π络合吸附分离技术的研究进展及应用

π络合吸附分离技术的研究进展及应用
π络合吸附分离技术的研究进展及应用

π络合吸附分离技术的研究进展及应用

周艳平

(江南大学食品科学与工程学号:6150112117)

摘要:随着经济迅猛的发展,吸附分离技术在当今社会已受到科学家们广泛的关注。吸附分离技术在工业化生产以及环境保护中起着关键性的作用,该技术已经蔓延至食品、医药等综合领域,并在这些领域中扮演着相当重要的角色。本文着重介绍了π络合吸附分离技术、吸附剂的研究进展以及其应用特点,并对其作相应的评价。

关键词:π络合吸附分离;吸附剂;研究进展;应用

1、前言

吸附技术很早就为人们发现和利用。古代用新烧好的木炭,利用其吸湿吸臭的功效来去除某些异味,也包括在日常生活中,将烧尽的木炭放在冰箱里从而达到去除异味的目的,这些都说明吸附技术在人类生活中已有悠久历史[1]。然而,在近代工业中,人们对吸附的知识还停留在直接开发使用,如空气和工业废气的净化,防毒面具里活性炭吸附有毒气体,硬水软化用到离子交换树脂等[2],吸附分离技术仅仅以辅助的作用出现在化工单元操作中。吸附分离的研究进展之所以受到一定的限制是由于固体吸附剂的吸附容量小,吸附剂耗用量大,使分离设备体积庞大,同时因固体的热容量大,传热系数小,升温、降温速度慢,循环周期长,效率低,因此发展较缓慢。直至五十年代初,随着工业的发展特别是石油化工开发,新型吸附剂的开发为吸附分离技术的进一步应用打下了基础,相继许多吸附分离技术应用于各个行业,推动了工业化的发展,其中π络合吸附分离技术占有十分重要的作用,显示出巨大的潜力。

2、吸附分离技术简介

早期的吸附分离技术主要用于吸附净化方面,随着20世纪50年代合成沸石分子筛的出现,使吸附分离技术得到快速发展,也因此使得吸附分离技术在化工、石化、生化和环保等领域得到广泛应用[3]。吸附技术在现代生活中的应用与Lowitz的实验结果有着必然的联系,Lowitz利用木炭去脱除有机物中的杂质[4]。对吸附技术的系统学习要追溯至1814年de Saussure的研究,他得出的结论是多

孔性物质吸收气体是一个伴随热量变化的过程。因此,他发现了吸附过程的放热特性,他也是第一个关注吸附特性的人。实际应用中的吸附过程主要基于吸附物质对混合物中个别物质的选择性吸收。Tswett在1903年首次发现了选择性吸附技术,他充分利用这一技术并借助硅材料来分离叶绿素和其他的植物色素。目前,色谱分析作为最重要的分析方法之一,它源自于吸附技术。

2.1、π络合吸附分离技术

2.1.1、π络合吸附分离技术的发展

吸附分离主要分为物理吸附与化学吸附,物理吸附和化学吸附的作用力不同,在吸收热、吸附速率、吸附活化能、选择性等方面表现出明显的差异。π络合吸附分离是基于吸附质与吸附剂之间能形成π络合键的原理实现混合物分离的技术。π络合属于弱化学键的范畴[5]。因此,与传统的利用范德华力或静电力的物理吸附相比,它的作用力强,有更高的吸附选择性;而与一般化学吸附相比,它的弱化学键性质使得脱附过程很容易通过降低压力或升高温度的方式得以实现。

π络合吸附分离的研究,最早是为了满足工业上分离和净化混合气中一氧化碳的需要,对于含有一氧化碳和氦气的混合物体系,传统的工业方法采用深冷分离法[6,7],即在高压、低温下分馏。由于一氧化碳和氦气的相对分子质量几乎完全相同,沸点很相近,低温分馏所需能耗高,设备复杂,投资大,操作费用高,因此只有大规模工业化生产才比较经济。为了克服各种工业方法的缺陷,研究者们致力于尝试种种改进方法,π络合吸附分离将可逆π络合与吸附分离过程相结合,有潜力替代某些高能耗的精馏过程而用于处理较难分离的系统,如CO-N2和C2H4 -C2H6系统,最终在90年代中期引起世界各国研究者的广泛关注。其中以美国密歇根大学Yang[8,9]带领的课题组研究最为活跃,报道了一系列的研究成果。国内的北京大学、西南化工研究院[10]、大连理工大学[11,12]、南京工业大学[13-15]、河北工业大学[16]等都在进行这方面的研究工作。π络合吸附分离的关键是开发具有高选择性的π络合吸附剂。近二十年来,世界各国研究者已经尝试开发了许多这样的吸附剂。最典型的是CuCl/γ-Al2O3吸附剂,已在工业中用于高纯CO 的回收。π络合吸附分离技术被认为最有希望取代传统分离过程的新方法,也因此成为近几年研究的热点,π络合吸附分离技术在化学工业、石油化工和环境

保护等许多需要分离和净化的领域,显示出巨大的应用潜力。

2.1.2、π络合吸附分离原理

从理论上讲,π络合吸附原理适用于元素周期表中所有的过渡金属元素,即d区元素。当过渡金属原子带有电负性较大的配体(如F和Cl等)时,由于电子云偏向电负性较大的配体,使得金属带部分正电荷,导致金属最外层s轨道变空,因此具有接受电子的能力。当这样的金属与具有π电子的吸附质分子(如CO、不饱和烃)接触时,易于接受吸附质所提供的π电子形成σ键。与此同时,金属将外层过多的d电子反馈到吸附质空的高能反键π*轨道上,形成反馈π键。σ-π键的协同作用使金属同吸附质分子间的键合作用增强,发生π络合吸附作用[17]。

在所有d区元素中,一价金属离子Cu(I)和Ag(I)因具有(n-1)d10ns0的电子构型,既易接受电子,又易给出过多的d电子而成为研究最多的两种过渡金属阳离子。以CO-Cu(I)为例来描述了兀络合成键的原理,其示意图如图1[18]所示:

图1:σ-π配键示意图

CO在跟Cu(I)形成络合物时,一方面有孤对电子可给予Cu(I)的空轨道形成σ键;另一方面,又有空的反键π*轨道可以和Cu(I)的d轨道重叠形成兀键,这种兀键因为是由金属原子单方面提供电子,所以称为反馈兀键。这样CO与Cu(I)络合时形成了σ-π电子接受键,相互促进,产生协同效应。由于N2及CO2、CH4、H2等不会与Cu( I)产生上述协同效应,故不会发生络合吸附。因此,Cu(I)可以对CO选择性吸附,实现从含N2的混合气体中分离净化CO的目的。

对π络合吸附作用的理论研究,可借助分子轨道计算和自然键合轨道分析。用于实现计算的程序包有Gaussian,GAMESS,AMPAC等。其中Gaussian是计算分子轨道应用最广的程序包,已用于以下系统的π络合键研究:乙烯-卤化银,

乙烯-银离子交换沸石,乙烯-氯化亚铜,乙烯-氯化银,一氧化碳-氯化亚铜,一氧化碳-氯化银等。

2.2、π络合吸附分离技术应用

π络合属于弱化学键的范畴。因此,与传统的利用范德华力或静电力的物理吸附相比,它的作用力强,有更高的吸附选择性;而与一般化学吸附相比,它的弱化学键性质使得脱附过程很容易通过降低压力或升高温度的方式得以实现。π络合吸附分离结合了强化化学作用的π络合与吸附分离,具备高选择性、低能耗、低成本等特点,因此成为改进传统分离技术的一个重要前沿领域。在工业上具体实施吸附分离的过程时,根据进料中强吸附组分的浓度,将兀络合吸附分离过程分为两类:大吸附量分离(bulk spearatino)过程和净化(purificatoin)过程。之所以加以区分是因为这两类吸附过程对吸附剂的选择要求是不同的,对吸附剂的再生方法也不同,因此采用不同的循环吸附工艺。而用于区别分离与净化过程的定义来源于Keller。当混合物中不少于10%(wt)的组分为待吸附组分时,此分离过程称为大吸附量分离(常简称为分离);当混合物中待吸附组分的含量低10%(通常低于2%)称为净化过程。

