斜拉桥有限元建模与模型修正

斜拉桥有限元建模与模型修正
斜拉桥有限元建模与模型修正

三维有限元建模方法的研究现状

三维有限元建模方法的研究现状 作者:陈琼 作者单位:复旦大学附属华山医院口腔科,上海,200040 刊名: 口腔医学 英文刊名:STOMATOLOGY 年,卷(期):2006,26(2) 被引用次数:18次 参考文献(25条) 1.李青奕;董寅生;陈文静预加载"L"形曲力学行为的有限元分析[期刊论文]-口腔医学 2004(01) 2.Hirabayashi M;Motoyoshi M;Ishimarn T Stresses in mandibular cortical bone during mastication:biomechanical considerations using a three-dimensional finite element method 2002(01) 3.许文翠;陈文静;董寅生垂直曲的力学行为的研究[期刊论文]-口腔医学 2002(01) 4.周学军;赵志河;赵美英包括下颌骨的颞下颌关节三维有限元模型的建立[期刊论文]-实用口腔医学杂志 2000(01) 5.李玲;张睿;于力牛基于CT断层影像的下颌骨及下牙列三维几何学仿真[期刊论文]-上海口腔医学 2000(04) 6.于力牛;常伟;王成焘基于实体模型的牙颌组织三维有限元建模问题探讨[期刊论文]-机械设计与研究 2002(02) 7.张富强;魏斌;李玲牙颌组织及修复体三维几何学、有限元模型的设计[期刊论文]-上海口腔医学 2002(03) 8.陈剑虹一种基于断层测量的快速反求系统关键技术研究[学位论文] 2000 9.魏洪涛;张天夫;曾晨光牙颌三维有限元模型生成方法的探讨[期刊论文]-白求恩医科大学学报 2000(02) 10.朱静有限元分析方法在口腔临床中的应用进展[期刊论文]-上海生物医学工程 2003(03) 11.Huiskes R;Chao EY A survey of finite element analysis in orthopedic biomechanics:the first decade [外文期刊] 1983(06) 12.王宁;吴凤鸣;周小陆金属烤瓷冠瓷颈缘与金属颈缘的三维有限元应力分析[期刊论文]-口腔医学 2004(04) 13.龚璐璐口腔修复生物力学中三维有限元法应用的研究进展及展望[期刊论文]-医用生物力学 2002(02) 14.Aydin AK;Tekkaya AE Stresses induced by different loading around weak abutments[外文期刊] 1992(06) 15.Verdonschot N;Fennis WM;Kuijs R Generation of three-dimensional finite models of restored human teeth using micro-CT techniques 2001(04) 16.张富强;魏斌;于力牛个性化牙颌组织三维有限元模型库的建立[期刊论文]-上海口腔医学 2004(02) 17.于力牛;尚鹏;王成焘适用于口腔修复学的模块化牙列有限元建模[期刊论文]-上海交通大学学报 2002(08) 18.于力牛;张睿;李玲模块化牙列三维有限元模型的建立[期刊论文]-上海口腔医学 2000(04) 19.Nagasao T;Kobayashi M;Tsuchiya Y Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models 2002(03) 20.李玲上下颌三维重建及有限元建模[学位论文] 2001 21.李志华;陈天云;刘剑上颌第一磨牙的三维有限元模型的建立[期刊论文]-实用临床医学 2001(01) 22.张彤;刘洪臣;王延荣上颌骨复合体三维有限元模型的建立[期刊论文]-中华口腔医学杂志 2000(05) 23.高勃;王忠义;施长溪牙冠表面形状测量造型方法[期刊论文]-实用口腔医学杂志 1999(04) 24.牛晓明;李江;吴清文利用CAD/CAE技术进行骨骼的计算机模拟仿真[期刊论文]-光学精密工程 1999(06) 25.蒋孝煜有限元法基础 1992

斜拉桥模型制作设计图

斜拉桥模型制作设计图 一、模型概况 斜拉桥主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行钢丝体系。 斜拉桥模型包括桥塔、主梁、斜拉索、桥墩以及基础。 模型全长18.2米,高3.46米,桥面宽0.55米,索96根。 斜拉桥模型三维图见图1、2。 图1 斜拉桥模型全桥三维图

