顶驱典型故障分析学习资料

顶驱典型故障分析学习资料
顶驱典型故障分析学习资料

顶驱典型故障分析

顶驱发生过几次大小故障,经过解决问题后的总结,在顶驱设备的保养和维护方面有了初步的经验。现把设备运行过程中发生的一次比较典型的故障分析总结如下,希望同类设备在碰到此类问题时能够起到一定的帮助。

在某晚钻台起钻完后出现了以下故障:顶驱吊环前倾与后倾,回转头的左转与右转,IBOP(内防喷器)无法使用。

顶驱厂家徐工到钻台试验发现此故障后,先让人在顶驱变频房记录,然后在钻台上操作,看变频房综合柜内电磁阀指示灯哪些是亮,哪些不亮。后发现指示规定动作(上述几个故障点)的电磁阀指示灯不亮。然后初步判断可能是因为下雨导致变频房到钻台上的控制电缆小范围进水短路。然后拆下来用万用表测量后,发现此处没有问题。后又上钻台,检查司钻台控制柜内的电缆,也没有问题。又返回变频房,检查电磁阀继电器,一个个排除后,无硬性故障,经过这一番忙碌,这时候已经是次日早晨了。吃过早饭后,徐工上钻台用吊篮上到顶驱本体上,测量本体中转箱出线在下面操作时是否有信号,测量后发现无信号输送过来。下来后,将所有端子(包括综合柜内和钻台控制箱内)全部紧固一遍,然后再钻台上操作,再看变频房内的指示灯,此时部分指示灯亮,但是跟电气图中的又区别,然后徐工就很是迷茫,此时已经到了晚上10点。然后此时接到电话,厂家另外一个顶驱工程师李工将于晚上12左右到井场,就开始整理一下一天的故障排查路线。

晚上12点李工到井场后,进入变频房打开综合柜控制程序,然后再钻台上操作看程序是否正常响应,一番操作后,发现程序没有问题,但是此时顶驱的几个故障还存在,后李工检查确定,综合柜内接线盒电子档的电气图有区别,前倾和后倾线接反了。确定后又重新测量了综合柜内出线信号(DC24v),判断出综合柜输入与输出信号正常。又上到顶驱本体上,两人一起测量了顶驱本体上面的中转箱内的输入信号,这时候信号输入正常,电磁阀吸合,但液压系统无动作。由此判断出了液压系统可能有问题,电路系统没有问题。然后拿着液压管线跟液压阀台压力测试口连接后,进行前倾与后倾动作,发现压力远远不够,几乎没有压力,进行回转头左转和右转,也是没有压力输出,此时判断是机械控制阀堵塞了,然后将四个控制阀全部拆除,一一在柴油中进行清洗,在清洗中发现控制阀阀体中有细小的污垢状物质排出,然后更换了液压油和液压泵的过滤网,再进行动作试验,一切正常。

通过此次故障检查及时排除,告诉了我们在进行油品更换使用时,要遵守以下原则

(1)新系统首次使用,应当在使用三个月后更换液压油。

(2)正常使用期间,建议使用六个月至一年更换液压油。

(3)可以根据液压油分析结果或凭经验来判定是否需要更换液压油。

添加或者更换液压油,应当注意以下事项:

(1)更换的液压油必须符合规定,补加的液压油必须与原牌号

弓网故障分析

摘要:近年来我国电气化铁路迅速发展,而弓网故障已成为影响接触网安全运营的首要因 素。 1 引言 随着我国铁路的几次大提速, 对电气化铁路的质量提出了更高的要求,而随着既有线路提速,特别是相关设备的老化,电气化铁路弓网故障的问题日益突显。如何提高接触网运行质量,消灭弓网故障,是相关单位面临的一个重要课题。 接触网弓网故障的发生,根本原因是接触网自身技术参数不符合标准造成。通过我在学校的学习和去铁路供电段实习认为:只要在日常工作中对接触网关键部位技术参数根据实际情况,针对具体问题,合理安排并提出相应措施,即可有效减少弓网故障的发生。 2 弓网故障的原因分析 现阶段, 由于机车车辆新技术的大量应用, 特别是机车受电弓技术的进步, 导致接触网弓网故障大部分原因均集中在接触网的具体参数特性和部分性能上,而且接触网随外界环境气温、风速、线路条件等的影响,不稳定特性显著。在此我们就弓网故障的 产生先进行一个全面的分析。 2.1 接触网定位环节 2.1.1 定位点拉出值过大、定位器坡度过小, 造成脱、碰、刮弓故障。 这类故障一般为施工超标准、调整拉出值时偏差较大、或遇大风及温度变化过大时 造成,特别是在曲线跨中尤为明显。 2.1.2道岔区刮弓、钻弓故障 分析接触网弓网故障产生的原因, 并根据多年经验, 从加强接触网日常检测的角 度, 提出预防弓网故障的措施。 线岔定位部位,两导线交叉位置参数不标准、始触点高度不符合要求、线岔限制管间隙过 大。 2.2 接触网设备 2.2.1 吊弦电连接造成弓网故障 电连接设置数量或位置不合理,特别是在坡道上、机车取流过大造成吊弦过流被烧断。由于电连接与承力索接触不良, 形成线夹内长期放电而造成烧断电连接线。吊弦线夹、电连接线夹紧固螺栓长期处于振动状态,由此造成螺栓松脱也是产生此类故障的原因之一。 2.2.2 导线烧断故障 导线因硬弯、硬点而造成长期放电拉弧,使局部磨耗过大而造成接触网断线故障。接触网设计原则:大站及编组站的导高6 450 mm, 中间站及区间6 000 mm, 隧道5 720~6 000 mm 之间。但是在施工过程中, 由于过渡及临时的保证开通措施, 接触导线高度在 5 720~6 450 mm 间交替出现, 特别是在导高变化的过渡部分, 很少能保证接触线 5‰的变坡要求。由于接触导线高度忽高忽低,导致接触悬挂弹性时大时小,在变坡点处产生拉弧现象,高温电弧灼伤接触线工作面, 使接触线工作面出现麻点, 其它受电弓高速通过时, 又产生更为严重的拉弧, 若受电弓有隐性损伤带病通过, 易产生弓网故障, 同时给以后接触 网运营带来隐性故障点。 2.2.3 接触网材质不良引起连接、定位零件断裂而造成的弓网故障