2.2.1、π络合吸附用于大吸附量分离过程

2.2.1.1、回收CO的工业应用

早期对于兀络合吸附分离技术的研究,主要集中于CO的回收应用,由于开展的较早、研究的较广泛,因此已应用于一些具体的工业过程,也有很多相关的工业报道。现今,随着科学技术的不断深化,CO的生产能力有一个大幅度的提升,因而大大的推动了工业化的发展。

分离CO时,一般采用的是CuCl单层分散型兀络合吸附剂。但根据最终所CO的纯度,需选用不同载体负载的吸附剂。比如用于合成工程塑料的CO,为避免副反应的发生,要求其中甲烷量最高不超过25ppm,此时需选用对于含甲烷的CO有很高选择性的CuCl/γ-Al2O3吸附剂[19]。钢厂使用CO时则没有此限制,可选用CuCI/活性炭吸附剂。

工业上回收CO使用变压吸附分离过程。变压吸附(PSA)气体分离技术,是利用吸附剂对气体混合物中各组份的吸附能力随压力变化而呈现差异的特性,从气体混合物(主要为工业废气)中分离提纯需要的气体组份或进行气体混合物

净化的技术。由于具有能耗低、流程简单、产品气纯度高、装置自动化程度高和操作简单等优点,PSA技术在化工、石油化工、化肥、冶金、电子、食品、煤炭、机械、轻工等行业得到迅速推广与应用[20]。我国每年工业废气中CO含量比全国天然气的产量还多,如何有效利用废气中CO成为环境保护者和企业关注的问题。PSA-CO技术可以从过去放空或燃烧的工业尾气和再生气中回收CO,为羰基合成装置提供廉价的CO原料气,随着羰基合成工业的发展,PSA-CO技术推广前景广阔。

2.2.1.2、分离烯烃-烷烃

烯烃/烷烃分离在石油化工和化学工业中占有重要地位,最重要的烯烃/烷烃分离体系是乙烯/乙烷和丙烯/丙烷的分离,目前工业上采用的烯烃/烷烃分离方法是低温精馏法。低温精馏必须在低温、高压下进行,设备投资大,而且由于烯烃/烷烃的沸点相近,相对挥发度很小,精馏回流比大,因此能耗巨大。基于低温精馏的缺点,研究者们试图将π络合吸附用于小规模的分离烯烃/烷烃。

近几年来,Yang等先后制备出了Ag离子交换树脂[21,22],单层分散CuCl/γ-Al2O3,CuCl/柱状粘土[23],单层分散AgNO3/SiO2[24],AgNO3/酸处理粘土[25]等各种兀络合吸附剂,并在这些吸附剂上进行了烯烃-烷烃分离的可行性研究[26]。比较这些吸附剂上C2H4-C2H6和C3H6-C3H8的平衡吸附等温线可以看出,AgNO3/SiO2吸附剂的分离效果最佳,且等温线的线性化程度相对较好,将有利于变压吸附的循环操作过程。如果综合考虑吸附剂的成本,CuCl与AgNO3相比,其相对较低的价格使得CuCl/γ-Al2O3吸附剂更有工业应用的前景。

关于烯烃-烷烃分离的吸附过程研究也取得了一定的进展,过程模拟计算已经被用于变压吸附的过程研究。Rege等在AgNO3/SiO2吸附剂上,模拟C3H6-C3H8体系的四塔变压循环过程。计算出C3H6产物纯度、C3H6产物的回收率及吸附剂的处理能力来评价吸附剂的分离性能。对体积分数分别为85%C3H6、15%C3H8和50%C3H6、50%C3H8两种进料组成的模拟计算结果表明,C3H6产物纯度都超过99%。模拟还发现初始床层温度和进料速度对变压吸附循环的影响很大。

刘晓勤等[27]对所制的稀土复合载铜活性炭吸附剂进行了动态吸附性能实验测定,结果表明此吸附剂对乙烯有良好的吸附选择性。将此吸附剂用于回收环氧乙烷尾气中的乙烯,通过采用真空变压吸附的工艺,回收成本低,可用于烯烃厂

环氧乙烷装置排放气中乙烯的回收。

2.2.2、π络合吸附用于净化过程

2.2.2.1、用于深度脱硫

随着环保法规的日益严格,汽油等燃料低硫化、清洁化已是大势所趋。汽油中的硫化物(主要指有机硫化物)带来的问题主要有两方面。一方面,在汽油炼制过程中以及在使用时有可能会出现腐蚀管道、泵、制设备、内燃机熄火等问题;另一方面,汽油中硫含量过高会带来大范围环境污染。硫化物所引起的环境污染给人类的生存造成了严峻的威胁,因此,车用燃料的深度脱硫正成为美国及其它各国政府的强制性要求。

迄今为止,涉及到的脱硫技术主要有IRV AD脱硫技术、S-Zorb脱硫技术、SARS脱硫技术、π络合吸附脱硫方法。这些技术能够脱除硫醇、硫化物、二硫化物,但不能脱除噻吩及其衍生物,即选择性吸收性不好[28],使得硫含量不能达到环保要求。因此,许多研究者尝试将π络合吸附分离用于深度脱硫,这也在后续的实验中得到验证,π络合吸附分离对于深度脱硫的成效明显。

由分子轨道理论计算可知,Cu+/Ag+与噻吩之间形成π络合键的强度大于苯,这表明π络合吸附剂对于燃料中脱硫过程具有选择性的作用。在这项研究中,Yang等人开发了一系列脱硫吸附剂,发现Ag-Y和Cu(I)-Y是将液体碳氢化合物中噻吩去除的优良吸附剂[29]。

2.2.2.2、用于脱除脂肪烃中的少量芳烃

脱除脂肪烃中的少量芳烃对于保护环境,控制污染具有重要的意义。目前世界各国都在加强对环境污染物的控制,要求减少运输燃料中的芳烃,特别是苯的浓度。欧联盟的环保规定为:2000年时汽油中苯的浓度需控制在1vol%以下,2002年时柴油中多环芳烃浓度必须低于11vol%,2005年时的浓度限定则更为严格。

世界范围内的环保要求对净化脱除汽油和柴油中的芳烃杂质迫在眉睫,工业上脱除苯,常用萃取和蒸馏相结合的方法。很多替代技术已被考虑,比如渗透蒸发、液膜法、液相变温吸附法等。Matz和Knaebel[30]对目前常用的商品吸附剂:硅胶、活性氧化铝、活性炭、13X沸石、聚合树脂XAD-7进行了脱除苯的实验研究。其中硅胶的净化效果最佳,但选择性仍偏低。Takahashi等[31]研究了用AgY

净化脱除环己烷中的微量苯。实验分别测定了120℃和180℃下苯和环己烷的单组分吸附平衡等温线。使用混合吸附等温线模型计算了环己烷中苯的浓度,相当高的分离因子值显示出AgY对微量苯具有强吸附选择性,有望用于净化脱除脂肪烃中的少量芳烃杂质。

3、π络合吸附剂

π络合吸附分离技术在现代工业生产中有着主导作用,而π络合吸附分离技术的关键是制备高效的π络合吸附剂,这直接影响着吸附分离技术的最终效果。新型吸附剂的开发成功,一方面可以带来吸附分离过程新的应用,另一方面对于丰富吸附剂的种类和吸附剂制备方法都具有重要的理论和实际意义,这需要对过渡金属盐(活性组分)的种类、载体的选择以及制备方法等方面作全面考虑。研究者们依据Cu(I)能跟CO络合形成金属羰基络合物的原理,研制出了多种高效的CO吸附剂,按照载体类别的不同大致可以分为分子筛类、离子交换树脂类、γ-Al2O3类及SiO2类、层柱状粘土(PILC)及活性炭类,对不同的载体可以采用不同的负载处理方法。下面将分子筛类吸附剂、离子交换脂类吸附剂作详细介绍:3.1、分子筛类吸附剂

