25、数值积分公式形如

试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。

解:将分布代入公式得:

构造Hermite插值多项式满足其中

则有:,

26、用二步法

求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的

解:

所以

主项:该方法是二阶的。

27、(10分)已知数值积分公式为:

,试确定积分公式中的参数,使其代数精确度尽量高,并指出其代数精确度的次数。

解:显然精确成立;

时,;

时,;

时,;

时,;

所以,其代数精确度为3。

28、(8分)已知求的迭代公式为:

证明:对一切,且序列是单调递减的,

从而迭代过程收敛。

证明:

故对一切。

又所以,即序列是单调递减有下界,从而迭代过程收敛。

29、(9分)数值求积公式是否为插值型求积公式为什么其代数精度是多少

解:是。因为在基点1、2处的插值多项式为

。其代数精度为1。

30、(6分)写出求方程在区间[0,1]的根的收敛的迭代公式,并证明其收敛性。

(6分),n=0,1,2,…

∴对任意的初值,迭代公式都收敛。

31、(12分)以100,121,144为插值节点,用插值法计算的近似值,并利用余项估计误差。

用Newton插值方法:差分表:

10+(115-100)(115-100)(115-121)

=

32、(10分)用复化Simpson公式计算积分的近似值,要求误差限为。

或利用余项:

,,

33、(10分)用Gauss列主元消去法解方程组:

0.00000

34、(8分)求方程组的最小二乘解。

,,

若用Householder变换,则:

最小二乘解:,T.

35、(8分)已知常微分方程的初值问题:

用改进的Euler方法计算的近似值,取步长。

36、(6分)构造代数精度最高的如下形式的求积公式,并求出其代数精度:

取f(x)=1,x,令公式准确成立,得:

,,

f(x)=x2时,公式左右=1/4; f(x)=x3时,公式左=1/5, 公式右=5/24

∴公式的代数精度=2

37、(15分)已知方程组,其中,,

(1)写出该方程组的Jacobi迭代法和Gauss-Seidel迭代法的分量形式;

(2)判断(1)中两种方法的收敛性,如果均收敛,说明哪一种方法收敛更快;

解:(1)Jacobi迭代法的分量形式

Gauss-Seidel迭代法的分量形式

(2)Jacobi迭代法的迭代矩阵为

,,Jacobi迭代法收敛

Gauss-Seidel迭代法的迭代矩阵为

,,Gauss-Seidel迭代法发散

38、(10分)对于一阶微分方程初值问题,取步长,分别用Euler预报-校正法和经典的四阶龙格—库塔法求的近似值。

解:Euler预报-校正法

经典的四阶龙格—库塔法

()

39、(10分)用二步法求解一阶常微分方程初值问题,问:如何选择参数的值,才使该方法的阶数尽可能地高写出此时的局部截断误差主项,并说明该方法是几阶的。

解:局部截断误差为

因此有

局部截断误差主项为,该方法是2阶的。

40、(10分)已知下列函数表:

(2)作均差表,写出相应的三次Newton插值多项式,并计算的近似值。

解:(1)

(2)均差表:

41、(10分)取步长,求解初值问题,分别用欧拉预报—校正法和经典四阶龙格—库塔法求的近似值。解:(1)欧拉预报-校正法:

(2)经典四阶龙格-库塔法:

42、(10分)取5个等距节点,分别用复化梯形公式和复化辛普生公式计算积分的近似值(保留4位小数)。

------(2分)

(1)复化梯形公式(n=4,h=2/4=):

(2)复化梯形公式(n=2,h=2/2=1):

43、(10分)已知方程组,其中

(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式;

(2)讨论上述两种迭代法的收敛性。

解:(1)Jacobi迭代法:

Jacobi迭代矩阵:

收敛性不能确定

(2)Gauss-Seidel迭代法:

Gauss-Seidel迭代矩阵:

该迭代法收敛

44、(10分) 求参数,使得计算初值问题的二步数值方法

的阶数尽量高,并给出局部截断误差的主项。

解:

所以当,即时,

局部截断误差为

局部截断误差的主项为,该方法为二阶方法。

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

现代数值计算方法习题答

现代数值计算方法习题答案 习 题 一 1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以 有效数字本身,有效数字的位数根据有效数字的定义来求.因此 49×10 -2 :E = 0.005; r E = 0.0102; 2位有效数字. 0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字. 2、解: 7 22 = 3.1428 …… , π = 3.1415 …… , 取它们的相同部分3.14,故有3位有效数字. E = 3.1428 - 3.1415 = 0.0013 ;r E = 14 .3E = 14 .30013.0 = 0.00041. 3、解:101的近似值的首位非0数字1α = 1,因此有 |)(*x E r |) 1(10 1 21--??=n < = 2 1× 10 -4 , 解之得n > = 5,所以 n = 5 . 4、证:) ()(1)()(1)(* 1 1* * 1 1 * * x x x n x E x n x E n n n -= ≈ -- )(11)()(1) ()(* * * * * 1 1 ** * * x E n x x x n x x x x n x x E x E r n n n n n r = -= -≈ = - 5、解:(1)因为=20 4.4721…… , 又=)(*x E |*x x -| = |47.420-| = 0.0021 < 0.01, 所以 =*x 4.47. (2)20的近似值的首位非0数字1α = 4,因此有 |)(*x E r |) 1(10 4 21--??= n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10 cm . 记*y 为y 的近似值,则