接触网弓网故障分析

接触网弓网故障分析 摘要:电气化铁路的迅猛发展,大大增加了铁路的的运能和运量。铁路重载和高速技术的应用加速了铁路电气化的进程,但却给铁路接触网带来严峻的挑战,一方面要满足高速铁路的供电需求,另一方面要确保接触网设备的安全可靠运行, 根据多年来行车事故的统计,由于弓网运行状态不良发的事故占有相当的比例。弓网故障是长期困扰电气化铁路的一个亟待解决的难题。它发生率高,中断供电和行车时间长,而且不易查找,不利防范,不便组织抢修,给铁路运输安全造成了严重影响,是电气化铁路面临的一个非常突出的问题。因此分析发生弓网故障的原因并提出相应的防范措施对铁路运输安全生产有着重要的意义,接触网是电气化铁路的重要元件,而弓网故障是影响接触网安全运行的重要因素。主要分析接触网弓网故障的常见原因,并结合实际运行情况,对预防铁路接触网弓网故障的防范措施进行了分析。 关键词:电气化接触网弓网故障

第一章 前言………………………………………………………………………第二章受电弓 (1)概述………………………………………………… (2)受电弓的定义……………………………………….. (3)受电弓的动作原理…………………………………. 第三章弓网故障原因分析 (1)弓网故障及其表现形式……………………………………….. (2)弓网故障的成因…………………………………………………. 第四章防止弓网故障的有效措施 (1)供电设备防风改造………………………………………… (2)建立保养制度……………………………………………… (3)规范司机操作……………………………………………… (4)提高检修人员技术素质………………………………………. 第五章结束语 (1)总结…………………………………………………………………(2)参考文献……………………………………………………….

zpw-2000故障分析

1、故障现象1:接收器工作灯灭灯,方向灯灭灯,小轨轨入电压有,轨出2电压没有。 原因分析:接收器工作灯灯灭说明接收器工作条件没满足(主并机载频、低频、频标、X1或X2),小轨轨入电压有、轨出2电压没有,说明小轨道调整线有问题,但同时方向灯灭灯,有可能是衰耗盘内的方向复示继电器没吸,切断了小轨入至调整电阻间的线,另外可能是端子板03-5或03-6没电,使主机x1(接收1型信息)或x2(接收2型信息)条件24v没有,因此检查小轨调整线,以及端子板03-5或03-6 是否有电。 2、故障现象2:接收器工作灯灭灯,方向灯正常。 原因分析:是接收器主机底座x1(接收1型信息)或x2(接收2型信息)条件24v 没有,或用反。 3、接收器工作灯灭灯,工作正常(由于并机在工作) 原因分析:,除看x1或x2外,还得测试主机的载频、频标以及并机的载频、频标设置情况。同时注意并机x1(接收1型信息)或x2(接收2型信息)条件24v有没有,即端子板02-5或02-6没电,正方向02-5没电,反方向02-6没电,跟着主机走 4、故障现象当轨出1电压大于210mv,XGJ电压大于20v,主GJ(Z)没有电压输出。 原因分析:接收器载频设置是否正确。XGJ电压输入极性是否正确。QGJ是否断线5、故障现象发送器工作正常,但FBJ落下,测试FBJ线圈有电压。 原因分析:排除线圈断线后看继电器类型是不正确。注意看:发送灯、接收灯、方向灯、各部调整线、继电器状态:FBJ +1FBJ QZJ (落下会发27.9hz)QGJ GJ 1DJ 2DJ等继电器的状态, 6、故障现象接收工作灯和方向灯均灭灯。 原因分析:不是在接收器底座部位断线,可能03-5或03-6(02-5或02-6)断线时7、故障现象轨出2电压满足,但是XG没有电压输出。 原因分析:接收的载频频率是否正确,其次接收器底座XI、X2条件是否正确。 8、当应该点LU灯而没有点,只点单黄灯时,要注意看2DJ的状态。 9、当轨出1电压满足,XGJ电压满足并且极性正确时,要注意载频是否正确,其次注意 QGJ线圈是否正常,注意:当线圈短路时,此时上下衰耗盘接收工作灯灭灯。 10、故障现象衰耗盘轨出1电压满足,XGJ电压满足并且极性正确时,但接收器主机 主轨灯不亮。注意:衰耗盘测试到的XGJ电压是否送到接收器中 原因分析:主机主轨灯是安全与门有电压输出时才亮,但是安全与门需要有电压输入,因此要注意测试接收器底座主机XGJ的电压。 11、当轨入电压满足,轨出1电压没有,要注意主轨电压是否调整。 12、轨入小轨正常,但轨2电压低,先查XI或X2再查调整线。 13、常用的低频对应要知道 F1=29\F2=27.9\F3=26.8\F5=HB\F11=18\F12=16.9\F14=14.7\F15=13.6 14、载频断,发送器灯闪:2”7”2”;频标断,发送器灯闪:2”6”2”;低频断,发 送器灯闪:2”1”2”,载频断频标断发送器灯闪:2”6”7”2”,功出短路,发送器灯闪:2”2” 15、查混电故障时,在测试时找到有电压和无电压部位,将表笔测试没电压部位不动, 从接收终端开始断,看电压。其次用钳形表测试,有电流和无电流出为混线点。记熟电流走向。 16、注意并线的地方,例如从零层QY-03-5(03-6)同时给衰耗盘b29(b30)和接收器X1 (X2),缺一不可,衰耗盘缺会造成小轨通道断,接收器X1(X2)缺时不译码 一、处理流程 首先:看状态,