3.1.1、分子筛类吸附剂简介

沸石的发现可以追溯到1756年,瑞典矿物学家Crnostedt发现有一类天然硅铝酸盐矿物在灼烧时会产生泡沸现象,于是就称之为沸石(Zeofeit)。直到1945年,Barrer公司才开创性地表明可以从硅铝酸盐凝胶中较快的合成出沸石,1948年美国联合碳化物公司(UCC)首先实现了人工合成分子筛,直到上世纪四十年代才开始大规模的合成工作[32]。分子筛是人工合成的泡沸石,是硅铝酸盐的晶体。分子筛经加热失去结晶水,晶体内形成许多孔穴,其孔径大小与气体分子直径相近且非常均匀,它能把小于孔径的分子吸进孔穴内,把大于孔径的分子挡在孔穴外,因此,它可以根据分子的大小把各种组分分离。正是由于分子筛具有以上性能,所以它在废水处理、干燥分离、气体分离及清洁油品等领域得到了十分广泛的应用[33]。但是,对于乙烯和乙烷在分子筛上的吸附情况,国内外学者曾做过大量的研究工作,直接将其应用于它们的吸附分离时,普遍存在选择性小、难以再生的不足。但分子筛有很好的离子交换性能,通过离子交换可改良其吸附性能。离子交换可分为两类:一类是与碱土金属离子或碱金属离子交换,分离机理是分

子极化和筛分作用;另一类是与过渡金属离子交换,分离机理是π-络合[34]。将Y型或X型分子筛与Ag+或Cu2+交换制得Ag(I)络合型分子筛和Cu(I)分子筛,控制不同的浓度、温度、pH值,可得离子交换度不同、吸附性能相异的分子筛[35,36]。

3.1.2、分子筛类吸附剂的应用研究进展

3.1.2.1、废水处理

分子筛能够处理废水,脱出废水中的金属离子。目前,重金属污染给人类的生存环境造成严重的威胁,如何解决重金属污染已成为人们较之关心的一个问题。而分子筛由于具有大量的孔道和空穴,比表面积较大,阳离子充填这分子筛晶体内部的笼内,此外,部分硅(铝)氧四面体的骨架氧带有负电荷从而使得这些离子周围形成强大电场,产生巨大的静电引力。这些特性均赋予沸石良好的吸附性能,能够将水中的重金属吸附以至使水体环境得到恢复。

即使分子筛技术可以吸附金属离子,但是仍然存在一些干扰因素。Mabel等研究了多种金属离子共存以及有机物存在时,墨西哥斜发沸石对工业废水中金属离子的吸附去除能力。结果表明有机物的存在对沸石吸附重金属离子的影响较小,因为沸石孔穴和孔道大小限制了有机物的进入。但是,有某些金属离子存在时,沸石对金属离子的吸附能力下降。

3.1.2.2、干燥净化

分子筛能够吸附脱水,对水具有较强的亲和力,结构中有大量均匀的几何网状型空穴,这些空穴只允许直径比孔径小的分子进入,起到了筛分分子的选择吸附作用。分子筛在吸附脱水方面表现出较高的选择性,分子筛能将混合物中各组分高效分离,脱除气体或液体中百分之几乃至痕量的水分以下。分子筛脱水的工作压力、工作温度无需严格控制,且操作简单,成本低,能脱附再生循环使用。因此,分子筛脱水广泛用于从天然气分离回收液态轻质烃等化工操作。

3.2、离子交换脂类吸附剂

3.2.1、离子交换树脂类吸附剂简介

离子交换树脂(IER)是一种含有活性基团的合成功能高分子材料,是交联的高分子共聚物引入不同性质离子交换基团而成的[37]。按交联聚合物的不同品种,离子交换树脂可分为苯乙烯系、丙烯酸系、酚醛系等;按树脂形态的不同可

分为凝胶型和大孔型两种;另外,根据离子交换树脂所含官能团的性质又可分为强酸、弱酸、强碱、弱碱、螯合、酸碱两性和氧化还原型等七类;按用途还可分为水处理用树脂、药用树脂、催化用树脂、脱色用树脂、分析用树脂以及核子级树脂等[38]。离子交换树脂具有交换、选择、吸附和催化等功能,在工业高纯水制备、医药卫生、冶金行业、生物工程等领域都得到了广泛的应用。我国自20世纪50年代以来开始生产和应用离子交换树脂,经过半个多世纪的发展,国内常规离子交换树脂的制造和应用技术已经较为成熟,水平与国外相当。

3.2.2、离子交换树脂类吸附剂的应用研究进展

离子交换树脂对于处理含重金属元素的废水是一种较为理想的方法。重金属废水是对生态环境和人类健康危害最大的工业废水之一,是一种无色无味的“隐形污染”,重金属也是一类不可再生资源。重金属在进入自然环境后便会存留、迁移和积累,在食物链的生物放大作用下可以成千上百倍的富集,最后对人体造成危害。对于含铅、镐重金属废水,常规的处理方法有化学沉淀法、膜分离法、生物吸附法、电解法、铁氧体法以及离子交换树脂吸附法。相比其他方法而言,离子交换树脂吸附法能有效的对水溶液中的重金属离子进行分离与富集,对含铅、福废水具有较好的处理效果,而且也使得单位产品的成品降低,节约治理费用,有明显的社会效益和经济效益。

目前,离子交换树脂在水处理领域用量最大[39,40]。在给水处理中,可用于制取纯水、超纯水和软化水,水质软化和脱盐;在废水处理中,可除去某些有害物质,回收有价值的重金属、稀有元素和化学品;在生物制药、化工、国防等方面,能有效的进行分离、提纯、浓缩等功能。近些年来,随着应用不断需求,已研制出多种性能优良的离子交换树脂,其应用领域也不断扩大,特别是在高新科技产业和科研领域中亦受到广泛的应用。离子交换树脂在我国的现代化建设中发挥着越来越重要的作用。

4、结束语

π络合吸附分离作为一种强化化学作用的吸附分离技术,以其选择性高、易于再生及成本低的独特优势,为化学化工、环境科学等领域的一些高能耗分离过程提供了新的思路和解决办法。但是,仍然存在很多问题。新型优良吸附剂的开发是亟需解决的工作,所研发的吸附剂应容易生物降解或可再生,不引起二次污

染,且能够投入到工业实际应用中去;集各类吸附剂之所长,研究新型复合吸附剂以处理单一或者复杂的混合物。目前,已研发出一系列的吸附剂,相比较而言,离子交换纤维作为一种新型吸附剂具有更大的发展前景。

参考文献

[1] 施其瑛. 分离技术进展(V)——第五章吸附分离技术进展[J]. 石油化工,

1984, 9: 010.

[2] 古共伟, 陈健, 魏玺群. 吸附分离技术在现代工业中的应用[J]. 合成化学,

1999, 4.

[3] 马正飞, 刘晓勤, 姚虎卿, 等. 吸附理论与吸附分离技术的进展[J]. 南京工业

大学学报:自然科学版, 2006, 28: 100-106.

[4] D?browski A. Adsorption-from theory to practice[J]. Advances in colloid and

interface science, 2001, 93(1): 135-224.

[5] 李青, 曾昌凤, 张利雄,等. 模板法制备丰富中孔炭材料的研究进展[J]. 化工

进展, 2003, 22(12): 1269-1273.

[6]王宗说, 唐威林, 贺德华, 等. 变压吸附法提纯CO的研究[J]. 天然气化工,

1991, 16(2):8-13.

[7] 戴服管, 游家骊. 工业废气中一氧化碳的分离及利用[J]. 石油化工, 1989,

18(2):128-134.

[8] Padin J, Munson C L, Yang R T. Method for selective adsorption of dienes: US,

doi:US6215037 B1[P]. 2001.

[9] Yang R T, Hernandez-Maldonado A J, Yang F H. Desulfurization of transportation

fuels with zeolites under Ambient Conditions.[J]. Science, 2003, 34(40):79-81. [10] 陈健, 古共伟. 变压吸附分离一氧化碳技术的应用[J]. 低温与特气, 1996, 2:

70-71.