图2 斜拉桥模型桥塔三维图 二、材料 全桥模型材料主要采用有机玻璃制作,主梁、主塔采用有机玻璃制作,斜拉索采用Ф4钢筋,桥墩以及基础为钢筋混凝土结构。 有机玻璃主要材料性能初步假设为:弹性模量E=3.6×103 N/mm2。斜拉索采用Ф4钢筋(Q235),强度标准值f yk=235N/mm2,弹性模量E=2.1×105N/mm2。 三、模型结构图 1、斜拉桥模型立面布置 斜拉桥模型包括桥塔、主梁、斜拉索以及桥墩。该桥为对称结构,以主梁跨中点为中心左右对称。 6号桥塔 斜拉索 混凝土桥墩 边墩 主梁 边墩 3 7号桥塔 图3 斜拉桥模型布置图(单位:㎜) 注:以后图表中尺寸均采用毫米为单位。 2、主梁

主梁全长18.2米,横截面见图4。 图4 主梁横截面图 主梁截面图(单位:mm) 3、塔 塔高3.16米,详细尺寸见图5~7。塔与梁不直接连接,依靠拉索连接。梁底距离塔横梁20毫米。 塔墩高0.65米,地面以上0.4米,地面以下开挖0.25米。 为了塔与墩连接牢固,墩上预留洞口,塔柱延伸至墩底部,然后浇注环氧砂浆填补洞口。塔与墩连接处还要加钢板锚固。塔与墩连接的详细构造见图15~17。

索塔立面图 索塔侧面剖面图 图5 塔立面、剖面图图6 塔侧面剖面图

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

GARTEUR 有限元模型修正与确认研究

收稿日期:2003207207;修订日期:2004203225 基金项目:教育部博士学科点专项基金(20010227012)资助项目 文章编号:100026893(2004)0420372204 GARTEUR 有限元模型修正与确认研究 费庆国,张令弥,郭勤涛 (南京航空航天大学振动工程研究所,江苏南京 210016) Case Study of FE Model Updating and Validation via an Air craft Model Structur e FEI Qing 2guo,Z HANG Ling 2mi,G UO Qin 2tao (Institu te o f Vi brati on Engi neering,Nanjing University of Aeronau tics and Astro nautics,Nanjing 210016,China)摘 要:待修正参数的选择以及修正后模型的质量评估是有限元模型修正的两个重要问题。以欧洲学术界广泛采用的GA RTEUR 飞机模型为例,利用基于灵敏度分析的模型修正方法,通过仿真算例研究参数选择对模型修正质量的影响,并以试验数据为目标值对有限元模型进行修正与确认。为全面评估模型的修正质量,引入三级标准对修正后有限元模型进行确认。 关键词:固体力学;模型确认;有限元法;模型修正;参数选择中图分类号:O 248121 文献标识码:A Abstr act:Parameter selection and quali ty validation are of g reat i mpo rtance in fini te element model updating.This paper presents so me results which demonstrate the relationship betw een parameter selection and updated model .s quality throu gh si mulation cases.Three q uali ty levels w ith corresponding validation criteria are emplo yed with an emphasis o n updated mod 2el .s predictio n ability.Results of updating based on exper i mental modal test data are sho w n as an application example.A n aircraft test structure,GA RTEUR,which is g enerally utilized in Europe,is employed in bo th the si mulation case and the exper i mental case.Sensi tivity 2based model updating appro ach is applied. Key wor ds:solid mechanics;model validation;finite element method;model updating;parameter selection 在航空工程中,准确的有限元模型对于动态响应预测以及动态设计至关重要。建模过程中的不确定因素,如离散化误差、材料物理参数的不确定性、边界条件的近似等,导致有限元模型必然存在误差。设计规范规定,有限元模型必须通过振动模态试验或者地面共振试验来检验[1]。 近30年来,有限元模型修正技术得到了长足的发展[2~6]。根据修正对象的不同可将修正方法分为矩阵型方法和设计参数型方法。后者物理意义明确,更具工程应用价值。本文采用基于灵敏度分析的设计参数型修正方法。 基于灵敏度分析的设计参数型修正方法主要包括待修正设计参数选择,灵敏度分析,参数修正以及模型确认等环节。 待修正设计参数的选择是模型修正的起始环节。通常,候选参数是有限元模型存在不确定性因素的参数。近20年虽然发展了很多种参数选择或者误差定位的策略与算法,工程应用中仍然难以准确无遗漏地确定误差参数。因此,有必要讨论参数选择对模型修正质量的影响。 模型确认是模型修正的检验环节。在当前的研究及工程应用中,通常只要求修正后模型的计算结果能够复现修正过程中利用的试验数据。事实上,为全面评估模型的质量,模型的复现能力与预测能力应予以同等重视[7]。本研究引入了三级质量标准对修正后的有限元模型进行确认。 本文采用G ARTE UR 飞机模型为研究对象,通过仿真算例来研究参数选择对模型修正质量的影响,并给出了利用振动模态测试结果对G AR 2TEUR 飞机模型的有限元模型进行修正与确认的结果。 1 模型修正方法与模型确认准则 (1)模型修正方法 模型修正可归结为以下的优化问题[8] Min p +R(p )+2 2,R(p )=f E -f A (p )s.t V L [p [V U (1) 其中:p 代表设计参数;f E ,f A 是结构动态特性试验与分析结果;R 代表残差;V L ,V U 是设计参数的下、上限。 令设计参数的初始值为p 0,动态特性f 是设计参数的隐函数,其泰勒展开式为 第25卷 第4期航 空 学 报 Vol 125N o 14 2004年 7月ACT A AERO NA U TICA E T AS TRO NA U TICA SINICA July 2004

