CSP低碳钢板的组织和性能

CSP低碳钢板的组织和性能
CSP低碳钢板的组织和性能

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时地力学性能 根据材料在常温,静荷载下拉伸试验所得地伸长率大小,将材料区分为塑性材料和脆性材料.它是由试验来测定地.工程上常用地材料品 种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时地力学性能. .低碳钢拉伸实验 在拉伸实验中,随着载荷地逐渐增大,材料呈现出不同地力学性能:()弹性阶段 在拉伸地初始阶段,σε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段.线性段地最高点则称为材料地比例极限(σ),线性段地直线斜率即为材料地弹性摸量.线性阶段后,σε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失.卸载后变形能完全消失地应力最大点称为材料地弹性极限(σ),一般对于钢等许多材料,其弹性极限与比例极限非常接近. (2)屈服阶段 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服.使材料发生屈服地应力称为屈服应力或屈服极限(σ).当材料屈服时,如果用砂纸将试件表面

打磨,会发现试件表面呈现出与轴线成°斜纹.这是由于试件地°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成地,故称为滑移线. ()强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料地抗变形能力又增强了,这种现象称为应变硬化.若在此阶段卸载,则卸载过程地应力应变曲线为一条斜线,其斜率与比例阶段地直线段斜率大致相等.当载荷卸载到零时,变形并未完全消失,应力减小至零时残留地应变称为塑性应变或残余应变,相应地应力减小至零时消失地应变称为弹性应变.卸载完之后,立即再加载,则加载时地应力应变关系基本上沿卸载时地直线变化.因此,如果将卸载后已有塑性变形地试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化. 在硬化阶段应力应变曲线存在一个最高点,该最高点对应地应力称为材料地强度极限(σ),强度极限所对应地载荷为试件所能承受地最大载荷. ()局部变形阶段 试样拉伸达到强度极限σ之前,在标距范围内地变形是均匀地.当应力增大至强度极限σ之后,试样出现局部显著收缩,这一现象称为颈缩.颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈

低碳钢和铸铁在拉伸和压缩时的力学性能资料讲解

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能 根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 1.低碳钢拉伸实验 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能: (1)弹性阶段 在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段

超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs)。当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(σb),强度极限所对应的载荷为试件所能承受的最大载荷Fb。 (4)局部变形阶段

冷轧产品牌号及其含义

冷轧产品牌号及其含义(中冶搜索) 分类:默认栏目 冷轧产品 品名材质 碳结板SPCC、St12、DC01、Q235AB 优结钢板20-45#、08-15# 优质碳素钢08AL 低碳深冲板SC1、SPCE、ST14、DC04 超深冲板SC2、St15、DC05、SC3、St16、DC06、St17 耐腐蚀钢05CuPCrNi、09CuPCrNi、Q345GNHL 低碳冲压钢SPCD、ST13、DC03 深冲板SPCEN 参照: (一)冲压用冷连轧钢带牌号命名方法 1、一般冲压用钢:BLC B——宝钢(BAOSTEEL)缩写;L——低碳(Low Carbon);C——一般用(Commercial)2、抗时效性低屈服钢:BLD B——宝钢(BAOSTEEL)缩写;L——低碳(Low Carbon);D——冲压用(Drawing)3、非时效性极深冲用钢:BUFD(BUSD) B——宝钢(BAOSTEEL)缩写;U——超级(Ultra);F——成型(Formability);D——冲压(Drawing) 4、非时效性超深冲用钢:BSUFD B——宝钢(BAOSTEEL)缩写;SU——超高级(Ultra+Super);F——成型(Formability);D——冲压(Drawing) (二)冷成型用高强度冷连轧钢带牌号命名方法 B ××× × × B——宝钢(BAOSTEEL)缩写;×××——最小屈服点值; ×——一般用V、X、Y、Z表示 V:高强度低合金,屈服点与抗拉强度差值无规定 X:V中屈服点最小值与抗拉强度最小值差别70MPa Y:V中屈服点最小值与抗拉强度最小值差别100MPa Z:V中屈服点最小值与抗拉强度最小值差别140MPa

低碳钢拉伸时力学性能的测定

§1.3 低碳钢拉伸时力学性能的测定 一、 实验目的和要求 1、 了解万能试验机的构造原理,掌握其操作规程和方法。 2、 观察试件拉伸过程中表现的变形规律和破坏现象。 3、 熟悉球铰引伸仪的正确使用方法。 4、 观察比例极限内力与变形间的线性关系,验证虎克定律。 5、 测定低碳钢的强度特征(屈服极限бs 和强度极限бb ),塑性特征(延伸率δ和截面收缩率ψ),绘制б—ε曲线。 二、实验内容和原理 常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性常数E 和μ ,比例极限 бp ,屈服极限бs ,抗拉强度бb ,断后伸长率δ和断面收缩率ψ等。这些力学性能都是工程设计的重要依据. 1.验证虎克定律 弹性模量是应力低于比例极限时应力与应变的比值。 l A Pl E ?==00εσ 为验证荷载与变形的关系是否符合虎克定律 ,减少测量误差,实验一般用等增量法加载,即把荷载分成若干相等的加载等级ΔP,然后逐级加载。为保证应力不超出比例极限,加载前先估算出式样的屈服载荷,以屈服载荷的70%~80%作为测定弹性模量的最高载荷Pn 。此外,为使实验机夹紧式样,消除引伸仪和实验机机构的间 隙,以及开始阶段引伸仪刀刃在式样 上的可能滑动,对式样应施加一个初 载荷P 0,P 0可取为P n 的10%。从P 0 到P n 将载荷分成n 级,且n 不小于5, 于是 n P P P n 0-=? n 5≥ 例如,若低碳钢的屈服极限б s =235Mpa ,试样直径d 0=10mm ,则 )取KN N d P s n 15(14800%804 120=??=σπ KN P P n 5.1%100=?= 实验时,从P 0到Pn 逐级加载,载荷的每级增量为ΔP 。对应着每个载荷Pi