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

现代数值分析

研硕16《化工数值方法及Matlab应用》试题 班级姓名成绩 1.(15分)数值计算方法的主要研究对象有哪些?其常用基本算法主要包括哪三个方面?举例说明Matlab在解决化工数值计算问题方面有什么样实用价值?答:(1)数值计算方法的主要研究对象为非线性方程求根,插值法、曲线拟合、数值积分、常微分方程(组)、初值问题求解、线性和非线性方程组求解。(2)基本算法包括①离散化方法:用差商代替导数、差分代替微分等,将连续的数学问题转化为离散问题。②逼近方法:用简单函数的值近似代替求解困难或形式未知的复杂函数的值。③迭代法:用一个固定公式反复计算,对较为粗糙的根的近似值进行加工直到满足精度要求的方法。 (3)Matlab在解决化工数值计算问题的实用价值有:数值计算和符号计算功能;图形功能;MATLAB语言;功能性和学科性工具箱。 2.(10分)数值计算中的“曲线拟合”,一般有哪些方法?请至少指出四种,并简述各自的基本特点。 答:(1)拉格朗日插值:,优点在于不要求数据点事等间隔的,缺点是数据点不易过多,当数据比较多时,差值函数有偏离原函数的风险; (2)牛顿插值法:它不仅克服了“增加一个节点时整个计算工作必须重新开始”的缺点,而且可以节省乘、除法运算次数。同时,在牛顿插值多项式中用到的差分与差商等概念,又与数值计算的其他方面有着密切的关系。

(3)牛顿迭代法:牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。 (4)区间二分法:优点:算法简单,容易理解,且总是收敛的。缺点:收敛速度太慢,浪费时间,二分法不能求复根跟偶数重根。 (5)最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 3. (15分)在298K 下,化学反应 2OF 2=O 2+2F 2 的平衡常数为0.410 atm ,如在298K 下将OF 2 通入容器,当t=0 时为1 atm ,问最后总压是多少?取计算精度为10-3 。 解:首先写出求解问题的数学方程式。 假设气体是理想气体,由反应的化学计量式可知, 22222F O OF += 设氧的分压为p ,平衡时有p 21- p p 2。 平衡时,有()410.02142 3=-p p 整理得 0410.064.1640.1423=-+-p p p 函数关系为 ()0410.064.1640.1423=-+-=p p p p f

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

数值计算方法试题

数值计算方法试题 重庆邮电大学数理学院 一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收 敛 2、迭代过程(k=1,2,…)收敛的充要条件是 2、已知y=f(x)的数据如下 ,,, x 0 2 3 3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,, 4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5) 3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过 。 4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,, ,

5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算 y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式 三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定 积分近似计算的抛物线公式 具有三次代数精度至少具有,,,次代 数精度. 7、插值型求积公式的求积 2、若,证明用梯形公式计算积分所 系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。 参考答案: T8、 ,为使A可分解为A=LL, 其中L一、填空题 1、局部平方收敛 2、< 1 3、 4 为对角线元素为正的下三角形,a的取值范围, 4、

5、三阶均差为0 6、n 7、b-a 9、若则矩阵A的谱半径(A)= ,,, 8、 9、 1 10、二阶方法 10、解常微分方程初值问题的梯形二、计算题 格式 1、是,,,阶方法 二、计算题(每小题15分,共60分) 修德博学求实创新 李华荣 1 重庆邮电大学数理学院 2、 右边: 3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度 4、y(0.2)?0.01903 A卷三、证明题

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1 -+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2 110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。 4、)(,),(),(1 x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当 2 ≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设1326)(2 4 7 +++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[1 n x x x f 和=?0 7 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0 )(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0 =x ?,则 ?= 1 4 )(dx x x ? 。 8、给定方程组?? ?=+-=-2 21121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ?? ? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设?? ?? ? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , x 0 0.5 1 1.5 2 2.5

