GARTEUR 有限元模型修正与确认研究

GARTEUR 有限元模型修正与确认研究
GARTEUR 有限元模型修正与确认研究

收稿日期:2003207207;修订日期:2004203225

基金项目:教育部博士学科点专项基金(20010227012)资助项目

文章编号:100026893(2004)0420372204

GARTEUR 有限元模型修正与确认研究

费庆国,张令弥,郭勤涛

(南京航空航天大学振动工程研究所,江苏南京 210016)

Case Study of FE Model Updating and Validation via an Air craft Model Structur e

FEI Qing 2guo,Z HANG Ling 2mi,G UO Qin 2tao

(Institu te o f Vi brati on Engi neering,Nanjing University of Aeronau tics and Astro nautics,Nanjing 210016,China)摘 要:待修正参数的选择以及修正后模型的质量评估是有限元模型修正的两个重要问题。以欧洲学术界广泛采用的GA RTEUR 飞机模型为例,利用基于灵敏度分析的模型修正方法,通过仿真算例研究参数选择对模型修正质量的影响,并以试验数据为目标值对有限元模型进行修正与确认。为全面评估模型的修正质量,引入三级标准对修正后有限元模型进行确认。

关键词:固体力学;模型确认;有限元法;模型修正;参数选择中图分类号:O 248121 文献标识码:A

Abstr act:Parameter selection and quali ty validation are of g reat i mpo rtance in fini te element model updating.This paper presents so me results which demonstrate the relationship betw een parameter selection and updated model .s quality throu gh si mulation cases.Three q uali ty levels w ith corresponding validation criteria are emplo yed with an emphasis o n updated mod 2el .s predictio n ability.Results of updating based on exper i mental modal test data are sho w n as an application example.A n aircraft test structure,GA RTEUR,which is g enerally utilized in Europe,is employed in bo th the si mulation case and the exper i mental case.Sensi tivity 2based model updating appro ach is applied.

Key wor ds:solid mechanics;model validation;finite element method;model updating;parameter selection

在航空工程中,准确的有限元模型对于动态响应预测以及动态设计至关重要。建模过程中的不确定因素,如离散化误差、材料物理参数的不确定性、边界条件的近似等,导致有限元模型必然存在误差。设计规范规定,有限元模型必须通过振动模态试验或者地面共振试验来检验[1]。

近30年来,有限元模型修正技术得到了长足的发展[2~6]。根据修正对象的不同可将修正方法分为矩阵型方法和设计参数型方法。后者物理意义明确,更具工程应用价值。本文采用基于灵敏度分析的设计参数型修正方法。

基于灵敏度分析的设计参数型修正方法主要包括待修正设计参数选择,灵敏度分析,参数修正以及模型确认等环节。

待修正设计参数的选择是模型修正的起始环节。通常,候选参数是有限元模型存在不确定性因素的参数。近20年虽然发展了很多种参数选择或者误差定位的策略与算法,工程应用中仍然难以准确无遗漏地确定误差参数。因此,有必要讨论参数选择对模型修正质量的影响。

模型确认是模型修正的检验环节。在当前的研究及工程应用中,通常只要求修正后模型的计算结果能够复现修正过程中利用的试验数据。事实上,为全面评估模型的质量,模型的复现能力与预测能力应予以同等重视[7]。本研究引入了三级质量标准对修正后的有限元模型进行确认。

本文采用G ARTE UR 飞机模型为研究对象,通过仿真算例来研究参数选择对模型修正质量的影响,并给出了利用振动模态测试结果对G AR 2TEUR 飞机模型的有限元模型进行修正与确认的结果。

1 模型修正方法与模型确认准则

(1)模型修正方法 模型修正可归结为以下的优化问题[8]

Min p

+R(p )+2

2,R(p )=f E -f A (p )s.t V L [p [V U (1)

其中:p 代表设计参数;f E ,f A 是结构动态特性试验与分析结果;R 代表残差;V L ,V U 是设计参数的下、上限。

令设计参数的初始值为p 0,动态特性f 是设计参数的隐函数,其泰勒展开式为

第25卷 第4期航 空 学 报

Vol 125N o 14

2004年 7月ACT A AERO NA U TICA E T AS TRO NA U TICA SINICA July 2004

f (p )=f (p 0)+

E

N

p

j=1

9f 9p j $p j

(2)

将上式改写为

G $p =R (3)

其中:G 代表灵敏度矩阵;$p 为设计参数的修改量,可以通过求解式(1)的优化问题获得。

模型修正可以采用多种残差[7],本文采用模态频率、模态置信因子(M AC)等参数作为残差。模型修正中如果同时采用多种模态参数,诸如同时采用模态频率和振型,模态频率和模态置信因子,将会出现灵敏度矩阵条件数较大,影响求解精度的问题。采用归一化灵敏度以及灵敏度子矩阵平衡的方法可以解决以上问题[8]。

(2)模型确认准则 为了考察有限元模型分析结果与测量结果的吻合程度,采用平均模态频率相对误差$ f 和平均模态置信因子M AC 两个指标

$ f =1

n

E

n

i=1

|$f i |,M AC =1

n

E n

i=1

M AC i

(4)

其中:n 为所比较的模态数;$f i 是分析频率相对于试验频率的相对误差;M A C i 是匹配后有限元分析振型与试验振型的相关系数。除以上两个指标外,还应注意频率误差较大或者匹配较差的模态。

为了较为全面地评估模型质量,采用三级质量标准[7]考察模型的复现能力与预测能力,相应的确认准则如下:

1第1级,修正后模型可以准确复现修正频段内的试验结果;

o第2级,修正后模型可以预测修正频段以外的试验结果;

?第3级,修正后模型可以准确预测结构修改引起的结构动态特性的变化。2 参数选择对模型修正质量的影响

(1)G ARTE UR 飞机模型结构 法国航空研究机构(O NERA)于20世纪90年代设计制造了G ARTE UR 飞机模型(图1),该模型被欧洲航空科技组织用作评估试验分析技术与模型修正技术的基准模型[9]。模型主体为由铝制结构,机翼上表面为含约束层的粘弹性阻尼材料。