Q SGZGS 324.1-2007 冷轧低碳钢板及钢带 第一部分首钢(SG)冷轧低碳钢板及钢带

I CS 77.140.50 Q/SG H 46 首钢总公司企业标准 Q/SGZGS 324.1—2007

前 言 Q/SGZGS 324《冷轧低碳钢板和钢带》分为以下几个部分: ——第1部分:首钢(SG)冷轧低碳钢板和钢带; ——第2部分:欧标(EN)冷轧低碳钢板和钢带; ——第3部分:德标(DIN)冷轧低碳钢板和钢带; ——第4部分:日标(JIS)冷轧低碳钢板和钢带; ——第5部分:美标(ASTM)冷轧低碳钢板和钢带。 本部分为Q/SGZGS 324《冷轧低碳钢板和钢带》的第1部分。 本标准的附录A和附录B为资料性附录。 本标准由首钢技术质量部提出并归口。 本标准起草单位:首钢股份有限公司顺义冷轧分公司、首钢技术质量部。本标准主要起草人:乔建军、闻达、唐牧、王丽萍、姚舜。 本标准首次发布。

冷轧低碳钢板及钢带 第1部分:首钢(SG)冷轧低碳钢板及钢带 1 范围 本标准规定了冷轧低碳钢板和钢带的分类和代号、尺寸、外形、重量及允许偏差、要求、试验方法、检验规则、包装、标志和质量证明书等内容。 本标准适用于首钢生产冷轧低碳钢板及钢带,以下简称钢板及钢带。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的成品化学成分允许偏差 GB/T 223(相关部分) 钢铁及合金化学分析方法 GB/T 228 金属材料室温拉伸试验方法(eqv ISO 6892:1998) GB/T 2523 冷轧薄钢板(带)表面粗糙度测量方法 GB/T 2975 钢及钢产品力学性能试验取样位置及试样制备(eqv ISO 377:1997) GB/T 4336 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 5027 金属薄板和薄带塑性应变比(r值)试验方法 GB/T 5028 金属薄板和薄带拉伸应变硬化指数(n值)试验方法 GB/T 8170 数值修约规则 GB/T 20066 钢和铁化学成分测定用试样的取样和制样方法 Q/SGZGS 322 冷轧钢板和钢带的包装、标志及质量证明书 Q/SGZGS 323 冷轧钢板和钢带的尺寸、外形、重量及允许偏差 3 分类和代号 3.1 钢板及钢带按用途分类见表1的规定。 表1牌号与用途 牌号用途 SDC01 一般用 SDC03 冲压用 SDC04 深冲用 SDC05 特深冲用 SDC06 超深冲用 SDC07 特超深冲用 3.2 钢板及钢带的表面质量级别见表2的规定。 表2表面质量与代号 表面质量级别代号 较高级的精整表面FB(O3) 高级的精整表面FC(O4) 超高级的精整表面FD(O5) 3.3 钢板及钢带的表面结构种类见表3的规定。对表3的说明见附录A。

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 1.低碳钢拉伸实验 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段 在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。(2)屈服阶段 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs)。当材料屈服时,如果用砂纸将试件表面

打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(σb),强度极限所对应的载荷为试件所能承受的最大载荷Fb。 (4)局部变形阶段 试样拉伸达到强度极限σb之前,在标距范围内的变形是均匀的。当应力增大至强度极限σb之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲

材料的力学性能.