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

斜拉桥建模实例

斜拉桥建模实例 我们拟定建立以下模型,见下图: 参数说明:桥面长度L1=100M,分100个桥面单元,每单元长度1M,桥塔长度L2=50M,分50个竖直单元,每单元长度1M,拉索单元共48个单元,左右对称,拉索桥面锚固端间隔为2 M,桥塔锚固端间隔为1M。 下面介绍具体建立模型的步骤: 步骤一,建立桥面单元。用快速编译器编辑1-100个桥面单元(具体过程略),参见下图: (注:在实际操作中桥面的截面形状可以自己拟定)

步骤二:建立桥塔单元。用快速编译器编辑101-150个桥塔单元(具体过程略),参见下图: (注:在实际操作中桥面的截面形状可以自己拟定,在分段方向的单选框内,一定要选择“竖直”,起点x=49,y=-20,终点x=49,y=30是定义桥塔的位置,这里我把它设在桥面中部,桥面下20米处,因为我做的桥塔截面为2m×2m的空心矩形,所以此处起点和终点x填49,请读者自己理解) 步骤三:拉索的建立。 A、先编辑桥塔左边部分24跟拉索单元。 点击快速编译器的“拉索”按钮,在拉索对话框内的编辑内容复选框选择编辑节点号勾上,编辑单元号:151-174,左节点号:1-48/2;右节点号:152-129;(注意:左节点1-48/2代表拉索在桥面的锚固点间距为2M),如下图:

编辑单元号:151-174,然后确定。如下图: B、建立桥面右半部分的24跟拉索。

在快速编译器中选择“对称”按钮,在“对称”对话框中的编辑内容4个复选框都勾上。 模板单元组:151-174;生成单元组:198-175;左节点号:55-101/2;右节点号:129-152;对称轴x=50,然后确定。见下图: 这样,我们就建好了拉索单元的模型。现在让我们来看一看整个模型的三维效果图:

ANSYS有限元分析与实体建模

第五章实体建模 5.1实体建模操作概述 用直接生成的方法构造复杂的有限元模型费时费力,使用实体建模的方法就是要减轻这部分工作量。我们先简要地讨论一下使用实体建模和网格划分操作的功能是怎样加速有限元分析的建模过 程。 自下向上地模造有限元模型:定义有限元模型顶点的关键点是实体模型中最低级的图元。在构造实体模型时,首先定义关键点,再利用这些关键点定义较高级的实体图元(即线、面和体)。这就是所谓的自下向上的建模方法。一定要牢记的是自下向上构造的有限元模型是在当前激活的坐标系内 定义的。 图5-1自下向上构造模型 自上向下构造有限元模型:ANSYS程序允许通过汇集线、面、体等几何体素的方法构造模型。当生成一种体素时,ANSYS程序会自动生成所有从属于该体素的较低级图元。这种一开始就从较高级的实体图元构造模型的方法就是所谓的自上向下的建模方法。用户可以根据需要自由地组合自下向上和自上向下的建模技术。注意几何体素是在工作平面内创建的,而自下向上的建模技术是在激活的坐标系上定义的。如果用户混合使用这两种技术,那么应该考虑使用CSYS,WP或CSYS,4命令强迫坐标 系跟随工作平面变化。 图5-2自上向下构造模型(几何体素) 注意:建议不要在环坐标系中进行实体建模操作,因为会生成用户不想要的面或体。

