惯性传感器概述

惯性传感器概述
惯性传感器概述

微陀螺惯性测量系统

-原理及应用

测量元件概述

哈尔滨工业大学空间控制与惯性技术研究中心伊国兴

联系方式

伊国兴

哈工大科学园E2栋405 86402350-4051

150********

ygx@https://www.360docs.net/doc/7d516692.html,

授课内容

授课内容

微小型惯性器件的工作原理

微陀螺惯性系统的基本组成和工作原理 微陀螺及加速度计的测试和标定方法 微陀螺惯性系统的测试方法

导航的基本原理和算法

微陀螺惯性测量系统应用

学时安排及要求

学时安排及要求

18学时

授课10学时

实验8学时

周六9-10节

试验

考核

导航

将与动物体从甲地导引到目的地乙地的技术。

导航是一门古老而又年轻的技术。

古代导航

航海

惯性导航

惯性导航是利用惯性敏感

元件(陀螺仪、加速度计)

测量载体相对于惯性空间

的线运动和角运动参数,

在给定的初始条件下,输

出载体的姿态参数和导航

定位参数。

惯性导航基本原理

惯性导航的基本工作原理是以牛顿力学定律为基础的,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置信息等。

陀螺仪

1765,俄国数学家和物理学

家欧拉发表《刚体绕定点运

动理论》,导出刚体绕定点

转动的动力学方程,为陀螺

仪理论奠定了基础。

1778,法国科学家拉格朗日

建立了在重力力矩作用下定

点转动刚体的运动微分方程

组。

1852年法国科学家Foucault研制成世界上第一台试验用陀螺罗经。

1908年Anschutz在德国、1909年

Sperry在美国,先

后制成了用于舰船

导航的陀螺罗经。

这可以作为陀螺仪

应用技术的形成和

发展的开端。

二战末期,在德国的V-2火箭上第一次装上了初级的惯性制导系统。

1936年开始研制共发射1千3百多枚。

冯·布劳恩博士。

50年代MIT和北美航空公司先后研制出惯性级精度的液浮陀螺仪和三轴陀螺平台的惯性系统方案(Charls Stark Draper)。

1954年惯导系统在飞机上试验成功(穿越美国)。

1958年“舡鱼”从珍珠港附近潜入深海,依靠惯导系统穿越北极到达英国波特兰港,历时21天,航程8146mile。这表明惯性导航技术在50年代已经趋于成熟。

60年代初期,出现了比液

浮陀螺结构简单、成本低

的动力调谐陀螺。

60年代末期用液浮陀螺仪、气浮陀螺仪和动力调谐陀

螺仪构成的平台式惯导系

统大量装备各种载体。

20世纪50年代初美国伊利

诺伊大学诺尔德西克

(Nordseick A. T.)教授提出静电陀螺仪概念。 1976年美国霍尼韦尔公司的SPN-GEANS装备B52,系统长时间定位误差0.02n mile/h。

70年代以静电陀螺仪构成的高精度平台式惯导系统进入实用阶段。

激光陀螺仪达到了惯性级精度。

相继出现了光纤陀螺仪和半球谐振陀螺仪。

80年代,以激光陀螺仪构成的捷联式惯导系统获得了工程应用,这是惯性导航技术发展进程中又一个重要的

里程碑。

90年代以来,采用微电子

机械加工技术制造的各种微传感器和微机电惯性仪表脱颖而出,年增长速度达到30%。

惯性技术发展历史

定位传感器

惯导法包括陀螺仪和加速度计,使用测量值的一次积分计算相对于起始位置的偏移量。 2.1 测距法 测距法基于简方程:0n i i S S ==?∑ 其中:S 为第n 个采样周期时车轮移动的总路程;i S ?为第i 个采样周期内车轮移动的路程。 测距法的误差包括系统误差和非系统误差。系统误差是由移动系统运动学不完整性引起的,如不等轮直径或有关精确轴距的不确定性等。非系统误差是由轮子和地面相互作用引起的,如轮子的滑动或颠簸。 2.2 惯导法 惯导法传感器包括陀螺仪和加速度计。陀螺仪测量回转速度,加速度计测量加速度。测量值的一次积分或两次积分可分别求出角度或位置参量。陀螺仪也称相对测角法,即测量角速度值,通过对其积分累积计算相对于起始方向的偏转角度,0 ()t t w t dt δ=?。这里δ为在t 时刻相对起始方向的偏转角度;w 为瞬间角速度;0 t 为起始时刻。 相对测角法所采用的传感仪通常是陀螺仪。目前,在地面应用的高性能陀螺仪误差小于行走路