第五章材料的力学性能 §5.1 概述 前一章讨论变形体静力学时,研究、分析与解决问题主要是利用了力的平衡条件、变形的几何协调条件和力与变形间的物理关系。物体系统处于平衡状态,则系统中任一物体均应处于平衡状态,物体中的任一部分亦应处于平衡状态。力的平衡问题,与作用在所选取研究对象上的力系有关;在弹性小变形条件下,变形对于力系中各力作用位置的影响可以不计,故力的平衡与材料无关;用第二章所讨论的平衡方程描述。变形的几何协调条件,是在材料均匀连续的假设及结构不发生破坏的前题下,结构或构件变形后所应当满足的几何关系,主要是几何分析,也不涉及材料的性能。 因此,研究变形体静力学问题,主要是要研究力与变形间的物理关系。力与变形间的物理关系显然是与材料有关的。不同的材料,在不同的载荷、环境作用下,表现出不同的力学性能(或称材料的力学行为)。前一章中,我们以最简单的线性弹性应力-应变关系—虎克定律,来描述力与变形间的物理关系,讨论了变形体力学问题的基本分析方法。这一章将对材料的力学性能进行进一步的研究。 材料的力学性能,对于工程结构和构件的设计十分重要。例如,所设计的构件必须足够“强”,而不至于在可能出现的载荷下发生破坏;还必须保持构件足够“刚硬”,不至于因变形过大而影响其正常工作。因此需要了解材料在力的作用下变形的情况,了解什么条件下会发生破坏。由力与变形直至破坏的行为研究中确定若干指标来控制设计,以保证结构和构件的安全和正常工作。 材料的力学性能是由试验确定的。试验条件(温度、湿度、环境)、试件几何(形状和尺寸)、试验装置(试验机、夹具、测量装置等)、加载方式(拉、压、扭转、弯曲;加载速率、加载持续时间、重复加载等)、试验结果的分析和描述等,都应按照规定的标准规范进行,以保证试验结果的正确性、通用性和可比性。

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能 低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段: 弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即 比例系数E代表直线(OA) 的斜率,称作材料的弹性模量。 屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(Bˊ)作为材料屈服极限ReL。ReL是材料开始进入塑性的标志。结构、零件的应力一旦超过ReL,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限ReL作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。 强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。强化阶段的卸载路径与弹性阶段平行。卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。这种现象称作为形变强化或冷作硬化。冷作硬化是金属材料极为宝贵的性质之一。塑性变形和形变强化二者联合,是强化金属材料的重要手段。例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。强化阶段的塑性变形是沿轴向均匀分布的。随塑性变形的增长,试样表面的滑移线亦愈趋明显。D点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作Rm。对低碳钢来说Rm是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。

碳钢的力学性能

【课题】了解碳钢的力学性能(授课人:王竞男) 【授课类型】理论课 【教学目标】 【知识与技能目标】 1.了解碳钢常见的力学性能:强度、塑性、硬度、韧性和疲劳强度的含义及其衡量指标; 2.了解拉伸试验的原理、过程,常见的硬度测试方法及其指标; 3.进一步理解常见类型碳钢及其力学性能特点。 【过程与方法目标】 1. 通过学习碳钢常见的力学性能及其衡量指标,理解力学性能对碳钢应用的重要影响; 2. 通过学习拉伸试验的原理、观看拉伸试验过程的视频,了解碳钢强度、塑性衡量指标 的来源和含义; 3. 了解硬度测试方法和类型,能根据材料类型初步选择合适的硬度。 【情感态度与价值观目标】 1.通过对材料的拉伸试验、硬度测试方法的学习,形成科学严谨的学习态度; 2.通过对碳钢的力学性能与其衡量指标的学习,懂得方法的选择以合适、恰当为最好。 【教学重点】1. 碳钢常见的力学性能:强度、塑性、硬度、韧性和疲劳强度的含义及其衡量指标; 2. 拉伸试验过程和硬度测试方法。 3. 常见类型碳钢及其力学性能特点。 【教学难点】常见类型碳钢及其力学性能特点。 【教学方法】 学情分析:学生已经对碳钢及其成分有了一定的认识,但对碳钢力学性能及其衡量指标缺乏系统的认知,且由于学生在力学相关的物理学科知识方面基础薄弱,所以在学习力学性能部分时,应联系生活、生产中生动形象的实际例子帮助学生理解。 教法:读书指导法、问题引导法、小组讨论法 学法:以自学法为主,配合讨论法 【教学用具】多媒体设备及多媒体课件 【教学时间】2课时(90分钟) 【教学过程】 一、新课导入(7分) 师:同学们,本节课我们将进一步深入学习和了解碳钢的力学性能。假如你已经步入工作岗位,现在需要为一批订单选购适于数控车削的原材料,那么你会从哪些方面来挑选请简要说明原因。下面给大家半分钟思考时间,然后分别请几位同学为大家举例。 生:材料的软硬程度,这将决定其是否适宜车削加工…… 师:碳钢之所以获得广泛应用,是由于它具有良好的力学性能。碳钢的力学性能不但是设计零件、选用材料的重要依据,而且也是按验收标准来鉴定材料的依据以及对产品工艺进行质量控制的重要参数。 下面,就让我们进入到今天这节课的学习——碳钢的力学性能。 二、明确目标 结合PPT展示,明确本节课的学习目标和学习重、难点,让学生将任务了然于胸。 三、讲授新课