运用布尔运算:可以使用求交、相减或其它的布尔运算雕塑实体模型。通过布尔运算用户可直接用较高级的图元生成复杂的形体。布尔运算对于通过自下向上或自上向下方法生成的图元均有效。 图5-3使用布尔运算生成复杂形体。 拖拉或旋转:布尔运算尽管很方便,但一般需耗费较多的计算时间。故在构造模型时,如果用拖拉或旋转的方法建模,往往可以节省计算时间,提高效率。 图5-4拖拉一个面生成一个体〔VDRAG〕 移动和拷贝实体模型图元:一个复杂的面或体在模型中重复出现时仅需要构造一次。之后可以移动、旋转或拷贝到所需的地方。用户会发现在方便之处生成几何体素再将其移动到所需之处,这样 往往比直接改变工作平面生成所需体素更方便。 图5-5拷贝一个面 网格划分:实体建模的最终目的是为了划分网格以生成节点和单元。在完成了实体建模和建立了单元属性,网格划分控制之后,ANSYS程序可以轻松地生成有限元网格。考虑到要满足特定的要求,用户可以请求映射网格划分生成全部都是四边形、三角形或块单元。

有限元分析过程

有限元分析过程可以分为以下三个阶段: 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。 2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。 原始数据的计算模型,模型中一般包括以下三类数据: 1.节点数据: 包括每个节点的编号、坐标值等; 2.单元数据: a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据 3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据. 建立有限元模型的一般过程: 1.分析问题定义 在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。总的来说,要定义一个有限元分析问题时,应明确以下几点: a.结构类型; b.分析类型; c.分析内容; d.计算精度要求; e.模型规模; f.计算数据的大致规律 2.几何模型建立 几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点。 3.单元类型选择 划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。

工程数值方法与有限元分析

工程数值方法与有限元分析 (机械工程学院机械类专业) 课程号: 周学时:4 学分:3 课程类别: 预修课程:高等数学,线性代数,力学基础课 面向对象:机械类专业学生 教学方式:多媒体教学 教学目的和教学要求: 在科学研究与工程技术中,经常遇到数学模型的求解问题。然而在许多情况下,要获得模型问题的准确解往往是十分困难的,甚至是不可能的。因此,研究各种数学问题的近似解法非常必要。计算方法是一门与计算机应用密切结合的实用性很强的课程,它专门研究各种数学问题的一类近似解法,从一组原始数据出发,按照确定的运算规则进行有限步运算,最终获得问题的数值形式且满足精度要求的近似解。 通过对《计算方法》的学习,掌握数值计算的基本概念和基本理论,深入理解方法的设计原理与处理问题的技巧,重视误差分析与收敛性、数值稳定性,注重利用计算机进行科学计算能力的培养,并熟练掌握Matlab 软件,会用Matlab实现各种计算方法。 在此基础上进一步学习数值计算的集大成者-有限元方法, 了解有限元方法的基础知识及其在机械、机械电子领域中的应用,掌握有限元方法的基本原理与分析过程,包括静力学、动力学、非线性力学、热场、电磁场等的建模及分析。学生可使用有限元软件进行机械零件及系统的实例分析,并对分析结果进行评价,指导和优化机械零件及系统的设计。本课程面向机械电子专业及机械类相关专业的高年级本科生 课程简介: 内容主要包括:计算机上常用的数值计算方法以及有关的基本概念与理论,主要有误差、非线性方程求根、线性代数方程组的解法、插值与拟合、数值微分与数值积分、常微分方程初值问题的数值解法。并且算法面向计算机,注重培养学生运用计算机进行科学计算解决工程问题的能力。并熟练掌握Matlab 软件,会用Matlab实现各种计算方法。 有限元的分析与建模是一个机械工程师必须掌握的方法和技能。本课程为机械类专业的高年级学生核心课,使学生了解有限元方法的基本概念和基本理论,掌握有限元分析的基本处理方法,熟悉常用有限元分析软件在实际工程中的应用,最终培养学生在机械设计、机电系统设计中能有效的应用有限元方法。 主要内容及学时分配: 每周4学时,共16周 主要内容: ( O ) 绪论1学时 (一)误差2学时