采用结构动力学工具箱[10]建立GA RTE UR 的有限元模型。有限元模型含74个梁单元,5个集中质量单元,共76个节点,420个自由度。翼

/

图1 G ARTEUR 飞机模型Fi g 11 GAR TEUR benchmark

身以及垂尾/平尾连接采用弹簧单元,垂尾与机身连接采用刚性单元。

对5个设计参数进行摄动建立仿真的试验模型:机翼的扭转刚度,机翼两方向的弯曲刚度,垂尾的弯曲刚度,机身的侧向弯曲刚度。与初始有限元模型相比,摄动后模态频率变化量平均为7%,最大为12%。为了模拟试验的误差,对仿真的试验频率和振型分别添加2%和5%的白噪声。(2)误差参数定位准确情况 假设上述5个预设的误差参数被准确定位。利用前10阶模态频率进行修正。修正前后设计参数的误差对比见图2(以下各图中,浅色柱和深色柱对应修正前和修正后的结果)

图2 设计参数误差Fig 12 Des iqn para meter deviation

考察对应于第1级标准的复现误差:在修正频段内(1~10阶),$ f 由614%降为0158%,最大误差为111%,M AC 由0193提高到0199。再观察对应于第2级标准的预测误差:在修正频段外,$ f 由618%降至013%,最大误差为0158%,M AC 由0183提高到0199。设计参数误差明显减小,最大误差由25%降至-316%。

为了评估模型预测结构修改的能力,对修正后的有限元模型及试验模型作同样的修改。观察

373

第4期

费庆国等:G ARTEUR 有限元模型修正与确认研究

两者动态特性的差别(即对应于第3级标准的预测误差)。修正频段内,$ f 为0155%,最大误差为111%,修正频段以外,$ f 为0131%,最大误差为0162%。两个频段的M AC 均为1。

以上结果表明,修正后的有限元模型不但在修正频段内外都表现出了与试验模型一致的动态特性,而且可以准确地预示模型修改对结构特征量的影响,模型达到了第3级标准。

(3)某灵敏度大的设计参数误选情况 基于灵敏度分析的参数选择方法可能会将无误差但是灵敏度较大的参数作为待修正参数。本例中将机翼的垂直偏移(图3的第6个参数)作为这样的参数研究其对模型修正质量的影响。修正前后设计参数的误差对比见图3

图3 设计参数误差Fig 13 Desi gn parameter devi ation

在修正频段内,$ f 降至0165%,最大误差为113%,M A C 提高到0199;修正频段外,$ f 降至

0173%,最大误差216%,M AC 提高到0199。

第6个参数的敏感模态阶次是2,5,7,9,14,这些模态同时也是第2个参数的敏感模态。第2个参数的修正精度受到影响,修正后误差为12%。以上5阶模态频率误差较小,而第2个参数的另一阶敏感模态(第12阶)误差较大,为216%。

考察修正后的模型对结构修改后动态特性的预测误差:修正频段内,$ f 为0165%,最大误差113%;修正频段外,$ f 为0177%,最大误差为216%。两个频段的M AC 均为1。

本例中,误选的参数与误差参数具有较多相同的敏感模态。虽然模型也达到了第3级标准,但是与(2)中结果相比,复现和预测的误差都变大,其质量较差。

(4)某误差参数遗漏情况 假设(3)的6个参数中第2

个参数遗漏。修正前后设计参数的误差

图4 设计参数误差Fig 14 Desi gn parameter devi ation

对比见图4。

修正频段内,$ f 降至111%,最大误差为314%,M AC 升至0198;修正频段外,$ f

降至211%,最大误差为512%,M AC 升至0199。修正频段内频率与振型相关有改善,但是修正频段外频率最大误差达512%,不能满足工程要求。第2个参数遗漏,因而修改量为零,修正后误差保持25%不变,第6个参数被修改,修改量511%。

考察修正后的模型对结构修改后动态特性的预测误差:修正频段内,$ f 为112%,最大误差为316%(第5阶模态频率);修正频段外,$ f 为

211%,最大误差512%(第12阶模态频率)。第5和12阶模态在结构修改前后均是误差最大的模态,表明这两阶模态的敏感参数存在误差。

本例中,修正后模型只能达到第1级标准,其质量尤差于(3)中模型。如果误选的参数与遗漏的误差参数没有相同的敏感模态,则修正后遗漏参数的敏感模态仍然有较大误差。修正后模型不仅没有预测能力,复现的精度也很有限。

由以上的算例分析可以得到以下结论:误差参数定位准确条件下,修正后模型具有准确复现与预测能力;在误差参数无遗漏的前提下,修正后模型具有复现能力和精度有限的预测能力;如果某灵敏度较大的含误差参数遗漏,则修正后模型不具备准确预测能力,但是仍可得到具有一定复现能力的等价模型。

3 利用实测结果的修正与确认结果

根据振动模态试验测试结果对上节(1)中G ARTE UR 的有限元模型进行修正与确认。除(1)所述的5个参数外,还选择了材料密度、机翼水平及垂直偏移、垂尾与机身连接处刚性单元长度共9个设计参数为待修正参数。

374

航 空 学 报第25卷

修正结果:在修正频段内,$

f由614%降至0139%,最大误差为0196%;修正频段外,$ f由517%降至119%,最大误差413%。

对修正后的有限元模型以及真实测试结构作同样修改并对修改后的结构重新测试[7],考察修正后的模型对结构修改后动态特性的预测误差:修正频段内,$

f为1139%,误差最大值为414%,修正频段以外,$

f为0165%。

至此,利用振动模态试验结果对G AR TEUR 飞机模型进行了修正,并对其复现与预测能力进行了确认,其复现与预测误差均在工程允许范围内,修正后模型质量达到第3级标准。

4结论

(1)利用基于灵敏度分析的有限元模型修正方法,以仿真和实测数据为目标值对G AR TEUR 飞机模型的有限元模型进行了修正与确认;

(2)通过仿真算例的研究总结了参数选择与修正后模型质量等级的对应关系;

(3)在当前模型修正的研究中,往往只注重模型的复现能力。工程中有限元模型可能用于非测量工况的响应预测。这就要求模型修正所提供的不是只有复现能力的等效分析模型,而是尽可能接近真实结构的分析模型,因此模型的预测能力同等重要。

参考文献

[1]张令弥.动态有限元模型修正技术及其在航空航天结构

中的应用[J].强度与环境,1994(2):10-17.