低碳钢和铸铁力学性能分析

低碳钢和铸铁力学性能分析 题目:低碳钢和铸铁的力学性能分析 学院:机械工程学院学号:xxxxxxxxxxx 姓名:专业班级:xxx 指导老师:xxx 日期:2019年4月 低碳钢和铸铁的力学性能分析 作者:xxx 作者单位:255000 山东理工大学 摘要:材料的力学性能是指在外力作用下所表现出的抵抗能力。由于载荷形式的不同,材料可表现出不同的力学性能,如强度、硬度、塑形、韧度、疲劳强度等。材料的力学性 能是零件设计、材料选择及工艺评定的主要依据。本文主要讨论低碳钢和铸铁的力学性能 在拉伸和压缩情况下的影响。 关键词:低碳钢、铸铁、拉伸、压缩 (一)材料微观组成分析 材料的微观结构几乎决定了外在性能,所以要了解研究材料的性能必须深入研究材料 的组成成分。而研究材料的组成成分需要从下面这张铁碳合金相图说起。 这张图记录了奥氏体在在不同温度下的恒温转变时组成成份和物质状态的变化。低碳 钢是指碳含量 低于0.3%的碳素钢;铸铁是指碳含量在2.11%-6.69%的金属,其中用于拉伸和压缩试 验的铸铁为灰口铸铁,成分一般范围为Wc=2.5%-4.0% Wsi=1.0%-2.2% Wmn=0.5%-1.3% Ws≤0.15% Wp≤0.3%。低碳钢经过奥氏体转变的基体是铁素体和珠光体,灰口铸铁的基体 是珠光体二次渗碳体和莱氏体。铁素体和工业纯铁相似,塑形韧性较好,强度硬度较低。 渗碳体是一种复 杂的间隙化合物,硬度很高,但塑性和韧性几乎为零,是钢中的主要强化相。珠光体 是铁素体和渗碳体的机械混合物,常见的形态是两者呈片层相间分布,片层越细强度越高。铸铁中的莱氏体是由珠光体和渗碳体组成的机械混合物,其中渗碳体较多,脆性大,硬度高,塑形很差。 1 2 (二)拉伸试验

铸铁低碳钢的力学性质实验报告

工程力学实验报告 实验组别:组 实验者姓名:实验日期: 实验一金属的拉伸实验 一、实验目的及要求 1.观察材料拉伸时的负荷位移曲线,了解拉伸变形的几个阶段。 2.测定低碳钢材料的屈服强度,拉伸强度,延伸率和断面吸收率。 3.测定铸铁材科抗拉强度,延伸率,断面吸收率。 4.比较低碳钢与铸铁拉伸时的力学性质。 5.比较了解电子万能材料试验机构构造及工作原理。 二、实验原理 用拉伸力将试样拉伸,一般拉至断裂以便测定其力学性能。 三、实验设备 机器型号:CSS-44100电子万能材料试验机 量程:最大扭荷100KN 测量直径的量具:千分尺精度:0.01mm 测量长度的量具:游标卡尺精度:0.02mm 四、实验步骤 1.测量试样尺寸,在试样上做出标距标记 2.试验机准备 3.安装试样 4.进行试验 5.储存试验结果,并取下试样 6.测量断后试样尺寸 7.恢复原状 五、实验数据及计算结果

六、绘制低碳钢拉伸时的应力应变曲线铸铁拉伸时的应力应变曲线 七、画出低碳钢和铸铁的断口草图,并说明其特征 九、思考题 用统一材料制作的长、短比例制件各一根,拉伸试验所测得的屈服强度、抗拉强度、断面收缩率和延伸率都相同吗? 答:相同,因为延伸收缩率与试件的标距长度有关,比例试件的横截面积和长度存在一定比例关系。 实验二金属的压缩实验 低碳钢铸铁

一、材料力学压缩试验目的及要求 1.测定压缩时低碳钢的屈服强度和铸铁的抗压强度 2.观察低碳钢和铸铁试样压缩时的变形和破坏特征 二、实验原理 用压缩力将试样压缩,一般延性材料压至屈服,脆性材料压至断裂以测定压缩时的力学性能 三、实验设备 1.电子万能材料试验机 2.游标卡尺 3.千分尺 四、实验步骤 1.测量试样尺寸 2.试验机准备 3.安装试样 4.进行试验 5.结束工作,恢复原样 五、实验数据及计算结果 3.试样破坏断面形状图及破坏原因分析

07实验一低碳钢拉伸时的力学性能

《力学原理与工程应用》教案标题:任务2.2实验一低碳钢拉伸时的力学性能 教学目标: 1)能口述实验原理; 2)能操作拉伸试验机设备; 3)能根据记录数据绘制应力-应变曲线; 4)能描述应力-应变曲线的特征; 5)能描述应力屈服极限σ s 、强度极限σ b 、断后伸长率A、断面收缩率z的概念。 教学重点及难点: 1)重点:绘制应力-应变曲线 2)难点:分析应力-应变曲线的特征 教学内容(教学时数:2H) 实验项目:低碳钢拉伸时力学性能 实验时间: 实验地点:建筑工程学院力学实验室 实验课时:2H 同组成员: 一、实验目的 1、研究低碳钢的应力-应变曲线图 2、测定低碳钢屈服极限σ s 、强度极限σ b 、断后伸长率A、断面收缩率z 二、实验设备: WE-600B型万能材料试验机、游标卡尺 三、实验原理 1、构件的强度和变形不仅与构件的尺寸和承受的载荷有关,而且与所选用材