随机地质建模技术方法简介

随机地质建模技术方法简介 李 燕 (胜利油田物探研究院,山东东营 257000) 摘 要:随机建模是指以已知的信息为基础,以随机函数为理论,应用随机模拟方法,产生可选的、等概率的储层模型方法。该方法承认控制点以外的储层参数具有一定的不确定性,即具有一定的随机性。Deautch等根据模拟单元的特征,将随机模型分为基于目标的随机模型和基于象元的随机模型。 关键词:随机建模;克立金方程;地质统计学;储层结构 地下储层本身是确定的,在每一个位置点都具有确定的性质和特征。但是,地下储层又是复杂的,它是许多复杂地质过程(沉积作用、成岩作用和构造作用)综合作用的结果,具有复杂的储层结构(储层相)空间配置及储层参数的空间变化。在现有资料不完善的条件下,人们对它的认识总会存在一些不确定的因素,难于掌握任意尺度下储层的真实特征或性质。特别是对于连续性较差且非均质性强的陆相储层来说,更难于精确表征储层的特征。从而认为储层描述便具有不确定性即随机性。 1 随机建模技术的产生和发展 在地质统计学技术的形成和发展中,法国枫丹白露地质统计学与数学形态学中心起了重要的作用,其核心人物M atheron是地质统计学的创始人。他的许多学生(如Journel,David等)后来都成了该领域的继承者和发展者。在随机建模的发展中, Jo urnel领导的斯坦福大学油藏预测中心则是令人起敬的先锋。他们研制的GSLIB是公认的较完整、先进的地质统计学软件包。近年来研制了许多随机建模的算法,并做了应用研究。另外加拿大的David、原英国BP公司的H aldorsen、加拿大FSS International公司的Srivastava、美国斯坦福大学的Deutsch以及科罗拉多矿业学院、得克萨斯大学澳斯万分校、挪威计算中心、澳大利亚新南威尔士大学等处的一些学者都在这一领域有很高的造诣。 地质统计学创建于本世纪60年代初期,当时人们基本上把克里金作为地质统计学的同义词。70年代末,Jo urnel(1978)在所著的《Minging Geostatistics》一书中,介绍了随机建模的基本思想。80年代中后期,尤其在90年代,随着克里金方法不但被用作插值方法,越来越多的被用来建立数据的条件累积分布函数(CCDF),随机建模得到了飞速发展。出于对解决不同问题的需要以及对时间、经费、人力和软硬件的考虑,发展了种类繁多、功能不同的随机建模方法和算法。 地质统计学引入我国较晚,早期都把克里金认为是地质统计学。随机建模仅在近几年才得到重视,并引入油藏勘探开发研究中。西安石油学院张团峰、王家华等人(1995a,b)在引进国外资料的基础上,研制了一套储层地质统计分析系统(GASOR2.0),可用于建立储层模型。北京石油勘探开发科学研究院刘明新等人在“八五”期间利用分形理论进行了储层建模研究。胜利油田“八五”期间在其研制的油藏描述软件中也加进了随机建模内容。一些青年学者在利用随机建模解决油田问题方面做了有益的工作;石油大学纪发华(1994)在其博士论文中利用随机建模技术对油藏特征做了研究,利用序贯指示模拟、模拟退火研究了渗透率的空间分布。文键(1995)在其博士论文讨论了随机建模技术应用中的几个问题: 统计特征量与储层空间分布非均质性特征的关系; 储层空间分布不确定性对开发可行性研究的影响;统计特征量与样本间距、容量的关系;得出了很有价值的经验(诸如岩性指示变差函数与砂岩面密度结合和表征砂体连续性特征),同时还利用序 收稿日期:2009-07-28 作者简介:李燕(1973—),女,现从事岩石物理反演工作。