(Zhang L M.Fini te ele ment m odel updating and its application in

aerospace s truc tures[J].S truc ture and Environment Engineeri ng,

1994(2):10-17.)

[2]Mottershead J E,Fris well M I.Model updati ng i n structural dy2

namics:A s urvey[J].Journal of Sound and Vi bration,1993,

167:347-375.

[3]B erm an A,Nagy E J.Improvement of a l arge analytical m ode us2

i ng test data[J].AIAA,1983,21(8):1168-1173.

[4]Zhang L M,Zeng Q.A structural dynamic re2desi gn method

bas ed on orthogonality relationships[A].Proc of International

C onference on Vibrati on Proble ms in Engineering[C],Chi na:

1990.217-221.

[5]Link M,Zhang L M.Experience with di fferent procedures for up2

dating structural para meters of anal ytical m odel s usi ng tes t data

[A].Proc of10th IMAC[C],US A:1992.730-739.

[6]Dascotte E.Prac tical applicati on of finite ele ment tuning using ex2

peri mental modal data[A].Proc of8th I MAC[C],USA:1990:

1032-1037.

[7]Link M,Fris well M I.Generation of validated structural dynam ic

models2results of a benchm ark study utilizing the GARTEUR S M2

AG19tes t2bed[J].MSSP,2003,17(1):9-20.

[8]秦仙蓉.基于灵敏度分析的结构计算模型修正技术及相

关问题研究[D].南京:南京航空航天大学,2001.

(Qin X R.Study on sensi tivity2based fini te elem ent model updat2

ing[D].Nanji ng:Nanjing Univ of Aero&Astro,2001.) [9]B al mes E.GARTEUR group on ground vibrati on tes ti ng.Resul ts

from the test of a single s tructure by12laboratories i n Europe

[A].Proc of15th IMAC[C],US A:1997:1346-1352.

[10]Balm es E.S truc tural dynamics toolbox:User.s Guide5.0[Z],

2002.

作者简介:

费庆国(1977-)男,江苏淮安人,南京航空航

天大学博士研究生,主要从事有限元模型修正研

究。E2m ail:Tsingo_Fei@https://www.360docs.net/doc/7d4047038.html,

张令弥(1938-)男,浙江宁波人,南京航空航天大学,教授,博导,主要从事结构动力学系统识别研究。E2mail:l mz ae@nuaa. https://www.360docs.net/doc/7d4047038.html,

郭勤涛(1970-)男,河南商丘人,南京航空航

天大学博士研究生,主要从事有限元建模与确认

研究。E2m ail:Guo_qi ntao@s https://www.360docs.net/doc/7d4047038.html,

(责任编辑:李铁柏)

375

第4期费庆国等:G ARTEUR有限元模型修正与确认研究

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

有限元分析可能会出现什么错误

图一 应变能随单元尺寸变化图 有限元分析可能会出现什么错误? 当有限元分析扩散向可能没有正式数字化程序培训的设计者的时候,专业人员必须问“最适当的方法是否被采用?这些方法是否产生了精确的结果?” 在今天的设计领域,有限元方法被广泛的应用,其中包括各种各样的通用商业软件和适合某专业领域的专业软件。这些方法日益增长的被用,在帮助确定好的新的设计的同时改良了设计性能和成本。 考虑到有限元方法在各个设计领域起着重要的作用,专业人员需要问他们自己“他们的设计程序是否是可获得的最适合的技术?这些方法是否会产生精确的结果?”。这些问题是非常重要的,因为越来越多的设计 人员不见得受过数字化程序培训,但 是他们却在他们的工作中应用有限元 方法。 右图是应变能量随单元尺寸减小 的变化示意图。从图中可以看出应变 能会随着单元尺寸的减小而收敛。 当这些有限元方法被向越来越多且越来越广的群体广泛的应用的时 候,用户必须问有限元分析会出现什么样的错误。本文目的不是在广义上解决这个问题,更恰当的说,我们必须集中焦点于有限元方法的可靠性和准确应用方面。为了便于说明,我们考虑线弹性问题,假设有限元的代数方程精确地被求解。对于复杂的分析,考虑这些条件的同时,还有一些额外的要求也有必要得到。 数学模型 首先,设计人员应该记住有限元方法是为了求解数学模型,这数学模型是实际物理问题的理想化结果。数学模型是建立在考虑几何、材料特性、加载条件和位移边界条件等假设的基础上的。数学模型的指导方程是考虑到边界条件的偏微分方程。这些方程不能用封闭的解析方式求解,因此,设计人员要借助有限元方法获得一个数值解。 例如,考虑一个几何和载荷为轴对称的阀套。在这种条件下,考虑轴对称分析条件是合理的。分析的数学模型可以通过指定几何尺寸、支撑条件、材料常数和加载条件来获得。 虽然通常情况下设计人员不能用封闭方程的数学模型的精确解,但是这个数学模型的精确解是存在的,且是唯一的。高精度的精确解的近似解可以用有限元方法求得。 为了充分理解这些观察到的,必须要有收敛概念。这里E 表示应变能的数学模型的精确解(未知的),Eh 表示对应于单元尺寸h 的应变能的有限元解。那么收敛表示为: 上述图一中的示意图表明了收敛是如何达到。当单元网格趋于精确时(这就意味着单元尺寸h 的减少),应变能Eh 将趋向于数值E 。E 和Eh 之间的误差值的减少速度视解答的题目,也依靠采用单元类型和网格质量。明显地,网格细化过程中高阶单元减少误差率比低阶单元快。 可靠性问题 有限元方法的可靠性是指,在提出很好的数学模型求解时,有限元程序有两个特性。第一,在任何材料特性、位移边界条件和加载条件下,当单元尺寸h 趋向0时,有限元的结