料的力学性能有关。 2、材料的力学性能是指材料承载时,在强度和变形等方面所表现出来的特性,一般由试验来确定。 3、只讨论在常温和静载条件下材料的力学性能。所谓常温就是指室温,静载是指载荷从零开始缓慢地增加到一定数值后不再改变(或变化极不明显)的载荷。 4、试件。必须按照国家标准(GB228—76)加工成标准试件。通常采用圆截面的标准长试件(d l 10=)或短试件(d l 5=)。 5、由于加工中存在误差,所以试验前要进行相关尺寸的测量。 6、将试件装在夹头中,然后开动机器缓慢增加载荷。 7、试件受到由零逐渐增加的拉力F 作用,同时发生伸长变形,加载一直进行到试件断裂为止。 8、这一过程中,试验机的测力示值系统会显示出每一时刻的拉力F ,试验机的位移-载荷记录系统会将每一时刻的拉力F 和对应的变形l ?自动绘制成拉伸图。 9、拉伸图反映出试件的力学性能与试件的尺寸是相关的。为了消除试件几何尺寸的影响,利用A F N =σ和l l ?=ε,将拉伸图转化为应力-应变曲线。应力-应变曲线反映试件材料本身的力学性能。 四、实验步骤 1、试件尺寸测量 2、安装试件,检查并启动机器 3、缓慢增加载荷,直至试件断裂为止 4、收集机器自动绘制的拉伸图 5、绘制应力-应变图 6、计算分析得到材料的屈服极限、强度极限、断后伸长率、断面收缩率

jisg3131-1996热轧低碳钢板及钢带

日本工业标准 热轧低碳钢板及钢带 JISG 3131—1996 1.适用范围 本标准适用于普通及深冲用的热轧低碳钢板及钢带(以下称钢板及钢带)。 注:1?本标准引用的标准如附表1所示。 2.本标准对应的国际标准如下: ISO3573 : 1989:普通及深冲级热轧碳素钢板 3?本标准所对应的国际标准的部分译文载于附件。该附件可用以代替本标准正文 的1、2、3、及节7的规定。 4?热轧后,有时可根据订货方的要求,用酸洗或是喷丸处理去除氧化铁皮后交货 2.分类及牌号 钢板及钢带分为3类,其牌号如表1。 表1牌号 参考要采用一些用于提高深冲性能的特殊方法生产例如采用镇静处理等。 3.化学成分 钢板及钢带须进行本标准节7.1规定的试验,其熔炼分析值应符合表2的规定。 表2化学成分单位:% 4.力学性能 钢板及钢带须进行本标准节7.2的试验,其抗拉强度、伸长率及弯曲性能应符合表3的规定。另外弯曲试验时,其试样外侧不得发生裂纹。 SPHE的深冲性能,可由合同双方协商规定。 5.形状、尺寸、重量及其允许偏差 钢板及钢带的形状、尺寸、重量及其允许偏差按JISG3193的规定。附带说明一下,长

度及经过切边时的宽度允许偏差,如无特殊要求,则采用允许偏差A,厚度的允许偏差符合表4的规定。

表3力学性能 备注:不适用于钢带两端的非正常的部分。 表4厚度的允许偏差 的产品 (2)适用于宽度<2000 mm的产品注:1?厚度在距边缘20 mm以上的任意一点处测试,但宽度<40 mm时,则测定其中央部位的厚度。 2?不适用于钢带两端的非正常部分。 3?对于不是由钢带分切的钢板,可由合同双方协商确定其厚度允许偏差。 6 .外观 钢板及钢带的外观依据JISG3193的节6 (外观)的规定。 7.试验 7.1分析试验 7.1.1分析试验的一般事项及分析试样的取样方法 钢板及钢带的化学成分须经钢液分析测得,分析试验的一般事项及分析试样的取样方法按JISG0303 节3

低合金高强度冷轧板H340LA

WISCO 冷轧低合金高强度钢WH340LA供货技术协议 WJX(LZ)251-2006 钢材名称:低合金高强度钢 钢材牌号:WH340LA 产品规格:0.6~2.5×800~2050×L(C) 交货状态:退火、平整 1.适用范围 本技术条件适用于制造汽车及其它高强度零部件的钢板和钢带。 2.引用标准 GB/T 222钢的化学分析用试样取样法及成品化学成分允许偏差 GB/T 223钢铁及合金化学分析方法 GB/T 228金属拉伸试验方法 GB/T 247钢板和钢带检验、包装、标志及质量证明书的一般规定 GB/T 2975钢及钢产品力学性能试验取样位置及试样制备 GB/T 2523冷轧薄钢板(带)表面粗糙度测量方法 EN 10131 冷成型用冷轧非涂层低碳及高屈服强度钢产品尺寸及外形公差 EN 10268 冷成型用高屈服强度冷轧钢板供货技术条件 Q/WG(LZ)20 冷成型用冷轧低碳钢板及钢带 3.化学成分 钢的化学成分应符合EN 10268的规定,具体见表1。