顶驱常见故障分析

关于顶驱系统常见故障的分析 江苏石油勘探局钻井处50766JS队杨守生 摘要: 本文针对DQ50B-JH顶驱系统的结构特点,结合现场生产使用情况,对该系统电气部分和液压部分常见故障的现象特点、判断方法和维修方法分别进行讨论研究,并结合自身认识总结一套完整的实施方案。 关键词:顶驱系统,故障,判断,维修 引言: 顶驱由于其独特的结构特点和在钻井生产过程中表现出来的优越性,使其在现代钻井工程中被广泛使用。顶驱装置提高了操作机械化程度,加上与其配套的井口机械化,可大大减轻工人劳动强度,减少操作人员。并且可随时关闭内防喷阀,没有方钻杆等,增加了操作安全性。顶驱装置的配备实现了钻井自动化进程的阶段性发展,从世界钻井机械的发展趋势看,为适应钻井自动化的进一步需要,顶驱钻井装置将成为21世纪世界钻井机械发展的主要方向之一。 然而,由于顶驱的使用环境是在野外,在实际应用中,受周围的温度、湿度、振动、粉尘、腐蚀性气体等环境条件的影响,其性能会有一些变化。并且在钻井生产过程中会经常遇到突发的复杂情况,比如卡钻,扭矩突然增大等,再加上人员的误操作,难免会使顶驱的电气或者液压部分发生故障。当发生故障时能及时发现,并根据故障现象快速的判断故障点,及时排除故障,不仅能为恢复生产节约宝贵的时间,同时也能防止故障扩大带来更大的损失,所以掌握常见故障的现象及分析处理方法是不可或缺的一项基本技能。 一、电气部分常见故障分析 景宏顶驱电气系统组成主要包括进线电能功率分配保护系统,变频驱动系统和PLC综合控制系统。下面只对电能功率分配保护系统,变频驱动系统部分进行展开分析: 1、进线电能功率分配保护系统故障分析 该系统由进线柜承担,它主要有主空气开关(施耐德MT10N2),辅助动力变压器、控制变压器、继电器等组成。其主要故障现象如下: 1.1主断路器跳闸

防止弓网故障安全措施

防止弓网故障安全措施 1、交接班作业 ⑴.接班时,总风压力或控制风缸压力低于500千帕时,必须利用辅助压缩机将辅助风缸压力打至500 千帕以上再升弓,升弓确认到位后再闭合主断路器。(在总风缸压力未达到600 千帕以上时,辅助压缩机不得停止打风,防止风压不足拉弧烧网。) ⑵?交班时,司机必须将总风缸风压泵至900千帕以上,先关闭98塞门,打开97 塞门,给控制风缸充风至总风压力,然后关闭97 塞门,进行储风。发现机车因受电弓升弓特性不良,机车欠压保护功能不良,受电弓接触网间频繁出现拉弧,及时提活报修。 ⑶?使用辅助压缩机升弓总风压力达到600千帕以后,应将辅助风缸排空,防止运行中52 换向阀芯卡在中间位造成受电弓压力不足脱网拉弧。 2、机车整备作业 ⑴?库停机车必须将总风缸风压泵至900千帕以上,先关闭98塞门,打开 97 塞门,给控制风缸充风至总风压力,然后关闭97 塞门,进行储风。 ⑵?总风压力或控制风缸压力低于500千帕时,必须将辅助风缸压力打至500 千帕以上再升弓,升弓确认到位后再闭合主断路器。在总风缸压力未达到600 千帕以上时,辅助压缩机不得停止打风,防止 风压不足拉弧烧网。 ⑶?使用辅助压缩机升弓总风压力达到600千帕以后,应将辅助风缸排空,防止运行中52 换向阀芯卡在中间位造成受电弓压力不足脱网拉弧。

⑷?不得带负载升降受电弓,升弓时确认弓网接触稳定后再闭合主断路器,降弓时先断开主断路器再降弓,减少弓网间电弧的产生。杜绝机车带负载断电,发生接触网失压时及时降下受电弓。升弓后密切注意接触网状态,注意网压表(辅压表)显示和100 阀的压力状态,防止受电弓压力不足脱网拉弧。 ⑸?机车整备作业时,整备司机要严格按照规定的检测内容加强对受电弓的检测检查,严守质量标准,及时修复不良处所,并认真填写受电弓检测台帐,确保机车受电弓状态良好。要加强机车受电弓瓷瓶清扫擦试保养,保持受电弓瓷瓶清洁。 3、机车检修作业 ⑴?认真检查车顶滑板状态,应清除滑板上附着的冰雪。认真检查车顶瓷瓶状态,发现表面缺陷和烧痕,及时提票,进行补刷防闪涂料处理。 ⑵.试验受电弓升弓特性不良,机车欠压保护功能不良,受电弓接触网出现异常拉弧,认真查清原因,及时提活报修,严格验收,不放带病机车出库。 ⑶?库外高低压试验升弓,需要使用辅助压缩机打风时,辅助风缸风压应达到500 千帕以上再操作,升弓时不能关闭辅助压缩机电源,直至总风缸压力超过600 千帕时才能关闭辅助压缩机电源。 ⑷?供风使用102控制风缸必须保证在500千帕以上;关闭97阀, 打开98 阀,为受电弓提供的风压要稳定在500 千帕。 ⑸ .升弓时待受电弓弓头与接触网接触稳定后,再合主断路器,起动辅机,防止发生操作过电压。高压试验零压时,除劈相机外,关闭其它辅机,绝对不能带载降弓。