非线性有限元分析

轨道结构的非线性有限元分析 姜建华 练松良 摘 要 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。钢轨垫层刚度、钢轨抗扭刚度和扣件扣压力的大小是影响轨距扩大的主要因素。根据非线性有限元接触理论,建立了能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型;并研究计算了不同扣件压力下,由于受载车轮与钢轨侧向滑动接触引起的轨距扩大问题。 关键词 轮轨关系,扣件压力,非线性弹性力学,有限元分析 1 引言 实际工程中常见的非线性问题一般可以归纳为三类:材料非线性、几何非线性以及边界条件非线性。材料非线性问题是由于材料的非线性本构关系所引起的,例如材料的弹塑性变形,材料的屈服和硬化等;几何非线性问题是由于结构的位移或变形相当大,以至必须按照变形后的几何位置来建立平衡方程;边界条件非线性问题是指边界条件随位移变化所引起的非线性问题。通常情况下,我们所遇到的非线性问题多数是上述三类非线性问题的组合[1,2]。 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。比如基于轮轨接触的材料非线性、几何非线性及边界条件非线性问题,以及扣件、钢轨、垫层三者间相互作用时所表现的边界条件非线性行为等。所以,机车车辆在轨道结构上行驶时引起的力学现象是相当复杂的。以往在研究轨道各部分应力应变分布规律时,通常采用连续弹性基础梁理论或连续点支承,偶尔简单考虑扣件的作用和弹性垫层的使用。不管用哪一种支承方式建立模型,都由于这样那样的假设而带有一定程度的近似性。所以,如何利用现代力学理论的最新成果以及日益发展的计算机技术,根据轨道结构的具体情况,建立更为完整更为准确的轨道结构计算模型,为轨道设计部门提供更加可靠的设计依据或研究思路,已十分必要。 本文提出了用非线性有限元理论研究轮轨系统和轨道结构的思路。作为算例之一,本文将根据非线性有限元理论,建立能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型。 2 轨道结构的有限元接触模型 对于非线性问题,不管是材料非线性、几何非线性,还是边界条件非线性,总是最终归结为求解一组非线性平衡方程及其控制方程。例如用位移作为未知数进行有限元分析时,最后可得到一组平衡方程及其控制方程为 : 图1 轮轨系统的对称性模型简图 [K(u)]{u}={R}(1) (u)= (u)(2)其中:{u}为节点位移列阵;{R}为节点载荷列阵; [K(u)]为总体刚度矩阵; (u)为边界条件。它们 36 姜建华:同济大学工程力学系,副教授、博士,上海200092

有限元模型如何查错

有限元模型如何查错 作者:PAUL KUROWSKI 在建立有限元模型的过程中很容易出错,如果你知道如何查错,修正这些错误将会变得很简单 有限元分析的第一步就是建立被分析对象的数学模型,这要求我们思索建模的理论基础如弹性理论,板的Reissner理论,塑性变形理论等,和考虑问题的其它信息如几何描述、材料特性,约束和荷载等等。 分析的目的就是由这些条件,计算得到精确解u_EX并同时得到位移u_EX的应力函数 F(u_EX)如Von Mises应力等。应力函数F (u_EX) 仅仅依赖于数学模型的定义,而与求解该数学问题的数值近似计算方法无关;同时应力函数F(u_EX)也不依赖于网格划分、网格类型和单元尺寸。函数F(u_EX)与模型实体物理性质之间的差异,被称为“模型错误”。 下一步就是使用有限元方法去找到精确解u_EX的近似值u_FE。这个过程包括选择网格划分和构件类型,如对二维板用八节点(矩形)单元,依此类推。网格划分&单元定义被称为有限元的离散化。 离散化产生的误差可以被定义为: 大部分的分析应该把这个误差控制在10%以内。同时由于建立模型和模型的离散化一定会产生这个误差,正确运用有限元分析就包括对这两类误差进行评估和控制。有限元分析结果中的名义误差&真实误差是有区别的,最好能够加以区别: 名义误差可以比建模误差和离散误差的总和小,二者可能反号而相互抵消。结果的好坏取决于模型是否反应实际(模型误差的大小)和有限元软件在转化过程中的精度控制(离散

化误差的大小)。 WHAT IS MODELING ERROR? 何为模型误差? 假设要分析一个支架,我们首先考虑到的问题应该包括:我们想得到什么结果?是最大应力还是最大变形?是固有频率、弯曲刚度、还是温度分布?支架是否处于弹性变形阶段?极限荷载形式有几种情况?如何模拟支撑条件等等。有了一个明确的目标和对我们使用的理论自身局限性的把握,分析者就可以建立模型了。有时这个模型与CAD模型是相似的,但相当多的情况是,为了简化网格的划分,我们有必要修改模型的拓扑描述。部分建模的过程包括以下一些问题:用壳单元模拟薄壁墙体,对对称性、反对称性或两者的运用,是否考虑细部及忽略不重要的特征等。比如,选用壳单元而不用实体单元意味着我们考虑到数学模型和相应的有限元软件的运作方式而作出了一个重要的决定。 当(研究对象的)拓扑描述已经比较理想后,我们还需要对材料属性(选择线弹性、弹塑性或其他)、荷载及支撑条件进行理想的简化。我们认为这些简化精确反应了所需模型的重要数据,而建模当中的一些重要决策有时并未过多的考虑这些(方面)。简化了的模型经常是概念错误的,一个检验模型是否不合理的方法是其解析解对应的应变能是否无穷大或趋近于零;另一个方法是对应于数学模型的我们感兴趣的数据在结果没有得到体现。很多分析者认为一个有效的网格生成器可以生成高质量的网格并降低模型误差,其实不尽然,模型是在网格划分前假定的,因此,最合理的网格划分也无法修正一个简化不合理的数学模型。 A SYSTEMATIC APPROACH 一个系统的方法 确保模型误差较小的唯一方式是把所需研究的数据放在对模型假设不敏感之处。类似地,通过把所需研究的数据放在对离散不敏感之处(不敏感的表现是:结果对更细的网格划分或更大的p值并不发生明显的改变),以减少离散误差。举个例子:比如说我们对一块简支板沿着边缘方向的剪力感兴趣,那么经典的克西霍夫板模型(Kirchhoff’s plate)是不可用的,可以通过一个Reissner模型或一个全3D的弹性模型轻而易举地检验出来。一个关于板弯曲的Reissner模型假设所有平面内位移沿厚度方向呈线性变化、剪应变沿厚度方向保持不变。若采用更厚的板的话会迫使人们去置疑简支的意义、同时会置疑是否可以给出一