4. 力学性能 钢的力学性能应符合EN 10268的规定,具体见表2。 5. 尺寸、外形及允许偏差 钢板或钢带的尺寸、外形及允许偏差应符合EN10131的规定,厚度偏差应在EN10131中表1的基础上增加20%,具体见表3。 6. 交货状态 钢板或钢带以退火+平整状态交货。 表面重涂油,涂油量目标值:约1.5 g/m2(每面)。 7. 表面粗糙度

钢板或钢带的表面粗糙度目标值:A级表面Ra=0.6~2.0μm,B级表面Ra=0.9~2.0μm ,C级表面Ra=0.9~1.5μm。 8. 表面质量 钢板表面质量分为三级,各级别的定义见表4。 9. 包装、标志及质量证明 应符合GB/T 247的规定。 10. 其它 其它未尽事宜参照Q/WG(LZ)20中相应规定执行。 11. 双方职责 11.1 本协议一式4份,供需双方各持2份。 11.2试制过程中如有不可预见问题发生,双方协商解决。 11.3用户使用后应及时提供试制报告和使用信息。 11.4本协议不违反国家有关安全、环保等法律、法规的规定。 供方:需方: 代表:代表: 年月日年月日

钢材—含碳量对碳钢的组织和力学性能的影响

钢材—含碳量对碳钢的组织和力学性能的影响 含碳量少,一般组织由铁素体和珠光体组成,淬火后多为板条马氏体;低碳钢韧性大,硬度低,耐磨性差含碳量高,组织一般由渗碳体跟珠光体组成,淬火后多为片状马氏体;高碳钢脆性大,硬度高,耐磨性好一般碳的含量越高硬度越大,韧性降低! 以下是各种钢的特点的一些简介: 1 碳钢碳钢也叫碳素钢,是含碳量wc小于2%的铁碳合金。碳钢除含碳外一般还含有少量的硅、锰、硫、磷。按用途可以把碳钢分为碳素结构钢、碳素工具钢和易切削结构钢三类。碳素结构钢又可分为建筑结构钢和机器制造结构钢两种。按含碳量可以把碳钢分为低碳钢(wc≤0.25%),中碳钢(wc 0.25%一0.6%)和高碳钢(wc >O.6%)按磷、硫含量可以把碳素钢分为普通碳素钢(含磷、硫较高)、优质碳素钢(含磷、硫较低)和高级优质钢(含磷、硫更低) 。一般碳钢中含碳量越高则硬度越高,强度也越高,但塑性降低。 2 碳素结构钢这类钢主要保证力学性能,故其牌号体现其力学性能,用Q+数字表示,其中“Q”为屈服点“屈”字的汉语拼音字首,数字表示屈服点数值,例如Q275表示屈服点为275MPa。若牌号后面标注字母A、B、C、D,则表示钢材质量等级不同,含s、P 的量依次降低,钢材质量依次提高。若在牌号后面标注字母“F”则为沸腾钢,标注“b”为半镇静钢,不标注“F,’或“b”者为镇静钢。例如Q235-A·F表示屈服点为235MPa的A 级沸腾钢,Q235-c表示屈服点为235MPa的c级镇静钢。碳素结构钢一般情况下都不经热处理,而在供应状态下直接使用。通常Q195、Q215、Q235钢碳的质量分数低,焊接性能好,塑性、韧性好,有一定强度,常轧制成薄板、钢筋、焊接钢管等,用于桥梁、建筑等结构和制造普通铆钉、螺钉、螺母等零件。Q255和Q275钢碳的质量分数稍高,强度较高,塑性、韧性较好,可进行焊接,通常轧制成型钢、条钢和钢板作结构件以及制造简单机械的连杆、齿轮、联轴节、销等零件。 3 优质结构钢这类钢必须同时保证化学成分和力学性能。其牌号是采用两位数字表示钢中平均碳的质量分数的万分数(wс×10000)。例如45钢表示钢中平均碳的质量分数为0.45%;08钢表示钢中平均碳的质量分数为0.08%。优质碳素结构钢主要用于制造机器零件。一般都要经过热处理以提高力学性能。根据碳的质量分数不同,有不同的用途。08、08F、10、10F钢,塑性、韧性高,具有优良的冷成形性能和焊接性能,常冷轧成薄板,用于制作仪表外壳、汽车和拖拉机上的冷冲压件,如汽车身、拖拉机驾驶室等;15、20、25钢用于制作尺寸较小、负荷较轻、表面要求耐磨、心部强度要求不高的渗碳零件,如活塞销、样板等;30、35、40、45、50钢经热处理(淬火+高温回火)后具有良好的综合力学性能,即具有较高的强度和较高的塑性、韧性,用于制作轴类零件,例如40、45钢常用于制造汽车、拖拉机的曲轴、连杆、一般机床主轴、机床齿轮和其他受力不大的轴类零件;55、60、65钢热处理(淬火+中温回火)后具有高的弹性极限,常用于制作负荷不大、尺寸较小(截面尺寸小于12~15mm)的弹簧,如调压和调速弹簧、柱塞弹簧、冷卷弹簧等。 4 碳素工具钢碳素工具钢是基本上不含合金元素的高碳钢,含碳量在0.65%~1.35%范围内,其生产成本低,原料来源易取得,切削加工性良好,处理后可以得到高硬度和高耐磨性,所以是被广泛采用的钢种,用来制造各种刃具、模具、量具但这类钢的红硬性差,即当工作温度大于250℃时,钢的硬度和耐磨性就会急剧下降而失去工作能力。另外,碳素工具钢如制成较大的零件则不易淬硬,而且容易产生变形和裂纹。 5 易切削结构钢易切削结构钢是在钢中加入一些使钢变脆的元素,使钢切削时切屑易脆断成碎屑,从而有利于提高切削速度和延长刀具寿命。使钢变脆的元素主要是硫,在普通低合金易切削结构钢中使用了铅、碲、铋等元素。这种钢的含硫量ws在0.08%一0.30%范围内,含锰量wMn在0.60%-1.55%范围内。钢中的硫和锰以硫化锰形态存在,硫化锰很脆并有润滑效能,从而使切屑容易碎断,并有利于提高加工表面的质量。 6 合金