程的0.1%,而低性能的陀螺仪误差小于行走路程的1%,但低性能的陀螺仪比较偏高。 1、绝对定位技术及其传感器 绝对定位目前仍处于研究阶段,比较成熟的技术包括全球定位系统、活动目标法和路标导航法。同时,绝对偏转角的测量也应用移动体的姿态控制,他采用地球磁场作为参照坐标,确定移动载体的姿态。采用的传感器主要是感应式磁通量罗盘,其分辨率能够达到1% 。 3.1 绝对定位技术采用的测量方法 3.1.1 三边测量法 三边测量法是基于移动物体对选定的固定点的距离来确定移动物体位置的方法。如图一所示,在三边测量法导航系统中,通常有三个或多个固定点,移动物体根据距离这些点的距离,用几何三角法就可确定移动物体在坐标系中的坐标(x,y)。全球定位系统就是一个三边测量法的例子。

MEMS传感器的现状及发展前景

M E M S传感器的现状及 发展前景 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

毕 业 设 计 指 导 课 论 文 MEMS传感器的现状及发展前景 摘要:MEMS传感器是随着纳米技术的发展而兴起的新型传感器,具有很多新的特性,相对传统传感器其具有更大的优势。在追求微型化的当代,其具有良好的发展前景,必将受到各个国家越来越多的重视。文章首先介绍了MEMS传感器的分类和典型应用,然后着重对几个传感器进行了介绍,最后对MEMS传感器的发展趋势与发展前景进行了分析。 关键词:MEMS传感器;加度计;陀螺仪;纳米技术;微机构;微传感器StatusandDevelopmentProspectofMEMSSensors Abstract:MEMSsensorisanewtypeofsensorwiththedevelopmentofnanotechnology.Ithasma nynewfeatures,whichhasagreatadvantageovertraditionalsensors.Inthepursuitofminia turizationofthecontemporary,itsgoodprospectsfordevelopment,willbesubjecttomorea

ndmoreattentioninvariouscountries.Firstly,theclassificationandtypicalapplicatio nofMEMSsensorareintroduced.Then,severalsensorsareintroduced.Finally,thedevelopm enttrendanddevelopmentprospectofMEMSsensorareanalyzed. Keywords:MEMSsensor;accelerometer;gyroscope;nanotechnology;micro- mechanism;micro-sensor 目录 一、引言 MEMS传感器是采用微机械加工技术制造的新型传感器,是MEMS器件的一个重要分支。1962年,第一个硅微型压力传感器的问世开创了MEMS技术的先河,MEMS技术的进步和发展促 进了传感器性能的提升。作为MEMS最重要的组成部分,MEMS传感器发展最快,一直受到各发达国家的广泛重视。美、日、英、俄等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定发展计划并投入巨资进行专项研究。 随着微电子技术、集成电路技术和加工工艺的发展,MEMS传感器凭借体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成以及耐恶劣工作环境等优势,极大地促进了传感器的微型化、智能化、多功能化和网络化发展。MEMS传感器正逐步占据传感器市场,并逐渐取代传统机械传感器的主导地位,已得到消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域的青睐。

传感器技术知识点

1-1衡量传感器静态特性的主要指标。说明含义。 1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。 2、回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。 3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致 程度。各条特性曲线越靠近,重复性越好。 4、灵敏度——传感器输出量增量与被测输入量增量之比。 5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。 6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。 7、稳定性——即传感器在相当长时间内仍保持其性能的能力。 8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。 9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。 1-2计算传感器线性度的方法,差别。 1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。 2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。 3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等 并且最小。这种方法的拟合精度最高。 4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。 1-3什么是传感器的静态特性和动态特性?为什么要分静和动? (1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。 动态特性:反映传感器对于随时间变化的输入量的响应特性。 (2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。 1—4 传感器有哪些组成部分?在检测过程中各起什么作用? 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 1-5传感器有哪些分类方法?各有哪些传感器? 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 1-6 测量误差是如何分类的? 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 1-7 弹性敏感元件在传感器中起什么作用? 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 1-8. 弹性敏感元件有哪几种基本形式?各有什么用途和特点? 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 Z-1 分析改善传感器性能的技术途径和措施。

微惯性传感器

微惯性传感器 微惯性传感器(Micro inertia sensor)包括微加速度计(Microaccelerometer)和微陀螺仪(Microgyroscope),它们是微机电系统(MEMS)的一类。微加速度计的功能是测量载体的加速度,微陀螺仪的功能是测量载体的角速度。 MEMS简介 Mems英文micro electro mechanical systems的缩写,即微电子机械系统。MEMS 是建立在微米/纳米技术(micro/nanotechnology)基础上的21世纪前沿技术,使之对微米/纳米材料进行设计、加工、制造和控制的技术。它可将机械构件、光学系统、驱动部件、电控系统、数字处理系统集成为一个整体单元的微型系统。这种微电子机械系统不但能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部指令采取行动。它用微电子技术和微加工技术(包括硅体微加工、硅表面微加工、LIGA和晶片键合等技术)相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器、驱动器和微系统。 微电子机械系统(MEMS)是近年来发展起来的一种新型多学科交叉的技术,该技术将对未来人类生活产生革命性的影响,它涉及机械、电子、化学、物理、光学、生物、材料等学科。 MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的。MEMS的特点是: 1)微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。 2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。 3)批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS。批量生产可大大降低生产成本。 4)集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。 5)多学科交叉:MEMS涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多尖端成果。 MEMS发展的目标在于,通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新技术领域和产业。MEMS可以完成大尺寸机电系统所不能完成的任务,也可嵌入大尺寸系统中,把自动化、智能化和可靠性水平提高到一个新的水平。21世纪MEMS将