GARTEUR 有限元模型修正与确认研究

收稿日期:2003207207;修订日期:2004203225 基金项目:教育部博士学科点专项基金(20010227012)资助项目 文章编号:100026893(2004)0420372204 GARTEUR 有限元模型修正与确认研究 费庆国,张令弥,郭勤涛 (南京航空航天大学振动工程研究所,江苏南京 210016) Case Study of FE Model Updating and Validation via an Air craft Model Structur e FEI Qing 2guo,Z HANG Ling 2mi,G UO Qin 2tao (Institu te o f Vi brati on Engi neering,Nanjing University of Aeronau tics and Astro nautics,Nanjing 210016,China)摘 要:待修正参数的选择以及修正后模型的质量评估是有限元模型修正的两个重要问题。以欧洲学术界广泛采用的GA RTEUR 飞机模型为例,利用基于灵敏度分析的模型修正方法,通过仿真算例研究参数选择对模型修正质量的影响,并以试验数据为目标值对有限元模型进行修正与确认。为全面评估模型的修正质量,引入三级标准对修正后有限元模型进行确认。 关键词:固体力学;模型确认;有限元法;模型修正;参数选择中图分类号:O 248121 文献标识码:A Abstr act:Parameter selection and quali ty validation are of g reat i mpo rtance in fini te element model updating.This paper presents so me results which demonstrate the relationship betw een parameter selection and updated model .s quality throu gh si mulation cases.Three q uali ty levels w ith corresponding validation criteria are emplo yed with an emphasis o n updated mod 2el .s predictio n ability.Results of updating based on exper i mental modal test data are sho w n as an application example.A n aircraft test structure,GA RTEUR,which is g enerally utilized in Europe,is employed in bo th the si mulation case and the exper i mental case.Sensi tivity 2based model updating appro ach is applied. Key wor ds:solid mechanics;model validation;finite element method;model updating;parameter selection 在航空工程中,准确的有限元模型对于动态响应预测以及动态设计至关重要。建模过程中的不确定因素,如离散化误差、材料物理参数的不确定性、边界条件的近似等,导致有限元模型必然存在误差。设计规范规定,有限元模型必须通过振动模态试验或者地面共振试验来检验[1]。 近30年来,有限元模型修正技术得到了长足的发展[2~6]。根据修正对象的不同可将修正方法分为矩阵型方法和设计参数型方法。后者物理意义明确,更具工程应用价值。本文采用基于灵敏度分析的设计参数型修正方法。 基于灵敏度分析的设计参数型修正方法主要包括待修正设计参数选择,灵敏度分析,参数修正以及模型确认等环节。 待修正设计参数的选择是模型修正的起始环节。通常,候选参数是有限元模型存在不确定性因素的参数。近20年虽然发展了很多种参数选择或者误差定位的策略与算法,工程应用中仍然难以准确无遗漏地确定误差参数。因此,有必要讨论参数选择对模型修正质量的影响。 模型确认是模型修正的检验环节。在当前的研究及工程应用中,通常只要求修正后模型的计算结果能够复现修正过程中利用的试验数据。事实上,为全面评估模型的质量,模型的复现能力与预测能力应予以同等重视[7]。本研究引入了三级质量标准对修正后的有限元模型进行确认。 本文采用G ARTE UR 飞机模型为研究对象,通过仿真算例来研究参数选择对模型修正质量的影响,并给出了利用振动模态测试结果对G AR 2TEUR 飞机模型的有限元模型进行修正与确认的结果。 1 模型修正方法与模型确认准则 (1)模型修正方法 模型修正可归结为以下的优化问题[8] Min p +R(p )+2 2,R(p )=f E -f A (p )s.t V L [p [V U (1) 其中:p 代表设计参数;f E ,f A 是结构动态特性试验与分析结果;R 代表残差;V L ,V U 是设计参数的下、上限。 令设计参数的初始值为p 0,动态特性f 是设计参数的隐函数,其泰勒展开式为 第25卷 第4期航 空 学 报 Vol 125N o 14 2004年 7月ACT A AERO NA U TICA E T AS TRO NA U TICA SINICA July 2004

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

有限元分析中的一些问题

有限元分析的一些基本考虑-—-—-单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇. 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1。5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表.

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1。1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是—1.093英寸,而B点的竖直位移是-0。346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1。152以及—0。360。这样,我们可以得到此时A点位移误差的百分比是[(—1.093)—(-1。152)]/1。152 =5。2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%.因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的. 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义.

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

结构有限元及其应用软件

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述(中英文): 本课程是一门重要的结构计算分析课程,通过多媒体教学和上机练习,系统学习结构有限元FEM的基本原理和方法,熟悉掌握通用有限元应用软件ANSYS进行结构静力和动力分析的方法和步骤,并初步掌握使用ANSYS进行海工典型结构强度计算的方法。 Structural finite element method and its application software is an important course of structural calculation and analysis. Through multimedia teaching and computer practice, the basic principles and methods of Finite Element Method (FEM) are learned systematically. The general finite element application software ANSYS for the methods and procedures of structural static and dynamic analysis are mastered.At the same time, the strength calculation method of typical ocean engineering structures using ANSYS is preliminarily mastered. 2.设计思路: 有限元方法是一种现代设计方法,应用于结构设计中,是一种具有重要经济意义和巨大潜力的先进结构设计技术。因此选择该课程作为结构设计方面的一门必修课程,主要介绍结构有限元的基本原理和方法,还选择了通用的有限元软件ANSYS进行示例分析。包括要求掌握有限元法的基本思想和基本原理、平面刚架结构的有限元法、弹