实验一 低碳钢和铸铁拉伸时力学性能的测定

实验一 低碳钢和铸铁拉伸时力学性能的测定 一、实验目的 1.观察分析低碳钢的拉伸过程,了解其力学性能;绘制拉伸曲线F-△L ,由此了解试样在拉伸过程中变形随载荷的变化规律以及有关物理现象; 2.测定低碳钢材料在拉伸过程中的几个力学性能指标:s σ、b σ、δ、ψ; 3.了解万能材料试验机的结构原理,能正确独立操作使用。 二、实验设备 1.SHT5305拉伸试验机。 2.x —Y 记录仪。 3.游标卡尺。 三、拉伸试样 四、实验原理和方法 首先将试件安装于试验机的夹头内,之后匀速缓慢加载,试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。 1.弹性阶段 是指拉伸图上的OA ′段,没有任何残留变形。在弹性阶段,存在一比例极限点A ,对应的应力为比例极限p σ,此部分载荷与变形是成比例,εσE =。 2.屈服阶段 对应拉伸图上的BC 段。金属材料的屈服是宏观塑性变形开始的一种标志,

是位错增值和运动的结果,是由切应力引起的。在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。屈服阶段中一个重要的力学性能就是屈服点,对应的屈服应力为 0/A F SL S =σ 3.强化阶段 对应于拉伸图中的CD 段。变形强化标志着材料抵抗继续变形的能力在增强。这也表明材料要继续变形,就要不断增加载荷。D 点是拉伸曲线的最高点,载荷为F b ,对应的应力是材料的强度极限或抗拉极限,记为b σ 0/A F b b =σ 4.颈缩阶段 对应于拉伸图的DE 段。载荷达到最大值后,塑性变形开始局部进行。这是因为在最大载荷点以后,形变强化跟不上变形的发展,由于材料本身缺陷的存在,于是均匀变形转化为集中变形,导致形成颈缩。材料的塑性性能通常用试样断后残留的变形来衡量。轴向拉伸的塑性性能通常用伸长率δ和断面收缩率ψ来表示,计算公式为 %100/001?-=l l l )(δ %100/010?-=A A A )(ψ 式中,l 0、A 0分别表示试样的原始标距和原始面积;l 1、A 1分别表示试样标距的断后长 度和断口面积。 五、实验步骤 1.取实验材料,并用游标卡尺量取其直径(量三次取平均值),记为d 0; 2.量取试样标记范围的长度(量三次取平均值),记为l 0; 3.将试样架在万能试验机上夹紧; 4.通过电脑控制给试样加载,并观察材料的变形过程,同时电脑将自动绘制出拉伸曲线; 5.待材料拉断为止,取下试样测量拉伸后试验的直径和长度(均测量三次),分别记作d 1,l 1。 六、数据记录及处理 1.拉伸试样拉伸前后的直径和长度