[11] 曾海. 吸附法分离回收工业尾气中烯烃的研究[D]. 大连理工大学, 2000.

[12] 李德伏, 曾海, 王金渠, 等. 活性炭的改性及对乙烯的吸附性[J]. 石油化工,

2001, 30(9):677-680.

[13] 光辉. 吸附法回收环氧乙烷生产尾气中乙烯的工业应用基础研究[D]. 南京:

南京工业大学, 2003.

[14] 居沈贵. 络合吸附净化含氮气体中微量一氧化碳的研究[D]. 南京: 南京化

工大学, 1997.

[15] 姚虎卿, 凌泽荣, 李承涛, 等. 含氮气中一氧化碳净化催化剂及过程[P]. CN

1185353, 1998.

[16] 赵新强, 朱英刚, 白跃华, 等. 采用CuC12-La(NO3)3/AC吸附剂从乙烯-乙烷

混合气中分离乙烯的研究[J]. 石油学报(石油加工), 2005, 21(3):96-102. [17] 周玉梅, 刘晓勤, 姚虎卿. π络合吸附分离技术的研究进展[J]. 石油化工,

2005, 34:1004-1009.

[18] 周玉梅. 乙烯-乙烷分离用π络合吸附剂的研究[D]. 南京工业大学, 2006.

[19] Blas F J, Vega L F, Gubbins K E. Modeling new adsorbents for ethylene/ethane

separations by adsorption via π-complexation[J]. Fluid Phase Equilibria, 1998, 150:117-124.

[20] 刘百万. 变压吸附气体分离技术的新应用[J]. 北方环境, 2011, 23:174-174.

[21] Padin J, Yang R T. New sorbents for olefin/paraffin separations by adsorption via

pi-complexation: synthesis and effects of substrates[J]. Chemical

Engineeringence, 2000, 55(14):2607-2616.

[22] Wu Z B, Han S-S, Cho S-H, etal. Modification of resin-type adsorbents for

ethane/ethylene separation[J]. Ind Eng Chem Res, 1997, 36(7):2749-2756. [23] Cheng L S, Yang R T. Monolayer cuprous chloride dispersed on pillared clays for

olefin-paraffin separations by π-complexation[J]. Adsorption-journal of the

International Adsorption Society, 1995, 1(1):61-75.

[24] Rege, Salil U, Padin, Joel, Yang, Ralph T. Olefin/paraffin separations by

adsorption: π-Complexation vs. kinetic separation[J]. AIChE Journal, 1998, 44.

[25] Choudary N V, Kumar P, Bhat T S G, et al. Adsorption of Light Hydrocarbon

Gases on Alkene-Selective Adsorbent[J]. Industrial & Engineering Chemistry

Research, 2002, 41.

[26] Rege S U, Yang R T. Propane/propylene separation by pressure swing adsorption:

sorbent comparison and multiplicity of cyclic steady states[J]. Chem Eng Sci,

2002, 57:1139一1149.

[27] 刘晓勤, 光辉, 梅华, 等. 稀土复合吸附剂变压吸附混合气中乙烯的研究[J].

高校化学工程学报, 2003, 17:622-626.

[28] Hernández-Maldonado A J, Yang F H, Qi G, et al. Desulfurization of

transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and

Zn(II)-zeolites[J]. Applied Catalysis B Environmental, 2005, 56:111–126. [29] Hernández-Maldonado, Arturo J, Yang, Ralph T. New sorbents for

desulfurization of diesel fuels via π-complexation[J]. Aiche Journal, 2004,

50(4):791-801.

[30] Knaebel M J M K S. Criteria for Selection of an Adsorbent for a Temperature

Swing Process: Applied to Purification of an Aliphatic Solvent Contaminated

with Aromatic Solutes[J]. Separation Science & Technology, 1990,

25(9):961-984.

[31] Takahashi A, Yang R T. New adsorbents for purification: Selective removal of

aromatics[J]. Aiche Journal, 2002, 48(7):1457-1468.

[32] 李翠红. 分子筛吸附剂对甲醛分子吸附性能的研究[D]. 大连理工大学,

2005.

[33] 邢淑建, 臧甲忠, 刘伟,等. 分子筛吸附剂的工业应用研究进展[J]. 无机盐工

业, 2009, 41:13-16.

[34] 梅华. 乙烯/乙烷络合分离吸附剂的制备及表征[D]. 南京工业大学, 2002.

[35] Hutson N D, Rege S U, Yang R T. Mixed cation zeolites: Li x Ag y-X as a superior

adsorbent for air separation[J]. Aiche Journal, 1999, 45(4):724–734.

[36] Huang Y Y. Ethylene complexes in copper(I) and silver (I) Y zeolites[J]. Journal

of Catalysis, 1980, 61(2):461–476.

[37] 黄艳, 尚宇, 周健, 等. 离子交换树脂在工业废水处理中的研究进展[J]. 煤

炭与化工, 2014:48-50.

[38] 王灿发, 汤志勇, 范鸿华, 等. 离子交换树脂在废水处理中的应用[J]. 科技

资讯, 2008.

[39] 李佳佳. 离子交换树脂去除原水中锑的研究[D]. 昆明理工大学, 2014.

[40] 黄艳, 章志昕, 韩倩倩, 等. 国内离子交换树脂生产及应用现状与前景[J].

净水技术, 2010, 29:11-16.

动态膜分离技术研究进展

文章编号:1007-8924(2007)04-0091-05专题综述 动态膜分离技术研究进展 李晓波,胡保安,顾 平 (天津大学环境科学与工程学院,天津300072) 摘 要:介绍动态膜分离技术的概念,着重讨论影响动态膜分离性能的相关因素以及动态膜 在污水处理中的应用效果,指出动态膜技术具有良好的应用前景,但目前仍处于试验阶段,尚需深入研究. 关键词:动态膜;污水处理;研究进展中图分类号:TQ028.8 文献标识码:A 膜分离技术是当今水处理领域研究的热点,国内外均做了大量的研究工作[1-5],然而,膜污染及膜组件昂贵的价格是阻碍膜技术广泛应用的主要原因.动态膜分离技术采用大孔径材料制作膜组件,降低了膜组件的造价;同时,已有研究表明,动态膜的渗透性能更佳、抗污染能力显著提高[6-8].因此,动态膜作为一项新型的特殊膜分离技术正越来越多地受到国内外水处理技术研究者的关注[9-13]. 1 动态膜分离技术 动态膜作为一种分离技术,包含动态膜的载体 及动态膜分离层本身.动态膜的载体指用来承载动态膜的大孔径材料,一般价格低廉、易得,常见的有不锈钢丝网、普通筛网、工业滤布、筛绢等多孔材料和一些高分子材料,如烧结聚氯乙烯管等.动态膜分离层是动态膜分离技术的主体,指依附于动态膜载体之上、执行分离功能的滤饼层或污泥层.它是通过错流过滤或死端过滤的方式将某种固体或胶体微粒沉淀在载体表面上形成的.用于形成动态膜的粒子种类较多,有粘土类矿物、粉状活性炭(PAC )、ZrO 2、MnO 2、聚乙烯醇(PVA )等,也可用被处理的废液中的某种物质作为成膜物质沉淀在载体上形成动态膜,如自生生物动态膜的成膜物质为污水中的活性污泥.目前国内外关于动态膜分离技术的研究主要 集中在影响动态膜分离性能的因素及操作参数的优化方面. 2 影响动态膜分离性能的因素 2.1 pH 的影响 p H 对ZrO 2动态膜和MnO 2动态膜的影响较为 明显,这是由于MnO 2动态膜和大多数ZrO 2动态膜都是通过化学反应来生成膜粒子的. ZrO 2粒子的形成有两种方法:一种是提高含Zr 4+溶液,如无水ZrCl 4的水溶液的p H 来形成[14], 另一种是将ZrOCl 2加入到硫酸溶液中而形成[15].Zr 的水合氧化物在不同p H 下的特性不同,其粒子大小也不同.p H 较低时所生成的粒子粒径较小,随着p H 升高,粒径也逐渐升高.由于小颗粒需要更长的时间堵塞载体的孔隙,所以形成动态膜所需的时间也更长.Altman 等[16]的研究表明,动态膜的形成时间从p H 为3.5时的120min 减少到p H 为6时的45min ;Rumyantsev 等[16]的研究结果则分别是100min 和小于45min.蛋白质的截留率与p H 的关系不是很明显,p H 为3.5、5和6时形成的动态膜的截留率大于p H 为4时的动态膜. MnO 2是KMnO 4的还原产物,其反应式为4KMnO 4+6HCOONa =4MnO 2↓+2K 2CO 3+ 3Na 2CO 3+3H 2O +CO 2↑ 收稿日期:2005-09-06;修改稿收到日期:2006-01-17 作者简介:李晓波(1970-),男,河南省人,博士生,主要从事水污染治理技术的研究. 第27卷 第4期膜 科 学 与 技 术 Vol.27 No.4 2007年8月MEMBRAN E SCIENCE AND TECHNOLO GY Aug.2007