机械结构有限元分析

机械结构有限元分析 有限元分析软件ANSYS在机械设计中的应用 摘要:在机械设计中运用ANSYS软件进行有限元分析是今后机械设计发展的必然趋势,将有限元方法引入到机械设计课程教学中,让学生参与如何用有限元法来求解一些典型零件的应力,并将有限元结果与教材上的理论结果进行对照。这种新的教学方法可以大大提高学生的学习兴趣,增强学生对专业知识的理解和掌握,同时还可以培养学生的动手能力。在机械设计课程教学中具有很强的实用价值。 关键词:机械设计有限元 Ansys 前言:机械设计课程是一门专业基础课,其中很多教学内容都涉及到如何求取零件的应力问题,比如齿轮、v带、螺栓等零件。在传统的教学过程中,都是根据零件的具体受力情况按材料力学中相应的计算公式来求解。比如,在求解齿轮的接触应力时,是把齿轮啮合转化为两圆柱体的接触,再用公式求解。这些公式本身就比较复杂,还要引入各种修正参数,因此我们在学习这些内容时普遍反映公式难记,学习起来枯燥乏味,而且很吃力。 近年来有限元法在结构分析中应用越来越广泛,因此如果能将这种方法运用到机械设计课程中,求解一些典型零件的应力应变,并将分析结果和教材上的理论结果进行对比,那么无论是对于提高学生学习的热情和积极性,增强对重点、难点知识的理解程度,还是加强学生的计算机水平都是一件非常有益的事情。 由于直齿圆柱齿轮的接触强度计算是机械设计课程中的一个重要内容,齿轮强度的计算也是课程中工作量最繁琐的部分。下面就以渐开线直齿圆柱齿轮的齿根弯曲疲劳强度的计算为例,探讨在机械设计课程中用ANSYS软件进行计算机辅助教学的步骤和方法,简述如何将有限元方法应用到这门课程的教学中。 1.传统的直齿圆柱齿轮齿根弯曲疲劳强度的计算 传统方法把轮齿看作宽度为b的矩形截面的悬臂梁。因此齿根处为危险剖面,它可用30。切线法确定。如图l所示。 作与轮齿对称中心线成30。角并与齿根过渡曲线相切的切线,通过两切点作平行与齿轮轴线 的剖面,即齿根危险剖面。理论上载荷应由同时啮合的多对齿分担,但为简化计算,通常假设全部载荷作用于齿顶来进行分析,另用重合度系数E对齿根弯曲应力予以修正。 由材料力学弯曲应力计算方法求得齿根最大弯曲应力为:

有限元分析中的一些问题

有限元分析的一些基本考虑-----单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇。 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1.5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表。

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1.1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是-1.093英寸,而B点的竖直位移是-0.346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1.152以及-0.360.这样,我们可以得到此时A点位移误差的百分比是 [(-1.093)-(-1.152)]/1.152 = 5.2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%。因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的。 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义。 由此可见,长宽比越接近于1,那么结算结果越精确,越远离1,则误差越大。

第10章(非线性有限元)分解

公式号、图号等 第十章 非线性动力有限元法 当机械结构受到较大的外载荷,或受到持续时间较短的冲击载荷作用时,结构会产生过大的变形, 以至于必须考虑结构几何大变形对结构整体刚度及固有频率的影响,即所谓的几何非线性影响。另外, 对于多数非线性动力学问题,还需要考虑材料非线性、接触非线性等方面的影响。 非线性动力学分析求解的基本方程有如下形式 0=-+P I u M (4.141) 式中,Ku u C I += 为粘性效应项,考虑阻尼、粘塑、粘弹等效应。P 为外部激励。 对于考虑各种非线性效应的动力学问题求解,需要对动力学方程进行直接时间积分。即非线性动力有限元分析具有如下特点:(1)问题分析过程需要考虑时间积分效应,不必做模态分析,不必提取固有频率;(2)采用直接积分方法求解非线性动力学方程,需要对时间作积分计算,因此计算量远远大于线性模态动力学方法;(3)非线性动力学分析中可以施加不同类型的载荷,包括结点力、非零位移、单元载荷;(4)在每个时间步上,进行质量、阻尼、及刚度的集成,采用完整矩阵,不涉及质量矩阵的近似;(5)可以同时考虑几何、材料和接触等多种非线性效应。 非线性动力有限元分析程序常采用隐式Hilber-Hughes-Taylor 法进行时间积分运算。这种方法适于模拟非线性结构的动态问题,对于冲击、地震等激发的结构动态响应以及一些由于塑性或粘性阻尼造成的能量耗散,隐式算法特别有效。隐式积分方法需要对刚度矩阵求逆计算,并通过多次迭代求解增量步平衡方程。隐式Hilber-Hughes-Taylor 时间积分算法为无条件稳定,对时间步长没有特别的限制。 采用子空间法也可以对动力学平衡方程作时间积分运算。子空间法是提取模态分析得到的各阶特征模态,并采用与线性模态动力学分析方法相近的分析方式进行求解。对于带有微小非线性效应的问题,如材料小范围进行入屈服、结点转角不大的情况,子空间法效率比进接积分法要高。 此外,非线性动力有限元分析还可以采用显式动态算法,如中心差分法。显式时间积分算法为有条件稳定,其临界稳定时间步长限制了时间步长的大小,与有限元模型最小单元尺寸、材料应力波速等有关。显式时间积分法适于模拟高速冲击、接触等问题。 上述方法的选择需要综合考虑计算量、分析问题的规模、单元限制等多方面因素,需要丰富的有限元模拟的理论、经验和实践知识。以下以几何非线性问题和材料非线性问题为例介绍非线性有限元法,其中粘弹粘塑性非线性材料问题的分析是典型的非线性动力有限元的求解思想。 9.1 几何非线性问题的有限元法 几何非线性问题一般是指物体经历大的刚体位移和转动,但固连于物体坐标系中的应变分量仍假设为小量, 即大位移小应变情况。