EBZ160型综掘机典型故障案例分析

机械类 1、故障现象:EBZ160设备截割头不转动 故障问题可能点:可能是花键套、电机、减速机、截割头轴损坏或伸缩部花键套销脱落解决思路:在出现截割头不转动的时候必须先检查电机和减速机,检查电机的时候用手感觉是否转动,电机转动在检查减速机是否转动,减速机不转动就是电机和减速机连接的花键套损坏,减速机有异响就是减速机内部行星轮损坏,减速机也转动正常的情况下必定是伸缩部花键套损坏或伸缩部花键套销脱落或截割头轴损坏,所以把伸缩部拆卸下来就会检查到是花键套损坏还是花键套销脱落,要是花键套和花键套销未脱落就是截割头轴损坏。 2、故障现象:EBZ160伸缩部缩不回来 故障问题可能点:可能是伸缩部内部问题或伸缩油缸内泄或五连阀压力小。 解决思路:伸缩部不伸缩的情况下检查五连阀压力是否正常,五连阀压力正常。在检查伸缩油缸是否内泄,把伸缩油缸缩回来憋压,压力正常。就是伸缩部内部有问题,就把伸缩部拆卸下来检查是否伸缩部内部煤泥多导致缩不回来,出现伸缩部内部煤泥多的情况就是巷道水大,在截割下面的时候来回伸缩把煤泥吸入伸缩内部,内部没有煤泥。就是内筒脱落出保护筒在缩回来的时候卡在保护筒上,出现这种情况是拆卸伸缩油缸的时候截割头往下,所以才出现内筒脱落出保护筒,在把伸缩油缸安装上后所以造成伸缩部缩不回来。3、故障现象:回转轴承损坏,更换回转轴承,但是旧轴承无法取出 故障问题可能点:由于轴承长时间与回转台连接生锈,导致很难取出。 解决思路:将所有螺栓卸下后找出轴承上的螺栓孔拧上螺栓用葫芦拉,但是螺栓直接折断;将掘进机支起,将轴承前后都带上螺栓并挂上葫芦上进,将掘进机收起下落,将轴承拽出。 4、故障现象:200H设备截割臂抱死,截割头不转 故障问题可能点:截割臂内轴承散架,卡死 故障原因:截割头浮动密封损坏,因维修比较困难所以一直以加油为解决方案,未更换密封,而且盘根磨损,导致煤泥直接从盘根座经过浮动密封进入截割臂,长时间的煤泥进入导致截割臂内无法润滑,轴承损坏。 解决思路:因井下无法维修,将截割臂拉回其机修厂,从机电公司送来一个新的截割臂,但因无盘根座只能将旧截割臂上盘根座拆卸后按在新截割臂上。 5、故障现象:设备截割消耗巨大,更换新截割头,但截割头无法装入;

弓网故障分析及防范与抢修措施论文

毕业设计(论文)中文题目:弓网故障分析及防范与抢修措施 专业:电气化铁道技术 姓名: 学号: 指导教师: 2012年 3 月 6 日 电气工程系

一、设计题目及内容 论文题目为《弓网故障分析及防范与抢修措施》。本文根据实际情况,就弓网故障产生的原因进行分析,并就其预防措施进行探讨,制定合理的抢修措施,目的是减少弓网故障,以提高安全供电的可靠性。 二、基本要求 三、重点研究问题 四、主要技术指标 五、应收集的资料及参考文献 1 薛豫中电气化铁路弓网故障的分析与预防中铁郑州勘察设计咨询院有限公司. 2 于小四电气化铁道接触网实用技术指南北京:中国铁道出版社,2009. 3 中华人民共和国铁道部 .电气化铁路接触网故障抢修规则北京:中国铁道出版社,2009 铁运【2009】39号 2009,4. 4 李兆华李斌供配电线路技术手册北京:中国电力出版社,2008. 5中华人民共和国铁道部.铁路工程施工安全技术规程(下册).北京:中国铁道出版社六、进度计划 七、附注

摘要 随着高铁时代的到来,弓网故障给铁路的安全运营带来了极大的影响,因此分析发生弓网故障的原因并提出相应的防范与抢修措施对铁路运输安全生产有着重要的意义。为满足铁路电力机车的提速要求,减少弓网故障对电网的损坏,研究开发弓网故障监控装置,保证提速机车安全、可靠远行已是当务之急。 本文根据实际情况,就弓网故障产生的原因进行分析,并就其预防措施进行探讨,制定合理的抢修措施,目的是减少弓网故障,以提高安全供电的可靠性。 关键词:弓网故障安全运营防范抢修

目录 一、绪论 (5) 二、弓网关系 (6) 2.1 弓网故障的产生 (6) 2.2接触网 (6) 2.3受电弓的工作原理 (8) 三、弓网故障监控装置原理 (10) 3.1监控部分的主要功能 (10) 3.2机车的控制过程 (10) 四、弓网故障原因的分析 (11) 4.1弓网故障及其表现形式 (11) 4.2弓网故障的成因 (13) 五、弓网故障的防范措施 (16) 六、弓网故障发生后的抢修工作 (17) 6.1弓网故障的抢修措施 (17) 6.2抢修中应注意的安全事项 (18) 七、小结 (20) 参考文献 (21)

钻机故障现象及解决方法

钻机调试中故障现象及解决方法 1.发电机不启动,但手推执行器柴油机能启动,打到怠速,执行器应有1V左右电压。由此判断,调速器2301A未工作,经查电路看PLC状态,是PLC无输入即21.0无信号但K6已动作,查电路是K6的前点无24V。 措施:引一根24V电线到K6的9脚,上电打到怠速后柴油机启动正常,原因是天水少接一根24V线,或先接的线无24V。 40DB。03发电柜有此问题。 40JD改40DB调试中遇到的问题: 1.绞车编码器坏,A、B相无脉冲,先查线后换,更换正常,报F053。 2.优化绞车时报F107,R949=1008,U未触发,闭环控P100=4情况下,西门子反复设置参数均不好使,但开环:P100=3时能过去不报错,后经用测试盒测试,确认是U未触发,报修,西门子来人检修,拆板子后发现是一个触发线头掉了,恢复后再测,闭环优化正常,在报F107时,PUM控制电机能转但不稳定。 3.优化绞车时,报F061,且DC电压只能设到660V,不能达到890V,且电流只能设到600A左右达不到1280A。后经确认是功率部分定义有问题,重新定义功率(按大全,参考电流值对应的编号)。 4.F015:――绞车编码器无脉冲――线无问题,传感器坏。 F015,F053:――送钻编码器A、A-、B有脉冲,B-无脉冲且干扰太大。 经查线,接头处进水,且送钻编码器线焊错。经烘干,重新接线后测试测速信号全部正确,且泚形很好(PTI前端有干扰,后端波形好)。 5.转盘启动风机无风压信号:(1)风机正转没问题,出风口风很大。(2)孔堵上,仍没有风压信号。(3)开箱查压力开关,发现其负压端气管折死不通气。 (4)正压端有透明堵头,去调,且负压端螺丝朝上进水。经以上处理,正常。6.自动送钻风机不启动,报西门子人。 7.接触器无控制电压(220V),经查控制电压开关未合。 8.无零位信号,经查零位开关无24V。 9.测试盒调试变频的方法:(变频器断电情况下测试) (1)取下CUVC板