结构有限元及其应用软件

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述(中英文): 本课程是一门重要的结构计算分析课程,通过多媒体教学和上机练习,系统学习结构有限元FEM的基本原理和方法,熟悉掌握通用有限元应用软件ANSYS进行结构静力和动力分析的方法和步骤,并初步掌握使用ANSYS进行海工典型结构强度计算的方法。 Structural finite element method and its application software is an important course of structural calculation and analysis. Through multimedia teaching and computer practice, the basic principles and methods of Finite Element Method (FEM) are learned systematically. The general finite element application software ANSYS for the methods and procedures of structural static and dynamic analysis are mastered.At the same time, the strength calculation method of typical ocean engineering structures using ANSYS is preliminarily mastered. 2.设计思路: 有限元方法是一种现代设计方法,应用于结构设计中,是一种具有重要经济意义和巨大潜力的先进结构设计技术。因此选择该课程作为结构设计方面的一门必修课程,主要介绍结构有限元的基本原理和方法,还选择了通用的有限元软件ANSYS进行示例分析。包括要求掌握有限元法的基本思想和基本原理、平面刚架结构的有限元法、弹

机械结构有限元分析

机械结构有限元分析 有限元分析软件ANSYS在机械设计中的应用 摘要:在机械设计中运用ANSYS软件进行有限元分析是今后机械设计发展的必然趋势,将有限元方法引入到机械设计课程教学中,让学生参与如何用有限元法来求解一些典型零件的应力,并将有限元结果与教材上的理论结果进行对照。这种新的教学方法可以大大提高学生的学习兴趣,增强学生对专业知识的理解和掌握,同时还可以培养学生的动手能力。在机械设计课程教学中具有很强的实用价值。 关键词:机械设计有限元 Ansys 前言:机械设计课程是一门专业基础课,其中很多教学内容都涉及到如何求取零件的应力问题,比如齿轮、v带、螺栓等零件。在传统的教学过程中,都是根据零件的具体受力情况按材料力学中相应的计算公式来求解。比如,在求解齿轮的接触应力时,是把齿轮啮合转化为两圆柱体的接触,再用公式求解。这些公式本身就比较复杂,还要引入各种修正参数,因此我们在学习这些内容时普遍反映公式难记,学习起来枯燥乏味,而且很吃力。 近年来有限元法在结构分析中应用越来越广泛,因此如果能将这种方法运用到机械设计课程中,求解一些典型零件的应力应变,并将分析结果和教材上的理论结果进行对比,那么无论是对于提高学生学习的热情和积极性,增强对重点、难点知识的理解程度,还是加强学生的计算机水平都是一件非常有益的事情。 由于直齿圆柱齿轮的接触强度计算是机械设计课程中的一个重要内容,齿轮强度的计算也是课程中工作量最繁琐的部分。下面就以渐开线直齿圆柱齿轮的齿根弯曲疲劳强度的计算为例,探讨在机械设计课程中用ANSYS软件进行计算机辅助教学的步骤和方法,简述如何将有限元方法应用到这门课程的教学中。 1.传统的直齿圆柱齿轮齿根弯曲疲劳强度的计算 传统方法把轮齿看作宽度为b的矩形截面的悬臂梁。因此齿根处为危险剖面,它可用30。切线法确定。如图l所示。 作与轮齿对称中心线成30。角并与齿根过渡曲线相切的切线,通过两切点作平行与齿轮轴线 的剖面,即齿根危险剖面。理论上载荷应由同时啮合的多对齿分担,但为简化计算,通常假设全部载荷作用于齿顶来进行分析,另用重合度系数E对齿根弯曲应力予以修正。 由材料力学弯曲应力计算方法求得齿根最大弯曲应力为:

GOCAD 软件三维地质建模方法

GOCAD 软件三维地质建模方法 1建模方法 GOCAD 三维地质建模主要包括两类:一类是构造模型(structural modeling)建模,一类是三维储层栅格结构(3D Reservoir Grid Construction)建模。 (1)构造模型(structural modeling)建模建立地质体构造模型具有非常重要的意义。通过建立构造模型能够模拟地层面、断层面的形态、位置和相互关系;结合反映地质体的各种属性模型的可视化图形,还能够用于辅助设计钻井轨迹。此外,构造模型还是地震勘探过程中地震反演的重要手段。 (2)三维储层栅格结构(3D Reservoir Grid Construction)建模根据建立的构造模型,在3D Reservoir Grid Construction 中可以建立其体模型;同时地质体含有多种反映岩层岩性、资源分布等特性的参数,如岩层的孔隙度、渗透率等,可对这些物性参数进行计算和综合分析,得到地质体的物性参数模型。 当采样值在地质体内密集、规则分布时,可以直接建立采样值到应用模型的映射关系,把对采样值的处理转化为对物性参数的处理,这样可以充分利用计算机的存储量大、计算速度快的特点。 当采样值呈散乱分布,并且数据量有限时,需要采用数学插值方法,拟合出连续的数据分布,充分利用由采样值所隐含的数据场的内部联系,精确的模拟模型中属性场的分布。 图1-1孔隙度参数模型分布图 2 建模流程 2.1数据分析 (1)钻孔、测井分布及数据分析 支持三维建模的数据主要为钻孔和测井。由于对区域范围和建立三维地质建模的精度要求不同,得对所得到的钻孔、测井的分布和根据其取得的数据进行分析和处理是的必要。根据钻孔、测井的分布范围和稠密程度可以大致确定地层的分布界限,对钻孔较少区域采取补充钻探或者采用其它方法进行处理。 (2)地质剖面