结构有限元分析的形状处理方法_杜平安

结构有限元分析的形状处理方法 杜平安 摘要 介绍结构形状处理的各种方法,包括类型简化、细节简化、形式变换、局部结构和利用对称性等。 关键词 形状处理 有限元分析 建模 Abstract The processing method is intro-duced in the paper ,including ty pe simplifica tion 、details simplifica tio n 、fo rm tra nsfo rmatio n 、local structure a nd symm etry utiliza tion . Key words Shape processing Finite element analysis Modelling 收稿日期:1999-08-18 1 结构类型简化 根据结构形状、载荷和约束条件的特点,结构类型可分为空间问题、平面问题、轴对称问题、板壳问题和杆件问题等。其中平面问题和轴对称问题的几何模型是一平面图形,在平面上划分网格比在空间内划分要容易得多,单元数量也少得多。因此将空间问题作适当近似,使其按平面问题来处理,则可使分析过程大为简化。在图1a 中,计算轮毂与轴过盈配合的接触压力时,由于辐孔尺寸较小且远离接触面,因此可以不考虑辐孔而将轮毂简化为轴对称结构。同样,在计算图1b 中螺栓与螺母螺纹面上的接触压力时,由于螺旋升角较小,也可以不考虑升角的影响,而将螺栓与螺母简化为轴对称结构 。 图1 结构类型简化结构 2 结构细节简化 细节是结构中相对尺寸很小的局部,如倒圆、倒角、退刀槽和加工凸台等。根据网格划分特点,一条直线或曲线至少要划分一个单元边;一个平面或曲面至少要划分一个单元面;一个圆至少要用三个单元边离散,因此几何模型中的细节将限制细节处及其附近的网格大小,从而影响整个结构的网格分布和增加网格数量。图2是有无细节时自动划分出的网格,从中可以看出细节对网格划分的影响 。 图2 细节对网格划分的影响 因此,建立几何模型时应尽量忽略一些不必要的细节。在静力分析中,高应力区域中的细节会引起应力集中,细节大小和形状对应力影响很大,这些细节不能忽略。而处于结构低应力区的细节一般可以忽略。在动力计算中,由于结构固有频率和模态振型主要取决于结构的质量分布和刚度,因此细节一般可以忽略。在热分析中,细节不会在结构中引起局部高温,这时也可以考虑较少的细节。 3 结构形式变换 有些结构尽管形状不是很复杂,但划分网格却很困难。如果对结构形式作适当变换,则可使网格划分变得容易,划分出的单元更少。例如图3a 所示的带肋板,划分网格时需要用板单元和梁单元组合,且两类单元为偏心连接,自动分网难以满足这种要求。如果将带肋板变换为平板(图3b 所示),则在平板上划分网格要容易得多。 由于带肋板用于焊接而成支撑箱式立柱,其特 性要求主要是刚度,因此可按等刚度条件作为变换 · 26·《机械与电子》2000(1)

有限元分析步骤

有限元建模与分析 有限元分析(FEA)是一种预测结构的偏移与其它应力影响的过程,有限元建模(FEM)将这个结构分割成单元网格以形成实际结构的模型,每个单元具有简单形态(如正方形或三角形)。这样有限元程序就有了可写出在刚度矩阵结构中控制方程方面的信息。每个单元上的未知量就是在节点上的位移,这个点就是单元元的连接点。有限元程序将这些单个单元的刚度矩阵组合起来以形成整个模型的总刚度矩阵,并给予已知力和边界条件来求解该刚度矩阵以得出未知位移,从节点上位移的变化就可以计算出每个单元中的应力。 有限单元由假定的应变方程式导出,有些单元可假设其应变是常量,而另外一些可采用更高阶的函数。利用给定单元的这些方程和实际几何体,则可以写出外力和节点位移之间的平衡方程。对于单元的每个节点来说,每个自由度就有一个方程,这些方程被十分便利地写成矩阵的形式以用于计算机的演算中,这个系数的矩阵就变成了一个显示出力对位移的关系的刚度矩阵:{F}=[K]、{d} 尽管求知量处于离散的自由度,内部方程仍被写成表述为连续集的应变函数。这就意味着如果选择了正确单元的话,纵然这个有限元模型有一组离散的方程,只要用有限的节点和单元也可以收敛出正确的答案。 有限元模型是解决全部结构问题的完全理想的模型。这些问题包括节点的定位,单元,物理的和材料的特性,载荷和边界条件,根据分析类型的不同,如静态结构载荷,动态的或热力分析,这个模型就确定得不同。 一个有限元模型常常由不止一种单元类型来建立,有限元模型是以结构的偏移来建立成数学模型,而不只是在外观上象原结构。也许某个零件用梁单元最好,而另外的零件则可能用薄壳单元最理想。 对于给定的问题来讲,求解结果的准确性将取决于结构建模的好坏,负载和边界条件的确定,以及所用单元的精度。 一般来讲,如模型细分更小的单元,则求解将更准确。了解你在最终的求解结果上有充分收敛的唯一确信的方法是用更细网格的单元来建立更多的模型,以检查求解结果的收敛性。 新的有限元用户经常产生想象上的错误,即建立一个有限元模型的目的是建立一个看起来象这种结构的模型。有限元建模的目的是建立一个从数学意义是“相似”的模型,而不是一个外观相似的模型。一个有经验的使用者学会了怎样选择单元的正确类型,和在模型的不同区域中怎样来细分网格。 一个经常忽略的错误根源是在一个模型中的负载和边界条件上进行了错误的假设。同时也很轻易地相信一个有限元模型的每个十进位的结果。以及忘掉了在负载和边界条件上粗糙的假设。如果有一个关于怎样建立边界条件模型的问题的话,宁可用你的模型以不同的方法去测试其灵敏度,而不是仅遵循一种方法,得出一种答案,