新型膜分离技术研究进展

新型膜分离技术研究进展 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。 关键词:膜分离;原理;应用;进展 膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 1膜分离技术的分离原理和特点 1.1纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等[1]废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。 1.2超滤 超滤的截留相对分子质量在1000-100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。 1.3微滤 微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。 1.4反渗透 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。 自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。 1.5电驱动膜

分离分析论文资料

膜分离技术与分子蒸馏技术 摘要:分离分析技术在生产和生活中有着广泛的用途,选择合适的分离分析方法关乎着实验与生产的成败,根据物质的性质不同所采用的的分离技术也有所差别,本文主要对膜分离技术和分子蒸馏技术的原理特点及在医药方面的应用做了简单的介绍。 关键词:膜分离技术分子蒸馏技术原理特点应用 前言 膜分离技术是一项新兴的高效分离技术,已经被国际公认为20世纪末到21世纪中期最有发展前途的一项重大高新生产技术,成为世界各国研究的热点,目前已被广泛应用医药、食品、化工、环保等各个领域;分子蒸馏技术是一种特殊的液液分离技术,它产生于20世纪20年代,是伴随着人们对真空状态下气体运动理论的深入研究以及真空蒸馏技术的不断发展而逐渐兴起的一种新的分离技术。目前,分子蒸馏技术已成为分离技术中的一个重要分支。 1 膜分离技术 1.1膜分离技术的原理及特点 膜分离是利用具有一定选择透过特性的过虑介质,以外界能量或化学位差为推动力,对多组分混合物进行物理的分离、纯化和富集的过程。膜分离法有许多的种类,虽然各种膜分离过程具有不同的原理和特征,即使用的膜不同,推动力、截流组分不同,适用的对象和要求也不同,但其共同点为过程简单、经济、节能、高效,无两次污染。大多数膜分离过程中物质不发生相变,分离系数较大,操作温度可为常温,可直接放大,可专一配膜等。相对与传统工艺,膜分离具有以下优点:艺简化,一次性投资少,方便维护、操作简便,运行费用低,节省资源;运行无相变,不破坏产品结构,分离效率高,提高产品的收率和质量;不需用溶剂或溶剂用量大大减少,因而废水处理也变得更加容易[1]。 1.2 膜分离技术的种类 目前,国内外在制药和医疗上常用的膜分离技术主要有微滤、超滤、纳滤、

变压吸附气体分离技术的应用和发展

变压吸附气体分离技术的应用和发展 摘要:变压吸附气体分离技术在工业上得到了广泛应用,已逐步成为一种主要的气体分离技术。它具有能耗低、投资小、流程简单、操作方便、可靠性高、自动化程度高及环境效益好等特点。简单介绍了变压吸附分离技术的特点,重点介绍了近年来变压吸附技术各方面的进步和变压吸附技术目前所达到的水平(工艺流程、气源、产品回收率、吸附剂、程控阀、自动控制等方面),并对变压吸附技术未来的发展趋势进行了预测。 l 前言 变压吸附 (Pressure Swing Adsorption,PSA)的基本原理是利用气体组分在固体材料上吸附特性的差异以及吸附量随压力变化而变化的特性,通过周期性的压力变换过程实现气体的分离或提纯。该技术于l962年实现工业规模的制氢。进入70年代后,变压吸附技术获得了迅速的发展,装置数量剧增,规模不断增大,使用范围越来越广,工艺不断完善,成本不断下降,逐渐成为一种主要的、高效节能的气体分离技术。 变压吸附技术在我国的工业应用也有十几年历史。我国第一套PSA工业装置是西南化工研究设计院设计的,于l982年建于上海吴淞化肥厂,用于从合成氨弛放气中回收氢气。目前,该院已推广各种PSA工业装置600多套,装置规模从数m3/h到60000 m3/h,可以从几十种不同气源中分离提纯十几种气体。 在国内,变压吸附技术已推广应用到以下九个主要领域:

1.氢气的提纯;2.二氧化碳的提纯,可直接生产食品级二氧化碳;3.一氧化碳的提纯;4.变换气脱除二氧化碳;5.天然气的净化;6.空气分离制氧;7.空气分离制氮;8.瓦斯气浓缩甲烷;9.浓缩和提纯乙烯。 的分离和提纯领域,特别是中小规模制氢,PSA分离技术已占主要地位,在H 2 制备及分离方法,如低温法、电解法等,已逐渐被PSA等气体分一些传统的H 2 离技术所取代。PSA法从合成氨变换气中脱除CO 技术,可使小合成氨厂改变其 2 单一的产品结构,增加液氨产量,降低能耗和操作成本。PSA分离提纯CO技术为C 化学碳基合成工业解决了原料气提纯问题。该技术已成功的为国外引进的l 几套羰基合成装置相配套。PSA提纯CO2技术可从廉价的工业废气制取食品级CO 。此外,PSA技术还可以应用于气体中NOx的脱除、硫化物的脱除、某些有机2 有毒气体的脱除与回收等,在尾气治理、环境保护等方面也有广阔的应用前景。 变压吸附的特点 变压吸附气体分离工艺在石油、化工、冶金、电子、国防、医疗、环境保护等方面得到了广泛的应用,与其它气体分离技术相比,变压吸附技术具有以下优点: 1.低能耗,PSA工艺适应的压力范围较广,一些有压力的气源可以省去再次加压的能耗。PSA在常温下操作,可以省去加热或冷却的能耗。 2.产品纯度高且可灵活调节,如PSA制氢,产品纯度可达99.999%,并可根据工艺条件的变化,在较大范围内随意调节产品氢的纯度。 3.工艺流程简单,可实现多种气体的分离,对水、硫化物、氨、烃类等杂质有较强的承受能力,无需复杂的预处理工序。 4.装置由计算机控制,自动化程度高,操作方便,每班只需稍加巡视即可,装置可以实现全自动操作。开停车简单迅速,通常开车半小时左右就可得到合格产品,数分钟就可完成停车。

吸附分离技术的应用

吸附分离技术的应用 陈健古共伟郜豫川 四川天一科技 股份有限公司 610225 吸附分离的应用丰富多彩,广泛应用于石油化工、化工、医药、冶金和电子等工业部门,用于气体分离、干燥及空气净化、废水处理等环保领域。吸附分离技术可以实现常温空气分离氧氮,酸性气体脱除,从各种气体中分离回收氢气、、CO、甲烷、乙烯等。 CO 2 一、吸附分离在空气净化上的应用 吸附分离在空气净化领域有广泛的应用。如空气干燥、臭气和酸气脱除及回收、清除挥发性有机物等。 空气干燥 空气中通常含有一定水分,而这种水分在很多场合是有害的,必须被除去。吸附法是除去空气中水分最常用的方法之一。 硅胶和活性氧化铝是通用的干燥剂,分子筛在某些场合也被用作干燥剂。在一些应用场合吸附剂不需要再生,但在另一些场合则需要再生重复使用。非再生(一次性使用)的吸附剂被用作包装干燥剂、双层(dual pane)窗户中的干燥剂、制冷和空调系统中的干燥剂等。硅胶是包装中最常用的作为干燥剂的吸附剂。吸附剂在很多场合上的应用是需要再生的,因为吸附剂的成本太高而不允许一次性使用。再生可以采用变温吸附(TSA)和变压吸附(PSA)两种方式。