机车信号设备常见故障分析 尹颖杰

机车信号设备常见故障分析尹颖杰 摘要:随着经济的发展和社会的进步。铁路一直以来都是我国极为重要的陆上交通运输方式,通过长期的建设我国已经基本形成了覆盖全国的铁路输送网络,尤其是现今通过加快高铁建设布局使我国的铁路发展进入了一个崭新的阶段。机车信号是铁路信号系统中的重要一环,做好机车信号的发展与应用对于保障列车的行车安全、提高列车的运行效率都有着极为重要的意义。机车信号的良好运用能够有效增强列车行车指挥的自动化水平。在机车信号设备运行的过程中受制于周边复杂工况的影响会出现各种复杂的故障,为保障机车信号设备的安全运行需要对常出现的机车信号设备故障开展分析与研究,使机车信号设备在故障出现时可以马上结合故障状况予以排除。 关键词:机车信号设备常见故障分析 引言 近年来我国铁路的发展速度较快,各项先进的技术开始在铁路行业中应用,一体化机车信号车载设备在铁路安全运营中发挥着非常重要的作用。一旦该设备任何一个部分运行过程中出现异常情况,会对整个设备的正常运行带来较大的影响。文章分别对电源信号、输入信号系统、控制信号系统及输出信号部分等的故障进行了详细的分析,从而为一体化机车信号车载设备的正常运行奠定了良好的基础。 1机车信号设备常见故障分析 机车信号是一个由车上信号设备和地面信号设备共同构成的系统,其显示含义与地面信号机相符。机车信号的信号源来自于地面钢轨传输的信息电流,经机车感应器传到机车信号主机,再经主机译码驱动机车信号显示及自动停车设备。司机根据机车信号机的显示操纵机车运行,当超速时自动停车设备会强迫机车紧急制动,保证列车运行安全。机车信号的异常原因可由地面及车上设备造成,但最终全部反映在机车信号的显示上。当机车信号显示产生升级、掉码、串码等异常现象时,会危及列车安全。由于此类问题的存在,造成高速列车的紧急制动,给列车安全运行带来很大隐患,也打乱了正常的运输秩序。 2机车信号设备故障处理的方法 2.1机车信号设备的故障处理 在对机车信号设备的数据及上电故障表象进行观察后可以对故障点进行初步的判断。如若重启后故障仍在则可以判定为硬件故障。在故障点查找时多采用的是排除法,对主机采用替换电路板;对信号机故障可用排除法。对于机车信号设备信号机白灯不变的故障需要对机车双路线圈到主机X26插头之间的逻辑电路进行检查,尤其是要对机车下部线圈接线盒的端子进行重点检查,避免短接、虚接或是断接。检查时还需要对继电器的工作状况进行检查。对信号机灭灯的故障还应检查双路接收线圈及相关插接件和连接电缆,看是否有被撞坏和挂断;对主机A、B机不能正常切换故障,应考虑是主机故障(可把A、B主机板对换,来确定是主机板还是连接板故障)。如果机车信号设备上电后并未出现明显的故障,且硬件检查正常则可以判定为软故障,这类故障现象多为:信号突变、信号瞬间灭灯、运行中有一段信号掉灯、信号掉灯频繁、出站信号开放机车信号显示HU灯(B灯或H灯)等。对软故障进行处理时需要对地面轨道电流、发送信号和载频开关等进行检查。对于瞬间灭灯(断电)的故障时,则需要对机车DC110V电源的供电进行检查。重点对主机、X22插头等几个部分进行检查,进行故障的排除

接触网常见故障分析及对策

第四章、牵引网常见故障分析及对策 第1节、牵引网故障现象与分析 第2节、故障处理措施 第3节、电气烧伤故障原因分析 第4节、电气联结方面故障 第5节、绝缘方面故障 第四章、接触网常见故障分析及对策 随着以动车组开行为标志的铁路第六次大面积提速调图工作顺利实施,在我国的繁忙铁路干线上又多了一道靓丽的风景——动车组。由于动车组结构、速度、动力特性需要,全部为电力驱动。在铁路电气化区段牵引供电系统已和信号系统、工务系统一同成为不可或缺的重要组成部分。尤其是动车组自身不带发电设备,车内各种工作和生活用电均直接从接触网上取电.一旦发生断电将会直接影响列车和旅客的工作生活。因此如何确保牵引供电设备的正常运行已成为牵引供电专业急需解决的问题 接触网是牵引供电系统中的重要组成部分,由于其设置的特殊性(机、电合一,露天设置,动态工作,没有备用),所以一旦发生故障将会直接影响牵引供电系统的正常运行,严重时还会中断电气化铁路的行车功能。因此分析和研究其常见故障,制定切实可行的防范措施尤显重要;接触网是一种机、电合一的特殊设备,既有机械方面的结构特点,也有电气方面的技术要求,相辅相成、缺一不可。接触网的常见故障主要表现在3个方面:空间结构尺寸方面;导电回路方面;绝缘方面;空间结构尺寸方面故障;接触网是一种特殊的供电设备,所谓特殊即其不仅要保障质量良好地向电力机车提供电流,而且还要保证接触悬挂能牢固地处在规定的空间几何位置上,保证受电弓能质量良好地、平滑地从接触线上取流。由于机车受电弓宽度有限,且机车运行速度愈来愈快。因此接触网的技术参数一旦发生变化或接触悬挂上零件一旦脱落,就会对电力机车或电动车的运行造成障碍,严重时还会造成弓网故障。 第一节、接触网故障现象与原因分析 4.1.1、故障现象