有限元建模基本原则

?确保精度 ?控制规模 ?确保精 度: 表格1:误差分析及处理 即使采用较少的单元和较低的差值函数阶次,也能获得较满意的离散精度。例如,假设场函数在整个结构内的分布是二次函数,则用一个二次单元离散就能得到场函数的精确解。如果场函数是线性或接近于线性分布,则用线性单元离散也能得到很好的离散精度。但实际问题的场函数往往很复杂(如存在应力集中),在整个结构内很难遵循某一种函数规律,某些部位可能按高阶函数规律分布,某些部位又可能接近低阶函数的性质。故,在划网格时,结构内的不同部位可能采用不同密度和阶次的网格形式。 综上所述:提高精度的措施: 1?提高单元阶次(单元插值函数完全多项式的最高次数) 阶次越高,插值函数越能逼近复杂的真实场函数,物理离散精度越高。 其次,高阶单元的边界可以是曲线或曲面,因此在离散具有曲线或曲面边界 的结构时,几何离散误差也较线性单元小。所以当结构的场函数和形状较复杂时,可以采用这种方法来提高精度。 单元的阶次越高,收敛速度越快。 2?增加单元数量 等同于减小单元尺寸,尺寸减小时,单元的插值函数和边界能够逼近结构的 实际的场函数和实际边界,物理和几何离散误差都将减小。当模型规模不太大时, 可以采用这种方法提高精度。 但是值得注意的是:精度随着单元数量增加是有限的,当数量增加到一定程

度后,继续增加单元数量,精度却提高甚微,再采用这种方法就不经济了。实际操作时可以比较两种单元数量的计算结果,如果两次计算的差别较大,可以继续增加单元数量,否则停止增加。 3.划分规则的单元形状 单元形状的好坏将影响模型的局部精度,如果模型中存在较多的形状较差的单元,则会影响整个模型的精度。 直观上看,单元各条棱边或各个内角相差不大的形状是较好的形状。 4.建立与实际相符的边界条件 如果模型边界条件与实际工况相差较大,计算结果就会出现较大的误差,这 种误差有时甚至会超过有限元法本身带来的原理性误差。 可采用组合结构模型法,这种方法可以较好地考虑影响较大的结构间的相互作用,避免人为设置边界条件带来的误差。或采用一些测试结果,将计算值与测试值进行比较,以逐步将边界条件调整合理。 5.减少模型规模 计算误差与运算次数有关,运算次数越多,误差累计就可能越大,所以采取适当的措施降低模型规模,减少运算次数,也可能提高计算精度。 模型规模直观上可以用节点数和单元数来衡量,一般讲,节点数和单元数越多,模型规模越大,反之则越小。 在估计模型规模时,除考虑节点的多少外,还应考虑节点的自由度数,总刚度矩阵的阶次等于节点数与其自由度数的乘积,即结构的总自由度数。 减小模型规模的方法: (1)对模型进行处理:建立几何模型时,并不总是照搬结构的原有形状和尺寸,有时要做适当的简化和变换处理。合理的近似和变换可以降低模型规模,而仍然保持一定的工程精度要求。几何模型的处理方法有:降维处理、细节简化、等效变化、对称性利用和划分局部结构等。 此处很重要,参考《有限元法-原理、建模及应用》第二版.杜平安编著154 页.左下角 (2)采用子结构法:将一个复杂的结构从几何上分割为一定数量的相对简单的子结构,首先对每个子结构进行分析,然后将每个子结构的计算结果组集成整体结构的有限元模型。这种模型比直接离散结构所得到的模型要相对简单的多,从而使模型规模得到控制。这种方法适用于静力分析和动力分析。还有三种方法,不适合初级学者,待续… 看abaqus视频时了解到,对于三角形单元,一般要用二阶单元来提高精度,二阶单元会增加自由度数;但对于四边形或六面体单元,一般一阶单元已有很好的精度,不必使用二阶单元。