结构有限元分析

中国海洋大学本科生课程大纲 一、课程介绍 1.课程描述: 本课程是船舶与海洋工程专业重要的结构计算分析课程,通过多媒体教学和上机练习,系统学习结构有限元FEM的基本原理和方法,熟悉掌握通用的有限元软件ANSYS进行结构静力和动力分析的方法和步骤。 2.设计思路: 有限元方法是一种现代设计方法,应用于结构设计中,是一种具有重要经济意义和巨大潜力的先进结构设计技术。因此选择该课程作为结构设计方面的一门必修课程,主要介绍结构有限元的基本原理和方法,还选择了通用的有限元软件ANSYS进行示例分析。包括要求掌握有限元法的基本思想和基本原理、平面刚架结构的有限元法、弹性力学平面问题以及结构动力学问题的有限元基本理论,并通过通用的有限元软件ANSYS了解解决相关问题的过程,同时掌握ANSYS进行结构静力和模态分析的基本步骤和方法,了解ANSYS进行结构瞬态动力分析的基本步骤。 3.课程与其他课程的关系 先修课程:结构力学、弹性力学。本课程与结构力学和弹性力学相关,在掌握了结构分析的基本概念和方法之后才能很好地学习结构有限元分析。在后续课程中结构 - 3 -

有限元分析为学生在海洋平台设计课程设计及毕业设计中提供了结构分析的方法和软件工具。 二、课程目标 本课程的目标是学习掌握现代结构分析方法FEM,初步掌握通用的有限元软件ANSYS,为船舶与海洋工程结构设计、强度校核提供计算结果,为海洋结构动力响应分析提供建模基础。 三、学习要求 结构有限元分析是一门理论和实践性都很强的课程,在机房上课,人手一台计算机,强调实际ANSYS操作能力的培养。要达到以上学习任务,学生必须: (1)按时上课,上课认真听讲,积极参与结构分析典型案例分析。本课程将包含较多的课堂有限元ANSYS作业练习和课后结构有限元计算作业。 (2)保质保量地按时完成课堂ANSYS作业练习和课后结构有限元计算作业,每位学生一个账号通过网络提交课堂ANSYS作业,只有在各项作业中认真练习才能够不断提高ANSYS的操作水平和结构分析的技能。 四、教学内容 - 3 -

空气弹簧力学性态的非线性有限元模拟仿真

空气弹簧力学性态的非线性有限元模拟仿真 兰 艳1,2, 蔡海涛1, 王成国2, 刘金朝2 江 军3 (1.中南大学应用数学系,长沙410083;2.铁道科学院机车车辆研究所,北京100008 3.湘潭大学数学与计算科学学院,湖南湘潭411105)[摘要] 利用非线性有限元方法,在国内第一次给出了提速客车上空气弹簧的全实体单元模拟仿真方法.运用ABAQ US 软件,给出了详细的力学性态分析过程与结果,通过与实验结果的比较,改进了提速客车空气弹簧设计的方法,并提供了 重要的理论依据. 关 键 词:空气弹簧;非线性;有限元;模拟仿真;全实体单元;ABAQUS 中图分类号:O245;O246;TP319 文献标识码:A 文章编号:10005900(2005)01009004 The Nonlinear Finite Element Imitating of Airspring Mechanics Quality LAN Yan 1,2, CAI Hai tao 1, W ANG Chen guo 2, LI U Jin chao 2, JIANG Jun 3 (1.Mathematics Department of Central South Uni versity,Changsha 410083China; 2.Ins ti tute of Equipment,Chinese Academy of Rail way Seieuces,Beijing 100008China; 3.Mathematics Department of Xiangtan Uni versity,Xiangtan 411105China) Abstract We analyze the non-linear character of the air-spring by using the non-linear FE M,and give an si mu - lation method wi th whole substance unit first in China.In compu tation,we get the detail mechanical property analyzing process and result by ABAQUS software.After comparing with the experiment result,author also i mproves the design method of the air-spring. Key words: air-spring;non-linear;FEM;Si mulate;whole substance unit;AB AQUS 空气弹簧的性能对车辆运行的稳定性有重要的影响.新型空气弹簧的研制对改善和提高列车、高速列车和城市轨道车辆的运行品质,延长零部件的使用寿命都具有极其重要的意义,并对其他相关行业的发展也起着重要作用.从早期的主要依靠试验和实际运用中得到的数据来改进研制,到现在欧美、日本及我国的研究部门运用计算机模拟仿真设计的方法来研制开发空气弹簧,在空气弹簧的有限元计算和控制理论方面已经有了一些成果[4,5,6,9] ,不过,国际上的空气弹簧模拟仿真设计因其强非线性性,目前还没有找到解决空气弹簧的非线性性理论问题的办法.本文所做的工作是在文献[3,10,7]的基础上,对空气弹簧的非线性性给以一定说明,并第一次通过有限元软件AB AQUS [1]将空气弹簧的模拟仿真设计,用实体单元给出其相关的力学性态分析.通过与实验结果的比较,改进了提速客车空气弹簧设计的方法,并提供了重要的理论依据.1 空气弹簧模拟仿真中的非线性问题 空气弹簧的性能分析过程中,包含有几何非线性、材料非线性、边界非线性三大非线性问题,即为一三重耦合的强非线性问题.空气弹簧的胶囊和橡胶堆的材料是典型的超弹性材料 橡胶,其计算就牵涉到了材料的非线性,本文中空气弹簧的材料模型是依Moongy-Rovlin 模型[8]: W =C 1(I 1-3)+C 2(I 2-3) 给出,其中C 1,C 2的取值依赖于实验数据而得.对此模型,既可运用大变形非线性弹性有限元法中的全拉格朗日模式来求解,也可用更新拉格朗日模式来求解.胶囊和橡胶堆在模拟的过程中变形是很大的,传统有限元计算的小变形情况的理论就不再适用了,因而必须考虑有限元计算中的几何非线性问题.而 收稿日期:20031115 基金项目:湖南省教育厅基金资助项目(02C571) 作者简介:蔡海涛(1935-)男,湖南南县人,教授,博士生导师,E-mail:lanyan@https://www.360docs.net/doc/7d4047038.html,; 第27卷第1期2005年3月 湘 潭 大 学 自 然 科 学 学 报Natural Science Journal of Xiangtan University Vol.27No.1Mar.2005

相关文档
最新文档