无线传感器网络定位

无线传感器网络的定位 摘要 无线传感器网络节点自身定位至关重要,在军事和民用领域中有着广泛的应用前景.目前的定位算法主要分为两种类型,即基于距离的定位算法和距离无关的定位算法.这两种类型的算法各有优势和不足.考虑了两种算法的优缺点,为了有效抑制复杂环境对无线传感器网络节点定位精度的影响,以三边定位算法为基础,提出了三边质心定位法, DV-HOP改进法两种较为精确的改进算法. 对于问题一,为了改进三边测距法,我们引进质心法,建立基于三边测距法、质心法的三边质心定位法(通过计算相交圆的交点,在每两个圆相交产生的两个交点中找到与另一个圆距离较小的点,共可找到三个点,用这三点所确定的区域的质心来估计未知节点的坐标),在此基础上我们继续运用加权补偿法,对区域定位误差加以考虑,求得更准确的未知节点的坐标. 对于问题二,我们采用DV-HOP改进法,首先确定各节点之间的最小跳距即最小跳数,由此估算出各节点之间的距离,再结合三角测量法,三边算法,多次计算取平均值,最终确定各未知节点的坐标. 对于问题三:针对本问,我们采用三边测量法、三边质心定位法、DV-HOP测量法,分别对已知仿真算例中的未知节点进行定位运算,同时借助MATLAB软件进行求解,最后得出由未知节点实际坐标,结果见附表二. 对于问题四,首先,我们将通过三种方法求出的各未知节点坐标值与附件中所给出的数据进行对比观察,然后由此总结分析三种方法的合理性和优缺点,比较三种算法的优劣. 鉴于所给出的三种算法,基于本问题所给出的信息量(未知节点到周围三个信标节点的距离,各信标节点的坐标,各未知节点的真实坐标,仿真算例),DV-HOP改进法所得结果较为精确. 关键词:无线网络定位三边质心定位法加权补偿法DV-HOP改进法

基于MPU6050的INS惯性导航和实时姿态检测系统

基于MPU6050的INS惯性导航和实时姿态检测系统 1.项目目标及功能说明 1.1项目目标 学习使用正点原子探索者开发板,并熟悉开发板上的MPU6050六轴传感器的工作原理和各函数的调用过程。同时学习开发板的扩展接口,尝试在开发板上扩展蓝牙模块,并实现开发板与手机等含有蓝牙模块的电子设备通过蓝牙连接并进行数据的传输。在完成上述内容的基础上,实现将MPU6050六轴传感器的加速度计和陀螺仪的数据传送到手机上,在手机上实现陀螺仪的变化效果展示。同时通过串口将MPU6050数据传送到电脑上,通过Matlab编程处理数据,实现惯性导航的简单展示。 1.2系统功能说明 系统最主要的功能有两个:一个是在手机端能够展示开发板上MPU6050陀螺仪的姿态变化,通过一个立方体的转动来表示陀螺仪的转动;另一个是在电脑端能够读取MPU6050的数据,并通过对数据的处理还原数据中存储的MPU6050的姿态变化,简单展现出惯性导航的效果。 在实现系统最主要的两个功能过程中,还需要实现一些基础功能。开发板能够通过蓝牙与手机连接并传输数据;开发板能够通过串口将数据发送出去;在电脑端能够读取开发板上串口输出的数据等。

2.需求分析 惯性导航系统用于各种运动机具中,包括飞机、潜艇、航天飞机等运输工具及导弹,然而成本及复杂性限制了其可以应用的场合。但是,存在一种情形: 卫星一旦突然因故障、敌方打击或干扰(如太阳风暴)等原因无法提供服务,这对依赖GPS、北斗等卫星导航系统作为唯一PNT(Position、Navigation、Time)信息来源的系统来说可能是致命的灾难。 作为目前为止卫星导航系统最好的备援——惯性导航系统(INS),将于届时发挥出巨大的作用,其精度完全可以媲美GPS等卫星导航系统。并且它不需要外部参考就可确定当前位置、方向及速度,从而使它自然地不受外界的干扰和欺骗。 定位、导航和授时服务对军队而言就像氧气对人类一样不可或缺,因此通过研究新机理、研制新设备、开发新算法,以摆脱人员和系统设备对GPS的依赖,具有极大的战略意义。 姿态监测系统可广泛应用于关键资产姿态变化的无线实时监控。由于目前移动智能终端设备的数量和质量逐步提升,因此,通过计算机上传统的上位机软件进行姿态监测,逐渐暴露出了自身的缺点——串口传输无法实现无线监测、计算机相比智能终端便携性极差。 因此,使用无线传输(蓝牙、红外、WIFI、GSM等)的技术,开发一款在移动智能终端可以实时显示物体姿态的应用,具有很高的实用价值和广泛的市场应用前景。