北石顶驱常见故障解决方法

北石顶驱常见故障解决方法 一、顶驱子站通讯中断 1、检查该子站直流供电电源。DC24V是否存在,没有电源请按图纸检查相应的供电线路,连接装置是否连接完好,找到故障发生点,解决并恢复该站点的电源供给。电源正常还未建立通讯请检查下一步。 2、检查通讯线路。将通讯线路与两边连接器件拆开,用万用表检查通讯线路是否存在短接、断线现象存在,如有找到故障点将其恢复。 子站通讯中断原因基本是由于以上两个原因构成的,在以上两个原因中以插接装置接触状态不好的原因占绝大多数。 二、与液压相关动作执行故障(倾斜、回转、刹车、背钳、IBOP等) 1、检查控制信号。司钻台的DI模块相应位置在相关操作是有相关显示;在应急模式下电控房PLC柜内手动继电器在做相应操作时有相应的动作,同时PLC柜内DI模块相应位置有指示。 2、检查连接线路。控制电缆与电控房出线箱连接处,与本体站连接处插接是否到位,方向是否正确。 3、确认电磁阀在操作时是否有反应。相应执行电磁阀在操作时是否有反应。 4、如果以上检查都正常请检查电磁阀阀芯有无卡堵现象。 液压动作执行故障在实际情况下多数是由于控制电缆插接不好、手动信号继电器松动、以及电磁阀阀芯卡堵原因造成的。 三、液压源存在油温高故障 1、确认冷却风机运行状态良好。 2、散热器换热效果良好,无污物堵塞换热器减小了有效工作面积。 3、液压源本身是否通风完好。(在该地区由于环境温度较高,液压源

通风效果较差时可以打开四周防护门) 四、变频房的散热。在夏季,室外温度较高时,将电控房空调室外机周围防护百叶窗打开并支起。这样增大空调冷凝器的通风量,提高换热效率,可以有效防止压缩机压力高报警。空调室内风机应设置在常开状态,这样可以有效的将装置再运行中产生的热量及时的传送到柜外。 五、变频房的防尘。有效做好电控房的室内防尘工作。在沙特地区以多风多沙气候为主,电控房要做到随手关门,人走锁门。人员在出入电控房带入的沙土要及时清理,避免被装置送风系统带到驱动装置内部。现在该地区的顶驱电控房总的来说装置内部已经有大量灰尘,这种情况清理起来是相当困难的。同时也给装置的正常运行带来了隐患,装置内部大功率器件多为裸母线连接,灰尘散落到母线间会使线间绝缘变坏,在特定的情况下可能出现放电现象,最终导致装置损坏。装置的核心控制器件多为集成电路板,电路板制作精细对环境因素要求较高,在恶劣环境下直接影响他们的使用寿命。 六、要按照维护保养手册定期对运行顶驱进行检查。特别是电缆连接处有无松动,有无颜色变化,有无异常声响,有无特殊气味;液压管线有无跑、冒、滴、漏现象。有以上现象要及时处理不要带病运行,以上现象不被重视会造成严重后果。 七、沙特地区环境温度较高,顶驱安装时都不使用光纤,2007年前出厂的顶驱,不能将主电机及齿轮箱温度有效采集,同时失去了高温保护功能。井队相关技术人员要每天温度最高时检查主电机和齿轮箱温度是否正常,特别是要注意齿轮箱齿轮油油位及颜色,齿轮油颜色变化大要给予重视,分析具体原因并给予解决。 八、顶驱故障多发生于搬家后,多数与电气系统相关。顶驱在搬家前拆卸

电力机车弓网故障处理办法定稿[2].

电力机车弓网故障处理办法 我段电力机车大范围投入运用,为确保电力机车线上运行安全,发生弓网故障后能正确、及时、有效的处理,减少电力机车发生弓网故障对行车的影响,特制定本办法。 一.电力机车发生弓网事故的判断 电力机车运行中,司机发现机车“零压”保护动作主断跳闸后,应立即确认操纵台网压表的显示,如网压表显示网压在正常范围内,可重新合主断,并后部瞭望确认弓网状态;如网压表无网压(感应网压)显示,立即采取降弓和非常停车措施。停车后车下目视检查弓网及车顶部件状态。 1.检查弓网及车顶部件正常,使用车顶绝缘检测装置检查车顶绝缘正常(无车顶绝缘检测装置的机车确认感应网压在规定范围,SS4:1-3KV;HXD1C:3-5KV),按列车调度员指示办理。 2. 检查弓网及车顶部件异常,立即将停车原因和停车位置通知两端站、追踪列车,并将现场情况报告车站值班员,听从列车调度员的指挥。 二.发生弓网事故后处理 1.司机首先查明受电弓损坏程度,检查时不得侵入邻线,密切注意邻线列车,迅速将受电弓和接触网损坏情况(接触网故障地点及接触网支柱号码)向车站汇报并记录; 2.司机确认受电弓故障可维持运行时,切除故障受电弓的升弓电路和风路,使用高压隔离开关将故障弓隔离。检测车顶绝缘正常后换弓继续运行,回段后再做处理。 3.司机确认受电弓刮坏需停电处理时,向列车调度员申请停电;未下达停电命令前,要准备好接地线及工具,做好准备工作;接受接

触网停电命令时要记清接令时间、调度命令号码、停电区间、起止时间、上下行线别及列车调度员姓名、车站值班员姓名等,并与车站值班员校对时间,核对命令内容正确。 4.司机升弓验电,确认接触网无电后降弓,穿戴好防护用具,将接地线一端固定在钢轨上(钢轨表面须清洁)并拧紧,挂好接地线后,方可登顶处理。 5.机班登上车顶后,要认真对车顶设备进行全面检查,消除故障点和接地点,并将故障受电弓捆绑牢固,防止运行中发生移位。若命令限时内难以处理完毕,需重新申请,延长停电时间。机班相互监督,共同确认停电起止时间,严禁超过停电时间作业。 6.故障受电弓处理完毕,司机应再次确认受电弓、导电杆、绝缘瓷瓶等部件正常,车顶无异物,人员全部下车顶并处于安全位置,检测车顶绝缘正常后方可撤除接地线和申请送电;并要记录送电的时间、命令号码和内容、列车调度员及车站值班员姓名。 7.接触网送电后进行车顶绝缘检测正常后,方可升弓。 三.安全注意事项 1.发现牵引供电设备及其部件损坏,或发现牵引供电设备上挂有线头、绳索、塑料布或脱落搭接等异物,均不得与之接触,应立即通知附近车站,在牵引供电设备检修人员到达未采取措施前,任何人员均应距已断线或异物处所10米以外。 2.电气化区段在处理列车(机车)顶部故障,处置列车(机车)顶部突发事件等,必须做到“先停电、后验电接地、先防护、后处理”的作业规定。严禁擅自盲目登上列车(机车)顶部处理、处置各类故障和突发事件。