现代数值分析复习题

复习题(一) 一、填空题: 1、求方程0.5x2 101x 1 0的根,要求结果至少具有6位有效数字。已知 V10203 101.0099,贝卩两个根为x1 _____________________________ , X2 ________________________________ .(要有计算过程和结果) 4 1 0 A A 1 4 1 2、0 1 4,则A的LU分解为。 1 2 A 3、 3 5,贝卩(A) ____________ ,A __________ . 4、已知f(1)「Q f(2)「2,f(3) =3,则用抛物线(辛卜生)公式计算求 3 得1 f(x)dx -------------------- ,用三点式求得f (1) ________________ . 5、f(1) 1,f(2) 2,f(3) 1,则过这三点的二次插值多项式中x2的系数 为_____ ,拉格朗日插值多项式为 _________________________ . 二、单项选择题: 1、Jacobi迭代法解方程组Ax b的必要条件是( ). A. A的各阶顺序主子式不为零 B. (A) 1 C a ii 0,i 1,2, ,n D|| A 1 2、设f(x) 3x99 5x 7,均差f[1,2,22, ,299]=(). D. 3

4、三点的高斯求积公式的代数精度为 ( ). A.3 B. -3 C. 5 D.0 2 2 3 A 0 5 1 3、设 0 0 7 ,则 (A )为( ). A. 2 B. 5 C. 7

分别用拉格朗日插值法和牛顿插值法求 f (x )的三次插值多项式P 3(x ),并 求f (2)的近似值(保留四位小数). 4、 取步长h 0.2,用预估-校正法解常微分方程初值问题 y 2x 3y y (0) 1 (0 x 1) 5、 已知 A. 2 B.5 C. 3 D. 4 5、幕法的收敛速度与特征值的分布 A.有关 B.不一定 C. 无关 三、计算题: 1、用高斯-塞德尔方法解方程组 4X ! 2X 2 X 3 11 X 1 4X 2 2X 3 18 2X ! X 2 5X 3 22 (°) /c c c\T ,取 x (°,°,°),迭 四次(要求按五位有效数字计算 ). 1 2、求A 、B 使求积公式 1 f (X )dX A[f( 1) f (1)] 1 B [f (2)f (2)] 的代数精 度尽量高,并求其代数精度;利用此公式求 I 21dx 1 x (保留四位小 数)。 3、已知

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ,则=( ) A . B . C . D . 3. 通过点 的拉格朗日插值基函数满足( ) A . =0, B . =0, C .=1, D . =1, 4. 设求方程 的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 作第一次消元后得到的第3个方程( ). A . B . C . D . π()()2 1 121 1()(2)636f x dx f Af f ≈ ++? A 1613122 3()()0011,,,x y x y ()()01,l x l x ()00l x ()110l x =() 00l x ()111 l x =() 00l x ()111 l x =() 00l x ()111 l x =()0 f x =12312312 20 223332 x x x x x x x x ++=?? ++=??--=?232 x x -+=232 1.5 3.5 x x -+=2323 x x -+=

单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分) 1. 设, 则 , . 2. 一阶均差 3. 已知时,科茨系数 ,那么 4. 因为方程 在区间 上满 足 ,所以 在区间内有根。 5. 取步长,用欧拉法解初值问题 的计算公 式 . 填空题答案 230.5 1.5 x x -=-T X )4,3,2(-==1||||X 2||||X =()01,f x x = 3n =()()() 33301213,88C C C === () 3 3C =()420 x f x x =-+=[]1,2()0 f x =0.1h =()211y y y x y ?'=+?? ?=?

吉林大学 研究生 数值计算方法期末考试 样卷

1.已知 ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0 .8329,试用线性插值和抛物插值计算.ln2.1的值并估计误差 2.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值 3. 分别求满足习题1和习题2 中插值条件的Newton插值 (1) (2)

3()1(2)(2)(3) 310 N x x x x x x x =+--+--4. 给出函数f(x)的数表如下,求四次Newton 插值多项式,并由此计算f(0.596)的值 解:

5.已知函数y=sinx的数表如下,分别用前插和后插公式计算sin0.57891的值

6.求最小二乘拟合一次、二次和三次多项式,拟合如下数据并画出数据点以及拟合函数的图形。 (a) (b)

7.试分别确定用复化梯形、辛浦生和中矩形 求积公式计算积分2 14dx x +?所需的步长h ,使得精度达到5 10 -。 8.求A 、B 使求积公式 ?-+-++-≈1 1)] 21()21([)]1()1([)(f f B f f A dx x f 的 代数精度尽量高,并求其代数精度;利用 此公式求? =2 1 1dx x I (保留四位小数)。 9.已知 分别用拉格朗日插值法和牛顿插值法求

) (x f 的三次插值多项式)(3 x P ,并求)2(f 的近 似值(保留四位小数)。 10.已知 求)(x f 的二次拟合曲线)(2 x p ,并求)0(f 的近似值。 11.已知x sin 区间[0.4,0.8]的函数表