惯性导航仪的工作原理

惯性导航仪的原理 惯性导航系统(INS,Inertial Navigation System)也称作惯性参考系统,是一种不依赖于外部信息、也不向外部辐射能量(如无线电导航那样)的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。 惯性导航系统(英语:INS )惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。 惯性导航系统属于推算导航方式,即从一已知点的位置根据连续测得的运动体航向角和速度推算出其下一点的位置,因而可连续测出运动体的当前位置。惯性导航系统中的陀螺仪用来形成一个导航坐标系,使加速度计的测量轴稳定在该坐标系中,并给出航向和姿态角;加速度计用来测量运动体的加速度,经过对时间的一次积分得到速度,速度再经过对时间的一次积分即可得到距离。 惯性导航系统至少包括计算机及含有加速度计、陀螺仪或其他运动传感器的平台(或模块)。开始时,有外界(操作人员、GPS接收器等)给 INS 提供初始位置及速度,此后 INS 通过对运动传感器的信息进行整合计算,不断更新当前位置及速度。 INS 的优势在于给定了初始条件后,不需要外部参照就可确定当前位置、方向及速度。 通过检测系统的加速度和角速度,惯性导航系统可以检测位置变化(如向东或向西的运动),速度变化(速度大小或方向)和姿态变化(绕各个轴的旋转)。它不需要外部参考的特点使它自然地不受外界的干扰或欺骗。 陀螺在惯性参照系中用于测量系统的角速率。通过以惯性参照系中系统初始方位作为初始条件,对角速率进行积分,就可以时刻得到系统的当前方向。这可以想象成被蒙上眼睛的乘客坐在汽车中,感觉汽车左转、右转、上坡、下坡,仅根据这些信息他知道了汽车朝哪里开,但不知道汽车是快,是慢或是否汽车滑向路边。 加速度计在惯性参照系中用于测量系统的线加速度,但只能测量相对于系统运动方向的加速度(由于加速度计与系统固定并随系统转动,不知道自身的方向)。这可以想象成一个被蒙上眼睛的乘客在汽车加速时向后挤压座位,汽车刹车时身体前倾,汽车加速上坡时下压座位,汽车越过山顶下坡时从座位上弹起,仅根据这些信息,乘客知道汽车相对自身怎样加速,即向前、向后、向上、向下、向左或向右,但不知道相对地面的方向。 然而,通过跟踪系统当前角速率及相对于运动系统测量到的当前线加速度,就可以确定参照系中系统当前线加速度。以起始速度作为初始条件,应用正确的运动学方程,对惯性加速度进行积分就可得到系统惯性速率,然后以起始位置座作初始条件再次积分就可得到惯性位置。

基于惯性传感器的机器人姿态监测系统设计说明

基于惯性传感器的机器人姿态监测系统设计 一、设计背景 空间飞行器的惯性测量系统、机器人的平衡姿态检测、机械臂伸展确定等许多方面都需要测量物体的倾斜和方向等姿态参数。机器人的运动过程中要不断的检测机器人的运动状态,以实现对机器人的精确控制。?本文研究的基于MEMS 惯性传感器姿态检测系统用于检测自平衡机器人运动时姿态,以控制机器人的平衡。 随着微机电系统(MEM)技术的发展,采用传感器应用到姿态检测系统上的条件变得成熟。基于MEMS技术的加速度传感器和陀螺仪具有抗冲击能力强、可靠性高、寿命长、成本低等优点,是适用于构建姿态检测系统的惯性传感器。利用MEMS 它螺仪和加速度传感器等惯性传感器组成的姿态检测系统,能够通过对 重力矢量夹角和系统转动角速度进行测量,从而实时、准确地检测系统的偏转角度。 由于惯性传感器随着时间、温度的外界变化,会产生不同程度的漂移。通过对陀螺仪和加速度计的采集数据进行数据融合,测量的角度与实际的角度相吻合,取得了良好的控制效果。同时该系统具有独立,易用的特点,其应用前景广泛。 基本原理 在地球上任何位置的物体都受到重力的作用而产生一个加速度,加速度传感 器可以用来测定变化或恒定的加速度。把三轴加速度传感器固定在物体上,在相对静止状态下,当物体姿态改变时,加速度传感器的敏感轴相对于重力场发生变化,加速度传感器的三个敏感轴分别输出重力在其相应方向产生的分量信号。 当系统处于变速运动状态时,由于加速度传感器同时受到重力加速度和系统自身加速度的影响,其返回值是重力加速度同系统自身加速度的矢量和。对加速度传感器温度漂移及系统振动和机械噪声等方面的考虑,加速度传感器不能独立运用测量系统的姿态。陀螺仪能够提供瞬间的动态角度变化,由于其本身的固有特性、温度及积分过程的影响,它会随着工作时间的延长产生漂移误差。因此对