10-掉话类故障分析与处理

M900/M1800 基站子系统故障处理手册目录 目录 第10章掉话类故障分析与处理...........................................................................................10-1 10.1 概述...............................................................................................................................10-1 10.1.1 掉话问题描述......................................................................................................10-1 10.1.2 掉话的计算公式..................................................................................................10-3 10.2 导致掉话的几种因素......................................................................................................10-4 10.2.1 覆盖引起的掉话..................................................................................................10-4 10.2.2 切换引起的掉话..................................................................................................10-6 10.2.3 干扰引起的掉话..................................................................................................10-8 10.2.4 天馈引起的掉话................................................................................................10-10 10.2.5 传输引起的掉话................................................................................................10-11 10.2.6 无线参数设置不合理.........................................................................................10-11 10.2.7 其它原因引起的掉话.........................................................................................10-12 10.3 典型案例......................................................................................................................10-13 10.3.1 优化切换参数减少掉话.....................................................................................10-13 10.3.2 直放站干扰引起掉话.........................................................................................10-13 10.3.3 MAIO相同引起干扰掉话...................................................................................10-15 10.3.4 上下行不平衡....................................................................................................10-15 10.3.5 孤岛效应引起掉话.............................................................................................10-16 10.3.6 与版本相关的参数设置.....................................................................................10-17

常见的基站闪断的原因分析#(精选.)

1、闪断:通俗的讲就是基站由于传输不稳定,动力供电的系统的不稳定,设备接地的不好等原因,造成基站瞬时退服,又很快的恢复基站的故障; 2、断站:简单的讲就是基站由于传输中断,设备硬件故障,电源故障等原因引起的基站脱离服务的故障 闪断的原因补充: 外部原因:机房停电,温度过高,或者传输设备的接地不良。BSC并无温高,停电告警,到现场后,基站工作温度正常,排除温高,停电引起闪断;在现场测试主设备和传输设备接地情况,并无异常,排除接地不良引起闪断。内部原因:基站板件,软件设置,传输线路误码等原因移动通信,如果是新站有可能有可能是新机架及板件与老的软件包冲突所致。 最近在维护抢修工作中处理了几起中兴V2、V3等设备频繁小区中断、闪断的故障,现就此故障处理的心得与大家分享。 处理故障,首先要究其根源,个人认为,导致此类故障的原因有以下几点: 1、接地问题。 2、传输的问题。 传输端口有误码也可能导致闪断,需要重新更换端口或让传输人用光仪器清除误码。 3、LAPD板件问题。 频繁闪断,也有可能是BSC上的LAPD板问题,可以根据闪断的站点是不是连接在同一块的LAPD板上确定是否是BSC侧的问题,仔细检查下闪断站点链接的LAPD板,确认所有闪断的站点是不是链接在同一块LAPD单板上。中兴的设备经常会由于BSC上LAPD板故障引起部分站闪断。 4、小区风扇问题。 查看小区的风扇是否工作,如果不工作换个保险,V3设备风扇坏了载频就会自动停止发射信号。 5、动力电源的电压问题。 一一排除这些故障原因,就必须在第一时间到站,测传输、电压、温度,对调、更换问题小区,以及检查本地及BSC数据,必要时尝试重做数据,包括天馈方面,有告警要结合告警情况来具体分析处理等。 闪断主要是因为传输故障引起的,主要表现为1;2M电路的各头子接触不好,会导致基站闪断;2:SDH的光板和光路或者上一级基站的光板存在隐形故障,会导致基站闪断;3:直流开关电源的监控坏,引起二次下电控制不好,会导致基站闪断。4:SDH接地不好也会导致基站闪断。 1、基站的时钟提取有问题,也会出现传输闪断; 3、2M传输在进入基站的机柜前的各段转接的接头质量不好,导致传输的误码和滑码的出现,出现闪断; 4、传输的公共地有问题或部分光端机的接地有问题,导致传输闪断。 5、使用微波传输,微波的对调不精确或在风、雨雪天出现传输的误码和滑码,导致传输闪最新文件仅供参考已改成word文本。方便更改如有侵权请联系网站删除 word.