汽车零配件用冷连轧钢板及钢带

宝山钢铁股份有限公司企业暂行供货技术条件 汽车零配件用冷连轧钢板及钢带 BZJ463-2009 代替BZJ 463-2003 1 范围 本暂行供货技术条件适用于宝山钢铁股份有限公司生产的汽车零件用冷连轧钢板及钢带。以下简称钢板及钢带。 2 规范性引用文件 下列文件中的条款通过本暂行供货技术条件的引用而成为本暂行供货技术条件的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本暂行供货技术条件,然而,鼓励根据本暂行供货技术条件达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本暂行供货技术条件。 GB/T 222-2006 钢的成品化学成分允许偏差 GB/T 223 钢铁及合金化学分析方法 GB/T 228-2002 金属材料室温拉伸试验方法 GB/T 230.1-2004 金属洛氏硬度试验方法第1部分:试验方法(A、B、C、D、 E、F、G、H、K、N、T标尺) GB/T 232-1999 金属材料弯曲试验方法 GB/T 2523-2008 冷轧金属薄板(带)表面粗糙度和峰值数的测量方法 GB/T 2975-1998 钢及钢产品力学性能试验取样位置及试样制备 GB/T 4336-2002 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规 法) GB/T 8170-2008 数值修约规则与极限数值的表示和判定 GB/T 20066-2006 钢和铁化学成分测定用试样的取样和制样方法 GB/T 20123-2006 钢铁总碳硫含量的测定高频感应炉燃烧后红外吸收法(常 规方法) GB/T 20125-2006 低合金钢多元素含量的测定电感耦合等离子体原子发射 光谱法 GB/T 20126-2006 非合金钢低碳含量的测定第2部分:感应炉(经预加热) 内燃烧后红外吸收法 Q/BQB 400 冷轧产品的包装、标志及检验文件 Q/BQB 401 冷连轧钢板及钢带的尺寸、外形、重量及允许偏差 3 分类和代号 3.1 钢板及钢带的牌号、可供规格、用途应符合表1的规定。 表 1 牌号 可供规格范围(mm) 用途 厚度宽度 B320LW 2.0~3.0 ≤1250 汽车车轮用钢B360LW 2.0~3.0 ≤1200 B440QZ 1.5~2.5 900~1400 汽车传动轴用钢 B350JL 0.80~2.0 900~1300 轿车离合器 St12G 2.0 ≤1250 轿车支架 St14J 1.75 ≤900 轿车付支架 BMCP84 1.5~3.0 900~1350 汽车离合器摩擦片用钢 Stl2Q 2.0~3.5 900~1300 汽车底盘用钢Stl2Q1 2.0~3.0 3.2 钢板及钢带按表面质量区分应符合表2的规定。 宝山钢铁股份有限公司 2009-01-08发布 2009-06-30前实施

07实验一低碳钢拉伸时的力学性能

《力学原理与工程应用》教案 实验项目:低碳钢拉伸时力学性能 实验时间: 实验地点:建筑工程学院力学实验室 实验课时:2H 同组成员: 一、实验目的 1、研究低碳钢的应力-应变曲线图 2、测定低碳钢屈服极限c s、强度极限c b、断后伸长率A、断面收缩率z 二、实验设备: WE-600B型万能材料试验机、游标卡尺 三、实验原理

1、构件的强度和变形不仅与构件的尺寸和承受的载荷有关,而且与所选用材料的力学性能有关。 2、材料的力学性能是指材料承载时,在强度和变形等方面所表现出来的特性,一般由试验来确定。 3、只讨论在常温和静载条件下材料的力学性能。所谓常温就是指室温,静载是指载荷从零开始缓慢地增加到一定数值后不再改变(或变化极不明显)的载荷。 4、试件。必须按照国家标准(GB228-76)加工成标准试件。通常采用圆截面的标准 长试件(丨10d )或短试件(丨5d )。 5、由于加工中存在误差,所以试验前要进行相关尺寸的测量。 &将试件装在夹头中,然后开动机器缓慢增加载荷。 7、试件受到由零逐渐增加的拉力F作用,同时发生伸长变形,加载一直进行到试件断裂为止。 8、这一过程中,试验机的测力示值系统会显示出每一时刻的拉力F,试验机的位移-载荷记录系统会将每一时刻的拉力F和对应的变形I自动绘制成拉伸图。 9、拉伸图反映出试件的力学性能与试件的尺寸是相关的。为了消除试件几何 尺寸的影响,利用F N 和—,将拉伸图转化为应力-应变曲线。应力-应变A I 曲线反映试件材料本身的力学性能。 四、实验步骤 1、试件尺寸测量 2、安装试件,检查并启动机器 3、缓慢增加载荷,直至试件断裂为止 4、收集机器自动绘制的拉伸图 5、绘制应力-应变图 &计算分析得到材料的屈服极限、强度极限、断后伸长率、断面收缩率

测定低碳钢和铸铁的拉伸力学性能

测定低碳钢和铸铁的拉伸力学性能 一、实验目的 本试验以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。它是力学性能试验中最基本最常用的一个。一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。试验提供的 E ,R eL ,R m ,A 和Z 等指标,是评定材质和进行强度、刚度计算的重要依据。本试验具体要求为: 1.了解材料拉伸时力与变形的关系,观察试件破坏现象。 2.测定强度数据,如屈服点R eL ,抗拉强度R m 。 3.测定塑性材料的塑性指标:拉伸时的伸长率A ,截面收缩率Z 。 4.比较塑性材料与脆性材料在拉伸时的机械性质。 二、实验原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL 曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。但是F-ΔL 曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示: 0F R S = ——试样的名义应力 L L ?=ε——试样的名义应变 S 0和L 0分别代表初始条件下的面积和标距。R-ε曲线与F-ΔL 曲线相似,但消除了几何尺寸的影响。因此,能代表材料的属性。单向拉伸条件下的一些材料的机械性能指标就是在R-ε曲线上定义的。如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性能指标就可精确地测定。 不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。 低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段: 弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即 R E ε= (1-1) 比例系数E 代表直线OA 的斜率,称作材料的弹性模量。 屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(B ˊ)作为材料屈服极限R eL 。R eL 是材料开始进入塑性的标志。结构、零件的应力一旦超过R eL ,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限R eL 作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

相关文档
最新文档