声传感器目标定位

摘要 摘要 本文首先对声信号的特征和声信号传播过程进行了分析,然后对声传感器阵列及其研究现状进行了概述,设计出了适合于在目标区域进行声源定位的传感器阵列。重点分析了基于时延估计的声源定位方法,对于时延技术在定位技术中的应用原理进行了深入分析。对于坐标算法和双曲线算法进行了深入分析,并对两种方法进行了融合实现了,实现了选题所要求的:在目标区域内进行声源定位的要求。 关键词:声传感器阵列;声源定位;时延估计; I

ABSTRACT ABSTRACT At first, this paper analyzes the characteristics and the transmission process of sound signals, and then, the microphone array is generally described. Furthermore, the microphone array which can be applied to conduct acoustic source localization in the target area is designed. A sound source localization method based on the time delay estimation is analyzed with emphasis. And the application theory of the time delay applied in the acoustic source localization is analyzed deeply. Finally, Coordinates Algorithm and Hyperbola Algorithm is analyzed deeply. Moreover, these two methods are integrated so as to meet the requirement of the topic that is to conduct acoustic source localization in the target area. Keywords:Microphone array; acoustic source localization; Time Delay Estimation II

传感器的目前现状与发展趋势综述

传感器的目前现状与发展趋势 吴伟 1106032008 材控2班 摘要:传感器是高度自动化系统乃至现代尖端技术必不可少的一个关键组成部分。传感器技术是世界各国竞相发展的高新技术,也是进入21 世纪以来优先发展的十大顶尖技术之一。传感器技术所涉及的知识领域非常广泛,其研究和发展也越来越多地和其他学科技术的发展紧密联系。本文首先介绍了传感器的基本知识和传感器技术的发展历史。之后,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究状况。最后,展望了现代传感器技术的发展和应用前景。 关键词:传感器技术;传感器;研究现状;趋势 引言 当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的“大脑”,把通信系统比喻为传递信息的“神经系统”,那么传感器就是感知和获取信息的“感觉器官”。 传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。 1 传感器的基本知识

1.1 传感器的定义和组成 广义地说,传感器是指将被测量转化为可感知或定量认识的信号的传感器。从狭义方面讲,感受被测量,并按一定规律将其转化为同种或别种性质的输出信号的装置。传感器一般由敏感元件、转换元件、测量电路和辅助电源四部分组成,其中敏感元件和转换元件可能合二为一,而有的传感器不需要辅助电源。 1.2 传感器技术的基本特性 在测试过程中,要求传感器能感受到被测量的变化并将其不失真地转换成容易测量的量。被测量有两种形式:一种是稳定的,称为静态信号;一种是随着时间变化的,称为动态信号。由于输入量的状态不同,传感器的输入特性也不同,因此,传感器的基本特性一般用静态特性和动态特性来描述。衡量传感器的静态特性指标有线性度、灵敏度、迟滞、重复性、分辨率和漂移等。影响传感器的动态特性主要是传感器的固有因素,如温度传感器的热惯性等,动态特性还与传感器输入量的变化形式有关。 2 传感器技术的发展历史与回顾 传感器技术是在20世纪的中期才刚刚问世的。在那时,与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段,并没有投入到实际生产与广泛应用中,转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目的科研研发以及各国军事技术、航空航天领域的试验研究。然而,随着各国机械工业、电子、计算机、自动化等相关信息化产业的迅猛发展,以日本和欧美等西方国家为代表的传感器研发及其相关技术产业的发展已在国际市场中逐步占有了重要的份额。 我国从20世纪60年代开始传感技术的研究与开发,经过从“六五”到“九五”的国家攻关,在传感器研究开发、设计、制造、可靠性改进等方面获得长足的进步,初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了一批可喜的、为世界瞩目的发明专利与工况监控系统或仪器的成果。但从总体上讲,它还不能适应我国经济与科技的迅速发展,我国不少传感器、信号

基于惯性传感器系统的动作捕捉技术

基于惯性传感器系统的动作捕捉技术 作为一门新兴的动作捕捉技术,惯性动捕的出现,打破了光学动捕占据市场绝对主导的行业格局,被视为动作捕捉界的新生力量。基于惯性传感器系统的动作捕捉技术是一项融合了传感器技术、无线传输、人体动力学、计算机图形学等多种学科的综合性技术,技术门槛要求很高。虽然惯性动作捕捉技术出现的时间并不长,但随着它在各行业中的使用,其卓越的性能很快就显示出来了。 惯性动作捕捉,是一种新型的人体动作捕捉技术,它用无线动作姿态传感器采集身体部位的姿态方位,利用人体运动学原理恢复人体运动模型,同时采用无线传输的方式将数据呈现在电脑软件里。 惯性动作捕捉系统出现之前,最常见的是光学动捕技术。它是通过在演员身上贴marker 点,然后用高速摄像机来捕捉marker点的准确位移,再将捕捉数据传输到电脑设备上,由此完成动作捕捉的全过程。光学动捕的整套设备的成本极为昂贵,架设繁琐,易受遮挡或光干扰的影响,给后期处理工作带来很多麻烦。对于一些遮挡严重的动作来说,光学动捕无法准确实时还原例如下蹲、拥抱、扭打等动作。而基于惯性传感器系统的动作捕捉技术的出现,大大改善了这一现状。 和光学动捕技术相比,惯性动作捕捉技术有着对捕捉环境的高适应性,它的技术优势、成本优势和使用便捷的优势,使得它在各行业有着优异的表现。在影视动画、体验式互动游戏、虚拟演播室、真人模拟演练、体育训练、医疗康复等领域,惯性动作捕捉系统都有着明显优于其他设备的特点。 惯性式动作捕捉系统原理 动作捕捉系统的一般性结构主要分为三个部分:数据采集设备、数据传输设备、数据处理单元,惯性式动作捕捉系统即是将惯性传感器应用到数据采集端,数据处理单元通过惯性导航原理对采集到的数据进行处理,从而完成运动目标的姿态角度测量。