为了防止热交换器在低温下冻结堵塞,作为深冷法空分装置原料的空气必须有是无水和无CO 2 的,空气必须进行干燥和净化,这里吸附剂作用的是13X分子筛。作为吸附法常温分离氧氮原料的空气也需干燥,干燥剂可用活性氧化铝等。 PSA最初的一个工业使用是气体干燥,采用两床Skarstrom循环工艺。该循环使用吸附、逆向放压、逆向冲洗和顺向升压过程,生产水分含量小于1ppm的干燥空气流。约一半的仪表空气干燥器使用类似的PSA循环。 ) 脱除无机污染物 工业生产中产生大量的CO 2、SO 2 和NO x 等酸性有害气体,它们会引起温室效 应、酸雨等现象,破坏地球和人们的生活环境。随着工业化发展,这些气体的危害程度越来越大,因此人们在致力于开发各种方法来治理这些有害气体。其中吸附分离的方法是有效的治理方法之一。 一些无机污染物可通过TSA过程除去。Sulfacid和Hitachi固定床工艺、Sumitomo和BF移动床工艺及Westvaco流化床工艺都使用活性碳吸附剂脱除SO 2 。 丝光分子筛、13X型分子筛、硅胶、泥煤和活性碳等是良好的NO x 吸附剂。在有 氧存在时,分子筛不仅能吸附NO x ,还能将NO氧化成NO 2 。通入热空气(或空气 与蒸汽的混合物)解吸,可回收HNO 3或NO 2 。硝酸尾气中的NO x 经过吸附处理可 控制在50ppm以下。吸附法还可用于其它低浓度NO x 废所的治理。从烟道气脱除 NO x 也可采用吸附方法。国内采用吸附法治理NO x 废气技术已由四川天一科技股份 有限完成工业性试验并在硝酸生产厂得到应用。 近年四川天一科技股份有限公司在该法的研究开发上取得较大进展,研制了对NO x 有强吸附能力的专用吸附剂并对工艺过程作出改进。与其它方法相比,变压吸附硝酸尾气治理技术有以下特点: ①尾气中的NO x 被分离和浓缩后返回吸收塔,可提高硝酸生产总收率2%-5%;

扩张床吸附技术研究进展

扩张床吸附技术研究进展 摘要:扩张床吸附层析技术兼有流化床和填充床层析的优点 ,不需预先除去料液中的颗粒而可以直接从料液中吸附目标产物。它是一种具有集成化优势的分离纯化技术 ,在生物工程产品的下游处理过程中有十分广阔的应用前景。开发出性能良好的吸附剂基质 ,是该项技术得以广泛应用的关键。本文通过文献的查阅及总结,从吸附剂基质及技术的应用两个方面综述了扩张床吸附技术的研究进展。关键词:扩张床吸附技术、进展、吸附剂基质、应用 一般而言 ,生物工程产品下游处理过程可分为目标产物捕获、中期纯化和精制三个阶段 ,其中产物[1]捕获阶段最为关键 ,一般由细胞富集、产物释放、澄清、浓缩、初步纯化等操作步骤组成。目前 ,除去原料液中的固体颗粒最常用的方法是离心和微滤。但当处理含有微细固体颗粒的高粘度料液时 ,离心的效率会大大降低;而细胞和细胞碎片在膜表面的积累又会使微滤过程的膜通量急剧下降,如果对料液进行稀释 ,随后的浓缩过程将增加额外的能耗。 从发展趋势来看, 生化分离技术研究的目的是要缩短整个下游过程的流程和提高单项操作的效率,以前的那种零敲碎打的做法,研究要有一个质的转变, 国内外许多专家和研究者认同了这种转变,并认为可以从两个方面着手,其一, 继续研究和完善一些适用于生化工程的新型分离技术;其二,进行各种分离技术的高效集成化。目前出现的一些新型单元分离技术,如亲和法、双水相分配技术、逆胶束法、液膜法、各类高效层析法等,就是方向一的研究结果,作为方向二的高效集成化,最引人注目的是扩张床吸附技术,近10年来研究的热点之一。与流化床相比,它返混程度很小,因而分离效果较好;与固定床相比,它能处理含菌体的悬浮液,可省却困难的过滤操作。 扩张床吸附(Expanded Bed Adsorption , EBA)技术是上世纪九十年代发展起来的一种新型蛋白质分离纯化技术 ,能直接从发酵液或细胞匀浆中捕获目标产物。扩张床是吸附剂处于稳定状态的流化床[2]-[4]。与串通的填充床层析不同的是在扩张床吸附操作中吸附剂(或层析剂)层在原料液的流动下可产生适当程度的膨胀,其膨胀度取决于吸附剂的密度、流体速度。当吸附剂的沉降速度流

新型膜分离技术的研究进展

收稿日期:2011-04-18 作者简介:陈默(1986—),硕士研究生,从事含能化合物的合成研究;王建龙,教授,博士生导师,通讯联系人,主要从事含能化合物合成及炸药中间体的制备、 应用及开发。新型膜分离技术的研究进展 陈 默,曹端林,李永祥,王建龙 (中北大学化工与环境学院,山西太原030051) 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、 电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。关键词:膜分离;原理;应用;进展中图分类号:TQ028.8 文献标识码:A 文章编号:1008-021X (2011)05-0031-03 Research Progress of Membrane Technology CHEN Mo ,CAO Duan -lin ,LI Yong -xiang ,WANG Jian -long (College of Chemical Engineering and Environment ,North University of China ,Taiyuan 030051,China )Abstract :The membrane extraction technique is a new type extraction technique with high efficiency ,high speed and saving energy.Membrane separation technology is applied widely as a new kind of separation technology.The separation mechanism and characteristics of different kinds of membrane technologies were introduced ,including electrodialysis ,reverse osmosis ,nanofiltration ,ultrafiltration ,microfiltration ,gas separation ,pervaporation ,membrane reactor.Further more ,the application and current problems of different membrane technologies were extensively summarized.Finally ,application prospect of membrane separation technology was presented.Key words :membrane separation ;principle ;application ;progress 膜分离技术主要是采用天然或人工合成高分子 薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。1膜分离技术的分离原理和特点1.1 纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200 1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技 术, 是国内外研究的热点。余跃等[1] 对纳滤技术处理印染废水进行了去除COD 和脱色的研究。结果 表明, 纳滤技术可有效地去除印染废水中的色度和COD 。Salzgitter Flachstahl 电镀厂采用膜技术处理 镀锌废水, 回收其中的Zn 2+ 和H 2SO 4,其结果达到了设计要求[2]。常江等[3] 在完成用新型纳滤膜处 理模拟含Ni 2+ 废水实验室研究的基础上,进行了电 镀镍漂洗废水的纳滤膜处理及镍和水回收利用的工业试验,为大规模工业应用提供了参考数据。杨青等[4] 研究报道将DK 型与NF90型纳滤膜组合可适用于治理高浓度、高盐分的吡啉农药废水污染。1.2 超滤 超滤的截留相对分子质量在1000 100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。 徐超等 [5] 在中试中采用浸没式超滤膜代替传 统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果, 设备费用降低了。罗涛等[6] 采用混凝沉淀-超滤工艺对微污染原水进行试验,结果表明,组合