现代数值计算方法

吉林大学研究生公共数学课程 教学大纲 课程编号: 课程名称:现代数值计算方法 课程英文名称:Modern numerical method 学时/学分:64/3(硕士)/32/2(博士) 课程类别:研究生公共课程 课程性质:必修课 适用专业:理、工、经、管等专业 开课学期:第Ⅰ或第Ⅱ学期 考核方式:考试(闭卷) 执笔人:李永海 制定日期:2011年5月

吉林大学研究生公共数学课程教学大纲 课程编号: 课程名称:现代数值计算方法 课程英文名称:Modern numerical method 学时/学分:64/3(硕士)/32/2(博士) 课程类别:研究生教育课程 课程性质:必修课 适用专业:理、工、经、管等专业 开课学期:第Ⅰ或第Ⅱ学期 考核方式:考试(闭卷) 一、本课程的性质、目的和任务 本课程属于非数学类研究生数学公共基础课程之一,数值计算方法作为一种基本的数学工具,在数学学科与其他科学技术领域诸如力学、电磁学、化学、生物、系统工程等学科都有广泛应用。电子计算机及计算技术的发展也为数值计算方法的应用开辟了更广阔的前景。因此,学习和掌握现代数值计算方法,对于将来从事工程技术工作的工科研究生来说是必不可少的。通过该门课程的学习,期望学生能深刻地理解现代数值计算方法的基本知识和数学思想,掌握有关的计算方法及技巧,提高学生的数学素质,提高科研能力,掌握现代数值计算方法在物理、电子、化学、生物、工程等领域的许多应用。 二、本课程教学基本要求 1. 线性代数方程组直接法 理解线性代数方程组直接法求解算法原理,了解算法收敛性结果;理解算法应用条件;掌握用软件实现一般线性代数方程组直接法的求解步骤。 2. 线性代数方程组迭代法 理解线性代数方程组迭代法求解算法原理,了解算法收敛性结果;理解算法应用条件;掌握用软件实现一般线性代数方程组迭代法的求解步骤。 3. 矩阵特征值与特征向量计算 理解乘幂法和反幂法算法原理,了解实对称矩阵的Jacobi方法;理解算法应用条件;掌握用软件实现一般矩阵特征值与特征向量计算。 4. 非线性方程(组)求根 理解二分法和牛顿法原理,了解解非线性方程组的牛顿法和拟牛顿法;理解算法应用条件;掌握用软件实现非线性方程(组)求根计算。 5. 函数插值 理解一般函数插值公式原理,了解三次样条插值;理解算法应用条件;掌握用软件实现函数插值计算。 6. 数值积分

《数值计算方法》试题及答案

数值计算方法考试试题 一、选择题(每小题4分,共20分) 1. 误差根据来源可以分为四类,分别是( A ) A. 模型误差、观测误差、方法误差、舍入误差; B. 模型误差、测量误差、方法误差、截断误差; C. 模型误差、实验误差、方法误差、截断误差; D. 模型误差、建模误差、截断误差、舍入误差。 2. 若132)(3 56++-=x x x x f ,则其六阶差商 =]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。 3. 数值求积公式中的Simpson 公式的代数精度为 ( D ) A. 0; B. 1; C. 2; D. 3 。 4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B ) A. 都发散; B. 都收敛 C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散; D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。 5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C ) A. 02≤≤-h ; B. 0785.2≤≤-h ; C. 02≤≤-h λ; D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分) 1. 已知 ? ??? ??--='-=4321,)2,1(A x ,则 =2 x 5,= 1Ax 16 ,=2A 22115+ 2. 已知 3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。 3. 要使 20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。 三、利用下面数据表, 1. 用复化梯形公式计算积分 dx x f I )(6 .28 .1? =的近似值; 解:1.用复化梯形公式计算 取 2.048 .16.2,4=-= =h n 1分 分 分分7058337 .55))6.2()2.08.1(2)8.1((22.04)) ()(2)((231 1 1 4=+++=++=∑∑=-=f k f f b f x f a f h T k n k k 10.46675 8.03014 6.04241 4.42569 3.12014 f (x ) 2.6 2.4 2.2 2.0 1.8 x

数值计算方法期末复习答案终结版

一、 名词解释 1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差, 简称误差。 2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能 表示其精确程度。如果近似值*x 的误差限是1 102 n -?,则称*x 准确到 小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。 3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。 4. 向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足 (1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。 5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、 分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数 ()x ?作为()f x 的近似的方法。 6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值* x 的 相对误差,记为* ()r e x ,即** () ()r e x e x x = 7. 矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A 。若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ; (3)对任意两个n 阶方阵A,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B

相关文档
最新文档