《无线传感器网络定位》

无线传感器网络中的自身定位系统和算法 摘要:无线传感器网络由于具有网络设置灵活、位置随时更改、能够与互联网有线或无线连接等特征而被广泛应用在了环境监测、医疗护理、国防军事、目标跟踪等领域,有力地推动了社会进步。然而,随着互联网技术的快速发展,无线传感器网络中的自身定位系统也得到了长足的进步,原有的定位系统和算法逐渐暴露出了一系列的不足,使得无线传感器网络应用范围受到不同程度影响。基于此背景,本文就现有技术条件下无线传感器网络中的自身定位系统和算法展开深入研究,旨在探索最前沿的应用技术,以为其推广使用提供帮助。 关键词:无线传感器网络;定位系统;算法 前言:鉴于无线传感器网络在国计民生方面所具有的重要应用价值,对其定位系统与算法进行研究无论是在理论研究还是在实践应用方面均具有重要的研究价值及社会意义。因此,针对无线传感器网络中的自身定位系统和算法所展开的研究,本文首先从现有的无线传感器网络定位系统和算法着手,对其进行一个横向比较,总结存在的各种问题,之后以此为依据对Hop-Euelidean算法展开重点分析,评价该算法所具有的应用优势,以为其进一步推广应用积累经验。 1 现有无线传感器网络自身定位系统和算法以及存在的不足分析 1.1现有无线传感器网络自身定位系统和算法 (1)Active Badge定位系统及算法 Active Badge定位系统是无线传感器网络(Wireless Sensor Networks,WSN)最早的一种定位系统,也是上个世纪末、本世纪初符号定位、粗粒度定位以及接近度定位三者合一的典型代表[1]。该定位系统应用的前提在于部署在一个精度明确的房间之内,通过以太网与房间内部预先架设的红外传感器节点来构成系统网络。当存在定位需求时,只需要在被定位的人或者物体上面放置一个Badge(徽章)的装置,来作为整个Active Badge定位系统未知的节点。Badge每隔15s会向外界发射一个0.1s持续时间的红外信号[2]。一旦该信号被系统红外传感器所采集到,则会将收集到的感应信息传递至中央处理器,利用高速率计算机来进行定位分析工作。用户可以通过外设端口与该系统相连接,从而获得准确的定位数据。

惯性传感器在运动感应游戏中的应用

惯性传感器在运动感应游戏中的应用 一旦降级到航空航天应用,如高度和航向参考系统,惯性传感器- 通常在高度集成的惯性测量单元(IMU)中找到,它结合了陀螺仪,加速度计,磁力计和压力传感器- 正在寻找高级游戏的新生命 惯性传感器检测和测量加速度,倾斜,冲击,振动,旋转和多自由度(DoF)运动。直到最近,它们主要用于惯性导航系统(INS)作为导航技术,其中由加速度计和陀螺仪提供的测量跟踪物体相对于已知起始点,方向和速度的位置和取向。他们曾经- 并且- 被用于飞机,战术和战略导弹,航天器,潜艇和船舶等大型应用中。 然而,MEMS技术的进步使得小型INS单元的制造成为可能。它们在更多应用中的使用,包括那些涉及动作捕捉的应用。手势识别界面就是一个很好的例子。定义的手势(例如轻击,双击或摇动)允许用户激活不同的功能或调整游戏控制器的操作模式。在工业中,手势识别还使得设备在物理按钮和开关难以操作的地方更加可用。无按钮设计还可以降低整体系统成本,同时提高最终产品的耐用性,例如水下相机,按钮周围的开口会让水渗入相机机身。 运动感应游戏在早期的世嘉和索尼PlayStation游戏中都可以看到,但真的与Ninetendo Wii 一起蓬勃发展。随着微软Kinect外设的第一次无控制器游戏,行业迅速升温,传感器用于游戏之外的各种应用,如可穿戴设备。 继Wii之后,然后是Kinect,Razer Hydra,也称为Sixense TrueMotion,是传感器实现的最新破坏性游戏技术。设计用于无线运动和方向检测游戏控制器,它使用磁场可穿戴物体来检测控制器的绝对位置和方向;它可以全3D实时跟踪控制器上的玩家双手,并具有精确的10毫秒刷新率。该控制器具有6个DoF和1 mm和1度的惊人精度。 一些良好的惯性传感器选项 探索惯性传感选项的设计人员将在单个封装中找到更多传感器而不会受到影响关于性能,小外形尺寸,热稳定性和机械稳定性,软件兼容性以及增强的用户体验,例如游戏控制中的运动感应真实感。