色谱分离技术的应用与研究进展

色谱分离技术的应用与研究进展 摘要:色谱技术作为分离分析的重要方法之一,是分析化学中最富活力的领域之一,能够分离物化性能差别很小的化合物,对蛋白质进行高效率和高灵敏度分离分析研究,在我国工业生产中具有广泛应用,也是生命科学研究的热点领域之一。本文综述了色谱技术的原理,色谱技术的分离以及色谱技术在医药、精细化工以及现代色谱技术在蛋白分离和分析中最新应用及进展,并介绍了几种常见色谱技术以及近期发展起来的一些新型色谱技术的研究进展及应用。 Abstract:One important method of chromatographic analysis technique as separation was one of the most vibrant areas in analytical chemistry ,which can isolate compounds with very small performance difference,high efficiency and high sensitivity for protein separation and analysis research,has a wide range of applications in China's industrial production,and it was one of the hotspot in the field of life science research.the application progress in pharmaceuticals,fine chemicals and The recent applications and development of modem chromatographic technique in protein separation and analysis were introduced concisely,prospects the development of chromatographic techniques.The research progress of several common and the recently emerged chromatography technology were elaborated. 关键词:色谱技术;应用;进展;蛋白质分离 Key words:chromatographic technique;application;progress;protein separation 一、引言 色谱这一概念首先由俄国著名植物学家Tswett提出,在研究植物色素组成时发现了色谱分离的潜力,首次提出了色谱法这一概念。色谱技术是几十年来分析化学中最富活力的领域之一。作为一种物理化学分离分析的方法,色谱技术是从混合物中分离组分的重要方法之一,能够分离物化性能差别很小的化合物。当混合物各组成部分的化学或物理性质十分接近,而其他分离技术很难或根本无法应用时,色谱技术愈加显示出其实际有效的优越性。它主要利用复杂样品本身性质的不同,在不同相态的进行选择性分配,以流动相和固定相的相互位移对复杂样品中的单一样品进行分类洗脱,复杂样品中不同的物质会以不同的洗脱速度在不同的时间上脱离固定相,最终达到分离复杂样品的效果。色谱不仅是一种分析的手段,也是一种分离的方法。色谱分离技术是一类分离方法的总称,包括吸附色谱、离子交换色谱、凝胶色谱等,广泛应用于生化物质分离的高度纯化阶段,具有高分辨率的特点。色谱分离技术是生化分离技术这门课程中的一个分离单元,属于生物工程下游技术的范畴。色谱技术最初仅仅是作为一种分离手段,直到20世纪5O年代,随着生物技术的迅猛发展,人们才开始把这种分离手段与检测系统连接起来,成为在环境、生化药物、精细化工产品分析等生命科学和制备化学领域中广泛应用的物质分离分析的一种重要手段。在色谱技术的发展过程中,提出众多理论,推动了色谱技术的不断发展。主要有踏板理论,平衡色谱理论,速率理论,双模理论和轴向扩散理论。 二、色谱技术分类

蛋白质吸附分离研究进展

蛋白质吸附分离研究进展 【摘要】本文主要说明蛋白质的分子结构,总结近年来蛋白质的吸附理论及分离技术研究成果。 【关键词】蛋白质;吸附;分离;表面活性剂 目前,蛋白质的吸附已成为一个非常重要而活跃的研究领域。随着科技进步,使得新型分离技术的开发,需求迫切。另一方面,由于生物反应过程机理十分复杂,反应较难控制,反应液中杂质含量多,目标产物含量低,也给纯化分离带来了很大困难。本文主要对蛋白质的吸附及分离进行综述。 1.蛋白质分子结构 蛋白质一般由20种不同的氨基酸组成,氨基酸之间由肽键连接。肽键与一般的酰胺键一样,由于酰胺氦上的孤对电子与相邻羰基之间的共振相互作用(resonance interaction)表现出高稳定性。肽键的实际结构是一个共振杂化体。由于氧原子离域形成了包括肽键的羰基0、羰基C和酰胺N在内的O--C—NⅡ轨道系统,从而使得肽键的C-N具有部分双键的性质而不能自由旋转。肽键的C、0、N、H和与之相邻的两个a碳原子处于同一个平面,此刚性结构的平面就叫肽平面。肽链主链上的仅碳原子连接的两个键c—N键和C-C键能够自由旋转。如果不考虑键长和键角的微小变化,多肽链的所有可能构象都能用P和中这两个二面角来描述。 2.蛋白质吸附的理论分析 2.1 蛋白质吸附的理论 由肽链结构可知,蛋白质属于两性电解质,根据所处溶液pH不同表面净电荷可正可负。研究认为,蛋白质吸附过程中的相互作用包括氢键、静电和疏水等非共价的相互作用[2]。3种相互作用的本质都与静电作用相关。其中氢键的形成是由于电负性原子与氢形成的基团中.氢原子周围分布的电子少,正电荷氢核与另一电负性强的原子之间产生静电吸引,从而形成氢键。疏水相互作用又称为非极性相互作用,发生于非极性基团之间,蛋白质同时含极性和非极性的基团,当蛋白质处于水溶液中时,极性基团之间以及极性基团与水分子之间易发生静电吸引而排开非极性水基团,因此疏水相互作用并非是疏水基团之间有吸引力的缘故,而是非极性基团由于避开水的需要而被迫接近(8)。这些相互作用本身与小分子的吸附没有差别。蛋白质吸附的独特性在于吸附的是大分子,以及吸附过程蛋白质可以发生各种物理(如构象变化)和化学的变化。 2.2材料表面性质对蛋白质吸附的影响 当蛋白质吸附在材料的表面,其构象和序列将发生变化,因此蛋白质的构象和序列会影响蛋白质的吸附行为。有研究认为,蛋白质与材料表面的相互作用(包括静电力、范德华力、氢键、疏水作用),使吸附的蛋白质的构象发生变化而达到稳定吸附的状态(4)。另外是平铺式还是直立式吸附,在材料的表面也会影响蛋白质的吸附量屿(4)。 蛋白质的吸附会引起其物理和化学性质的变化。初始的吸附现象是瞬间的,这种瞬间的初始吸附会伴随吸附层的结构重整及再组织化晗]。这种结构重整除了会降低系统的吉布斯自由能外,对于吸附层上的蛋白质还会有变性或分子展开的效应,这会使原本被包覆在内部的疏水性氨基显露出来。以不带电的聚甲醛和牛血清蛋白进行研究,观察到蛋白质浓度升高时吸附量也相应升高,当BSA浓度达到0.6 g/L时得到最大吸附值(3mg/m2),之后吸附量不再与蛋白质浓度有关(5)。蛋白质在等电点时具有最大吸附量,并且在等电点附近呈对称分布(1)。造成此现象有2个原因:①蛋白质于等电点时具有最小溶解度,此时所需的吸附能最低;②静电排斥力在等电点时最小。 3.蛋白质与表面活性剂的相互作用