地铁供电接触网系统可靠性及主要故障分析

地铁供电接触网系统可靠性及主要故障分析 发表时间:2017-10-11T10:47:25.930Z 来源:《基层建设》2017年第16期作者:田金龙 [导读] 摘要:随着城市化的大力推进及经济社会的飞速发展,地下交通得到大力发展。牵引供电系统是地下轨道交通重要的组成部分,它的正常运转保证地铁安全可靠的运营,而作为地铁供电系统的主体接触网系统,其工作状态和质量将直接影响地铁的运输能力。本文主要介绍了地铁供电接触网系统可靠性及主要故障。 深圳地铁集团有限公司深圳 518000 摘要:随着城市化的大力推进及经济社会的飞速发展,地下交通得到大力发展。牵引供电系统是地下轨道交通重要的组成部分,它的正常运转保证地铁安全可靠的运营,而作为地铁供电系统的主体接触网系统,其工作状态和质量将直接影响地铁的运输能力。本文主要介绍了地铁供电接触网系统可靠性及主要故障。 关键词:地铁;供电;接触网;可靠性 随着经济社会的快速发展及城市化的大力推进,传统交通已满足不了人们的需求,地下交通应运而生,并得到快速发展。2017年,仅青岛市同时在建的地铁就高达7条。越来越多的城市加入地铁建设大军。地铁在整个交通系统中的作用越来越重。作为地下轨道交通重要的组成部分,牵引供电系统的正常运转是地铁安全可靠的运营的保障[1],接触网系统承担着为电力机车输电的任务,是电气化铁路的核心部分,其质量及工作状态会直接影响地铁的运输能力。随着地下轨道交通高速化的发展,为保证对列车的持续、稳定的供电,对接触网系统可靠性的要求日益提高[2]。对其进行可靠性分析研究不但可以提高供电的稳定性,也可以优化维修成本和维修计划。因此,对接触网系统进行可靠性研究是很有必要的[3]。本文主要分析了地铁供电接触网系统可靠性及主要故障,并提出相应建议。以期通过本文的介绍为后续的研究研究者提供理论指导。 1 地铁供电接触网系统概述 直流制是地铁牵引网供电制式。架空接触网根据悬挂形式的不同又分为刚性接触网及柔性接触网。接触网系统主要部件有中心锚结、接触线、汇流排等。中心锚结的作用是防止在不同的环境温度下接触网产生偏移。接触线是接触网悬挂件中的重要部件,它的材质一般为银铜合金,需要通过嵌入或者用线夹固定于汇流排上。汇流排分为“Л”型及 “T”型两种横截面形式。汇流排接头,需要保证汇流排机械正常对接和其导电性能。 2 地铁供电接触网系统可靠性分析 常用的可靠性分析的方法有很多,总体上可以分为四大类:解析法、混合法、蒙特卡罗模拟法及贝叶斯网络法。 解析法,又称为故障枚举法,其物理概念十分清晰,理论也较为简单,但是在实际计算是会遇到一些难以解决的问题,电力系统的故障状态会随着电气设备的增加而呈指数增长,当系统变得越来越复杂时,其状态空间的状态数也会急剧增加,这会大大增加计算负担,这也局限了解析法只能适用于不太复杂的小型系统。解析法的主要是根据系统的结构、系统和元件的功能以及两者之间的逻辑关系建立系统的可靠性模型,一般通过逻辑关系递推或数值迭代的方法求解此解析模型,从而求得系统的各项可靠性参数。工程中常用的解析法有:故障树分析法、故障模式和后果分析法、状态空间法、网络图法及GO法。 故障树法在电力系统中的应用较为广泛,在接触网系统的分析中也有较多应用。作为网络图法的一种常用方法,故障树法是一种图形演绎方法,是当故障事件满足一定条件下的逻辑方法。这种方法在实现时,将最不希望发生的故障状态作为故障树的顶事件,从这个顶事件开始,找出导致其发生的每一个直接原因,将这些直接的原因作为中间事件,它们起着过渡作用,再由这些时间扩展到下一层,只到找出这些时间的基本原因,将这些基本原因作为故障树的树基,也就是故障树的底层事件。在完成整个故障树的模型建立后,根据树中的逻辑关系来对其进行求解,求出故障树的最小割集,然后对整个系统进行定量或定性分析。故障树法的优点在于能够把整个系统的故障与各个元件联系起来,在故障树中,能够很清楚的看出系统可能的故障状态,也能够轻松的找到整个系统的薄弱环节以及引起每种故障的原因,有助于评估和改进整个系统的可靠性。但是,法继承了网络图法的弱点,即仅仅适用于结构较为简单的系统,对复杂系统进行求解的效率太低。所以法只对较为简单的系统可靠性进行计算。 我国引进可靠性技术只有不到 30 年的历史。20 世纪 90 年代初,国内首次提出牵引供电系统可靠性问题。从公开的资料看,有代表性的工作主要有以下几方面:研究建立了单边、双边 2 种供电方式下供电臂的供电可靠性指标计算公式;提出了牵引供电系统实行可靠性系统工程的必要性、实现步骤和方法;探讨了接触网典型零部件的可靠性设计方法,总结了接触网系统可靠性工程的研究范畴;分析了电气化铁道弓网故障及其产生的原因,提出了在接触网设计中提高可靠性、减少弓网故障的一些具体措施和建议。 但通过文献研究发现,关于定量分析地铁供电接触网系统可靠性的研究非常少。李想[4]等研究发现:利用可靠性框图法计算出我国地铁供电接触网系统可靠性达到99.9951%。而利用故障树分析法计算得到接触线、悬挂支撑装置、中锚线夹、汇流排、汇流排终端的临界重要度分别为 0.07、0.292、0.175、0.152、0.311,由此可知各部件对接触网可靠性影响从大到小排列分别为汇流排终端、悬挂支撑装置、中锚线夹、汇流排和接触线。 3地铁供电接触网系统主要故障分析 统计研究发现,目前地铁供电接触网系统存在的主要故障有:接触线和承力索的材质质量太低,线索的断线事故时有发生;弓网间的动态性能不好,不能实现良好受流,导致打弓、钻弓、塌网等事故;我国地铁在维修中还存在着许多问题,譬如:接触网巡视、检修不及时、维修天窗兑现率较低、零部件的性能不稳定等。我国的接触网在施工时,所遵循的标准太低,容易埋下安全隐患,不能够适应高速地铁的发展。另外,内涝的爆发等可能导致地铁进水,也可能导致接触网系统发生故障。其中,汇流排终端的主要故障有接触线的电气烧伤,汇流排终端接触线的疲劳破坏和汇流排变形导致的汇流排终端的失效。 故我们应在安装汇流排时注意安装到位,防止零部件卡滞或脱落导致器件变形和弓网接触不平顺;选择具有良好热胀冷缩性能的汇流排和具有防松防脱功能的零部件;考虑增加防护措施;加大日常的检修和保养。 4 结论 近些年来,我国大力发展地下轨道交通事业,并取得了不俗的成绩。其中,接触网系统在地下轨道交通中的起到很重要的作用。本文对地铁供电接触网系统的可靠性及主要故障进行分析,并提出相应的预防措施,保证了轨道交通车辆的可靠性。

相关文档
最新文档