一种惯性导航肢体动作捕捉系统采集方法

- 5 - 第7期2018年4月No.7April,2018 无线互联科技 Wireless Internet Technology 1 动作捕捉技术概述 动作捕捉技术(Motion Capture ,Mocap )的出现可追溯到20世纪70年代,国外的动画制作公司利用光学式的动作捕捉技术把表演者的姿势投射到计算机屏幕上,作为动画制作的参考。随着技术的发展,该技术已经广泛应用于3D 影视制作、步态分析、生物力学研究、人机工程、虚拟现实等新兴行业市场。 常用的动作捕捉技术从原理上说可分为机械式、声学式、电磁式、主动光学式、被动光学式、惯性导航式。本文的主要研究内容是惯性导航式肢体动作捕捉的采集方法实现。2 系统方案2.1 系统原理 动作捕捉系统的一般性结构主要分为3个部分:数据采集设备、数据传输设备、数据处理单元。惯性导航式动作捕捉系统既是将惯性传感器应用到数据采集设备,从而完成运动目标的姿态、角度的测量。 要完成对人体肢体动作的捕捉需要对人体的头部、肩部、大臂、小臂、手、胸口、尾椎、大腿、小腿、脚踝等共计17个部位进行动作跟踪,参考图1所述。在这17处重要部位佩戴集成加速计、陀螺仪、磁力计等惯性传感器的数据采集设备,加速计是用来检测传感器受到的加速度的大小和方向,它通过测量传感器在某个轴向的加速度大小和方向,但是相对于地面的姿态则精度不高。加速计的不足由陀螺仪来弥补,陀螺仪是通过测量三维坐标体系内内部陀螺转子的垂直轴与传感器的夹角,并计算角速度,通过夹角和角速度来判断物体在三维空间的运动状态,因为内部陀螺转子的垂直轴永远垂直地面,也就能保证对地面的姿态精度,但是不能测量同东西南北4个方向的姿态。那么陀螺仪的不足由磁力计来弥补,磁力计就是个小型的电子罗盘,由它来测量传感器同南北磁极的角度并确定4个方向的姿态。 数据传输设备是为了解决把采集到的动作数据传递给数据处理单元,同时也是上述17个数据采集设备的数据交汇点,这一特质决定了数据传输设备不可避免地要与数据采集设备就近部署。从使用舒适性、可穿戴性方面考虑,数据传输设备应采用无线通信技术回传数据给数据处理单元以减 少线缆数量和穿戴者的负担。目前主流的无线通信技术有ZigBee ,Bluetooth ,RFID ,WiFi 等,根据数据吞吐量来决定系统的通信子系统的设计,1个数据采集设备集成加速计、陀螺仪、磁力计,其中现在主流MEMS 芯片集成了加速计和陀螺仪,磁力计单独一颗芯片,芯片数据接口为I2C 总线,I2C 总线最大码流400 kbps ,那么数据量参考公式1所述。 传输数据吞吐量=17×2×400 kbps ≈13.6 Mbps (1)根据公式1所述的吞吐量要求,WiFi 支持11~54 Mbps ,其余技术传输速率不及1 Mbps ,故此数据传输设备采用WiFi 回传数据,在穿戴者身上部署数据传输设备(穿戴侧),在数据处理单元侧对称部署数据传输设备(处理侧),二者实现WiFi 无线传输数据,数据传输设备(处理侧)与数 据处理单元通过USB 传输数据。 数据处理单元采用图形工作站,工作站运行动作捕捉软件完成行动作捕捉。 图1 惯性导航式动作捕捉系统示意 2.2 系统设计 2.2.1 数据采集设备 数据采集设备是通过弹性束带固定在人体的运动部位,由于部署位置涉及人体接触,从舒适性和可穿戴性上决定了数据采集设备有体积小、功耗低的要求,数据采集设备如图 作者简介:韦宇(1980— ),男,广西柳州人,工程师,学士;研究方向:国防通信系统设计。 一种惯性导航肢体动作捕捉系统采集方法 韦 宇 (广州海格通信集团股份有限公司,广东 广州 510663) 摘 要:动作捕捉技术是运动物体的关键部位设置跟踪器,涉及尺寸测量、物理空间里物体的定位及方位测定等方面可以由计 算机直接理解处理的数据。惯性导航通过测量对象的加速度、运动角度、方位,通过积分运算获得对象的瞬时速度、瞬时位置数据的技术。文章对一种惯性导航肢体动作捕捉系统采集方法进行了研究。关键词:动作捕捉;惯性导航;采集方法