有限元分析基础教程

有限元分析基础教程

前言 有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。 一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。 本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。 本教程力求体现以下特点。 (1)考虑教学适应性:强调对学员在数学原理、分析建模、软件应用几个方面的培养目标要求,注重学员在工程数值方面的基础训练,培养学员“使用先进软件+分析实际问题”的初步能力。 (2)考虑认知规律性:力求按照有限元分析方法的教学规律和认知规律,在教材中设计了“基本变量、基本方程、求解原理、单元构建”这样的模块;并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供实用的MATLAB实际编程和数值实例;在每一章还进行要点总结,给出典型例题,以引导学员领会有限元方法的实质,体现教材的启发性,有利于激发学员学习兴趣和便于自学。 (3)考虑结构完整性:本教程提供完整的教材结构:绪论、正文、典型例题、基于MATLAB的编程算例与数值算例、具有一定深度的ANSYS算例、各章要点、习题、专业术语的英文标注、关键词中文和英文索引、参考文献,便于学员查阅。 (4)内容上的拓展性:除基本内容外,还介绍了较广泛的应用领域,包括:静力结构分析、结构振动分析、传热过程分析、弹塑性材料分析;提供了有关的典型问题的建模详细分析过程,基本上反映了有限元分析在一些主要领域的应用状况及建模方法。 (5)编排上的逻辑性:本教程力求做到具有分明的层次和清楚的条理,在每一章中重点突出有限元方法的思想、数理逻辑及建模过程,强调相应的工程概念,提供典型例题及详解,许多例题可作为读者进行编程校验的标准考题(Benchmark),还提供了对应的MATLAB编程算例与ANSYS算例,特别是介绍了基于APDL参数化的ANSYS建模方法,并给出具体的实例,力求反映有限元分析的内在联系及特有思维方式。

地质体三维建模方法与技术指南

内容简介 本书系统分析了目前国内外地质体三维模拟技术和应用软件开发的现状,由此提出了不同领域地质体 三维建模的数据需求、技术流程和主要建模软件的数据接口;详细阐述了Micmmine、surpac、Mapgis、3D-Grid等三维地质体模拟软件在矿山、地下水、城市地质等领域的应用实践和示范工作,以及提交的相 应三维模型成果;并对今后如何展开相关工作提出了建议。 本书可作为开展三维地质建模工作的指导用书,同时亦可作为地质及相关专业学生的专业参考书。 【节选】 (一)地下水三维地质建模所需数据类型 在地下水三维地质建模中,会涉及的地质现象主要有:地貌(或地形)、地层、褶 皱、断裂、透镜体及侵人体等,为刻画这些地质现象,就需要用到地表数字高程模型数据 (DEM)、遥感影像数据、地理信息数据、钻孔数据及剖面数据等。具体来说,为刻画三 维模型中的各种地质现象,需要的相关数据包括以下几种: 1.地表数字高程模型(DEM)数据 地表数学高程模型数据用于生成三维地质结构模型顶面(地表面),此部分数据可以 从测绘主管部门获取或向国家测绘局基础地理信息中心购买,从基础地理信息中心购买的 数据属于标准数据,数据以ARCINFO数据格式存放。DEM数据比例尺有多种,其中,全 国的1:25万数据库在空间上包含816幅地形图数据,覆盖整个国土范围,国外部分沿国 界外延25公里采集数据。地貌统一在TERLK层中存放,包括等高线、等深线、冲沟等, DEM等高线的等高距,在全国范围内共分40 m、50 m、100 m三种,使用时可参照等分 布图确定。对于标准数据,可以根据需要进行数据格式转换、比例变换、投影变换等多种 处理。 另外,如果不能获取现成的DEM数据,也可以自己使用专门的地理信息系统软件用 地形图生产。即把纸质地形图数字化及几何纠正校准,然后进行高程信息的提取——对等 高线进行屏幕矢量跟踪并对等高线标赋高程值,同时编辑、检查、拼接以生成各种拓扑关 系,最后用软件进行内插值、裁剪生成DEM数据。 2.遥感影像数据

相关文档
最新文档