种光电传感器精确定位的方法

研究论文 一种使用光电管对赛道精确定位的方法 刘建旭,高晗,谭吉来 (哈尔滨工程大学自动化学院,黑龙江哈尔滨 150001) 文摘:在飞思卡尔杯全国大学生智能车比赛中,控制车模运行需要检测赛道参数。本文提出了一种使用光电管进行赛道精确定位的方法。该方法充分利用了MC9S12DG128单片机内部硬件资源,采集各光电探头输出的模拟信号,并据此分析计算出精确的赛道位置,可以为控制系统提供足够精确的信息,使系统稳定可靠。实验证明该方法简便、有效。 关键词:飞思卡尔;MC9S12DG128; CMOS摄像头;二值化 Abstract:In the Freescale Cup Smart car competition of National Undergraduate , the patch controlling requires testing for the operation of the circuit parameters. This paper proposes the use of CMOS circuit camera parameters for the detection method. The method makes full use of SCM MC9S12DG128`s internal hardware resources to meet the hardware binary circuit, and the collecting CMOS analog output signal detection can meet the parameters. The information can then calculate the circuit parameters. Experiments show that the method is simple and effective. Keywords:Freescale; MC9S12DG128; CMOS; Binary

传感器技术文献综述

传感器技术文献综述 学校邕江大学专业09信息学号40号姓名赵丽霞 一、摘要 传感器技术是综合多种学科的复合型技术,是一门正在蓬勃发展的现代化传感器技术。本文通过将所看的传感器相关文献总分为传感器、智能传感器以及无线传感器网络三个类别,对每一类别进行综述,分析每类别传感器研究中所存在的不足,探讨了相应的解决方案。 二、关键词:传感器 三、引言 传感器技术是一门正在蓬勃发展的现代化传感器技术,是涉及微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术以及模糊控制理论等多种学科的综合性技术,而该技术也广泛应用到了军事、太空探索、智能家居、农业、医疗等领域。在伴随着“信息时代”的到来,作为获取信息的重要手段——传感器技术得到飞速发展,其应用领域越来越广,人们对其要求越要越高,需求也越来越迫切。但传感器技术的广泛应用以及飞速发展并不代表着该技术已经成熟,相反在很多方面它还只是一项新兴的技术,依然存在很多的问题等待我们去解决。如何能够让我们的传感器装置很快的适应周围的环境,迅速准确的处理传输客户所需求的信号,并可以根据客户的要求作出相应的反应以及如何可以尽量的延长传感器装置的生存时间等等。这些问题都是我们在研究传感器技术的过程中所应该解决的问题。 四、传感器 传感器是一种物理装置,能够探测、感受外界的信号、物理条件(如光、热、温度、湿度等)或化学组成,并将探知到的信息传递给其他装置。该装置相当我们的人类的眼睛、鼻子、舌头、耳朵以及皮肤等一些感知器官。这样,精确快速地感受外界的信号就是迅速正确作出反应实施行动的前提条件。现在的物理传感器、生物传感器都是力图解决感知、精确以及快速这三个难题。例如气体流量监测就有很多种的感知方法,但每种方法都存在着精确以及反应速率方面的问题,所以还需要不断的改进。然而,有很多的问题大自然已经很好的为我们解决了,我们应该取其精华。因此,我认为仿生传感器一定会解决很多传感器方面的问题。

声音定位传感器

这是我自己设计的声音方位传感器效果比较满意,装在机器人上就可以判断你说话的位置了!用了4个LM386和一块2051。 电路图.四个lm386都是一样的 程序如下 #include void main(void) { long int b; while(1) { b=0; if(P3_0==1&&P3_1==1&&P3_2==1&&P3_3==1)P1 = 0xFF;

if(P3_0==0&&P3_1==1&&P3_2==1&&P3_3==1) { for(;b<11110;) { b++; P1_0=0; if(b<1111) P1_1=0; else P1_1=1; } P1_0=1; } b=0; if(P3_0==1&&P3_1==0&&P3_2==1&&P3_3==1) { for(;b<11110;) { b++; P1_0=0; if(b<2222) P1_1=0; else P1_1=1; } P1_0=1; } b=0; if(P3_0==1&&P3_1==1&&P3_2==0&&P3_3==1) { for(;b<11110;) { b++; P1_0=0; if(b<3333) P1_1=0; else P1_1=1; } P1_0=1; } b=0; if(P3_0==1&&P3_1==1&&P3_2==1&&P3_3==0)

{ for(;b<11110;) { b++; P1_0=0; if(b<4444) P1_1=0; else P1_1=1; } P1_0=1; } } } 原理: 从程序可以看出为节省IO口采用脉宽输出。 输出信号: 声音确认P1_0___------------------------_____一秒 第一传感器有信号输出P1_1___----_______________0.1秒 第二传感器有信号输出P1_1___--------____________0.2秒 第三传感器有信号输出P1_1___------------__________0.3秒 第四传感器有信号输出P1_1___----------------________0.4秒 这个可以试试做一个.如果有一个可以判断你说话的方向的话.可以做很多智能控制

相关文档
最新文档