生物化工及膜分离技术研究进展

动态与信息 专题报道 生物化工及膜分离技术研究进展 现代生物技术是新兴高技术领域中的重要技术之一,是21世纪高新技术的核心。它在生物学、分子生物学、细胞生物学和生物化学等基础上发展起来,是以重组DNA技术和细胞融合技术为基础,基因工程、细胞工程、酶工程和发酵工程四大先进技术所组成的新技术群。大力发展生物技术及其产业已成为世界各国经济发展的战略重点,目前最具代表性的应用领域是生物医药和农业。生物技术与化学工程相结合而形成的生物化工技术已成为生物技术的重要组成部分。生物化工技术为生物技术提供了多种高效率的反应器、新型分离介质、工艺控制技术和后处理技术,从而可以促进生物技术不断更新和提高;因而新兴的生物化工技术已经成为当今世界高技术竞争的重要焦点之一。生物化工产品的分离技术也被称为生物技术的下游加工术,是整个生物技术的重要组成部分,它的成功与否,是决定生物技术成果能否转变为具有实用价值和竞争力的产品的重要因素。生物化工产品的分离与化学物质的分离相比具有一定的特殊性,产品大多要求高纯度并具有一定的生物活性,因其易受化学、物理和生物等外界环境因素的破坏而发生变性,因而生化分离过程一般要求在快速、低温、洁净的条件下进行。总之,生物化工产品的分离技术具有一定特殊性。 1 生物化工分离过程的重要性及一般步骤生物化工分离过程是生物化学工程的重要组成部分,一般指的是从发酵液或酶反应液中分离生物产品,它是生物技术转化为生产力过程中不可或缺的重要环节。生物产品一般是从杂质含量远远高于产物的悬浮液中进行分离的,而且产品要求纯度较高,只有经过分离加工过程,才可以制得符合规定要求的产品,因此分离是生物化工工业化的必需手段。与此同时,进行生化分离过程十分困难,这是由于产物原料液的含量极低与产物的高纯度要求之间的差异造成的,而且分离的方法复杂,因此,开发新的分离工艺手段也是提高经济效益的手段。由于生物化工产品不同(如酶或代谢产物),所采用的分离方法也不同。但大多数生物化工分离过程常采用4个分离步骤:1)对发酵液或酶反应液预处理,进行固液分离。在这个步骤中过滤和离心是常用的基本单元操作。在过滤操作中有时为了减少过滤介质的阻力,采用了膜分离技术。但该过程对产物的含量改善作用很小。2)进一步分离。此步骤使产物的含量增加。常用的分离方法有吸附、萃取等,如合成ATP 时用颗粒活性炭作吸附剂。3)高度分离。在这个步骤中分离技术对产物具有一定的选择性,典型方法有层析、电泳等。4)精制,先进行结晶析出再干燥即可。合成ATP时,用离子交换树脂进行浓缩,最后用五氧化二磷干燥器进行减压干燥,可得ATP成品。生物化工过程中常用的分离方法如蒸馏、萃取、过滤、结晶、 元操作过程,而另一些则为新近发展的分离技术,如细胞膜破碎技术(包括球磨破碎和化学破碎等)、膜分离、色层分离等。在此着重介绍膜分离技术。 2 膜分离技术概述 膜分离技术被认为是20世纪末至21世纪中期最有发展前途,甚至会导致一次工业革命的高新技术之一,成为当今世界各国研究热点。膜分离作为一种新发展的高新分离技术,其应用领域不断扩大,广泛应用于化工、食品、水加工业、医药、环境保护、生物技术、能源工程等领域,并发挥了巨大的作用。我国对膜分离技术的研究是从20世纪60年代对离子交换膜的研究开始的。从60年代的反渗透技术到90年代的渗透汽化技术,我国的膜分离技术得到了迅速的发展。经过几十年的努力,目前我国在膜分离技术研究开发方面已成功地研制出一批具有实用价值、接近或达到国际先进水平的成果,如无机膜反应分离技术等。 3 膜分离技术的原理及优点 膜分离是指用半透膜作为障碍层,借助于膜的选择渗透作用,在能量、浓度或化学位差的作用下对混合物中的不同组分进行分离提纯。由于半透膜中滤膜孔径大小不同,可以允许某些组分透过膜层,而其它组分被保留在混合物中,以达到一定的分离效果。利用膜分离技术来进行分离具有如下优点:膜分离过程装置比较简单,同时操作方 032化 学 试 剂2008年3月

分离技术-

1、列举一个给你日常生活带来很大益处,而且是得益于分离科学的事例。分析解决这个分离问题时可采用哪几种分离方法,这些分离方法分别依据分离物质的那些性质。 2、中国科学家屠呦呦因成功研制出新型抗疟疾药物青蒿素,获得2015年诺贝尔医学奖。青蒿素是从中医文献中得到的启发,用现代化学方法提取的,请通过查阅资料说明提取分离中药有效成分都有哪些具体的实施方法。 3、了解国内纯净水生产的主要分离技术是什么,该技术掉了原水中的哪些物质(写出详细工艺流程)。 4、活性炭和碳纳米管是否有可能用来做固相萃取的填料?如果可以,你认为它们对溶质的保留机理会是一样的吗? 5、固体样品的溶剂萃取方法有哪几种,从原理、设备及复杂程度、适用物质对象和样品、萃取效果等方面总结各方法的特点。 1答:海水的淡化可采用膜分离技术 膜分离技术( Membrane Separation,MS) 是利用具有选择透过性的天然或人工合成的薄膜作为分离介质,以外界能量或化学位差为推动力,对双组分或多组分药材进行分离、分级、提纯或富集的技术。膜分离技术包括微滤、纳滤、超滤和反渗透等。 2答: 1.经典的提取分离方法传统中草药提取方法有:溶剂提取法、水蒸汽蒸馏法两种。溶剂提取法有浸渍法、渗源法、煎煮法、回流提取法、连续提取等。分离纯化方法有,系统溶剂分离法、两相溶剂举取法、沉淀法、盐析法、透析法、结晶法、分馏法等。 2.现代提取分离技术超临界流体萃取法、膜分离技术、超微粉碎技术、中药絮凝分离技术、半仿生提取法、超声提取法、旋流提取法、加压逆流提取法、酶法、大孔树脂吸附法、超滤法、分子蒸馏法。 超临界流体萃取法(SFE):该技术是80年代引入中国的一项新型分离技术。其原理是以一种超临界流体在高于临界温度和压力下,从目标物中萃取有效成分,当恢复到常压常温时,溶解在流体中成分立即以溶于吸收液的

π络合吸附分离技术的研究进展及应用

π络合吸附分离技术的研究进展及应用 周艳平 (江南大学食品科学与工程学号:6150112117) 摘要:随着经济迅猛的发展,吸附分离技术在当今社会已受到科学家们广泛的关注。吸附分离技术在工业化生产以及环境保护中起着关键性的作用,该技术已经蔓延至食品、医药等综合领域,并在这些领域中扮演着相当重要的角色。本文着重介绍了π络合吸附分离技术、吸附剂的研究进展以及其应用特点,并对其作相应的评价。 关键词:π络合吸附分离;吸附剂;研究进展;应用 1、前言 吸附技术很早就为人们发现和利用。古代用新烧好的木炭,利用其吸湿吸臭的功效来去除某些异味,也包括在日常生活中,将烧尽的木炭放在冰箱里从而达到去除异味的目的,这些都说明吸附技术在人类生活中已有悠久历史[1]。然而,在近代工业中,人们对吸附的知识还停留在直接开发使用,如空气和工业废气的净化,防毒面具里活性炭吸附有毒气体,硬水软化用到离子交换树脂等[2],吸附分离技术仅仅以辅助的作用出现在化工单元操作中。吸附分离的研究进展之所以受到一定的限制是由于固体吸附剂的吸附容量小,吸附剂耗用量大,使分离设备体积庞大,同时因固体的热容量大,传热系数小,升温、降温速度慢,循环周期长,效率低,因此发展较缓慢。直至五十年代初,随着工业的发展特别是石油化工开发,新型吸附剂的开发为吸附分离技术的进一步应用打下了基础,相继许多吸附分离技术应用于各个行业,推动了工业化的发展,其中π络合吸附分离技术占有十分重要的作用,显示出巨大的潜力。 2、吸附分离技术简介 早期的吸附分离技术主要用于吸附净化方面,随着20世纪50年代合成沸石分子筛的出现,使吸附分离技术得到快速发展,也因此使得吸附分离技术在化工、石化、生化和环保等领域得到广泛应用[3]。吸附技术在现代生活中的应用与Lowitz的实验结果有着必然的联系,Lowitz利用木炭去脱除有机物中的杂质[4]。对吸附技术的系统学习要追溯至1814年de Saussure的研究,他得出的结论是多

天然产物的提取分离技术研究进展

天然产物的提取分离技术研究进展 摘要:本文对天然药物化学成分的传统提取和分离技术进行了简单的介绍,并对近些年来发展起来的新技术,新方法加以总结。 关键词:天然药物中药提取分离 Progress in the Techniques of Separation and Extraction of the Natural Products Abstract:This paper has introduced the natural products chemistry of traditional extraction and separation technology briefly,and summarized the new techniques and new methods developed in recent years. Key words:Natural products;Chinese medicine ;extraction and separation 1引言 中药作为我国传统文化重要的组成部分,在华夏五千年源远流长的文明中起着不可替代的作用,中医传统用药强调炮制和复方,中药的功效在长期的生活实践中被证明是稳定有效的。在当下日益加快的生活节凑中,西药由于其快速、便捷的特点,使其成为人们治疗疾病的首选。但是随着绿色养生的生活理念逐渐走入人们的生活中,中药被更多地现代人所应用。为了使中药能够走出国门,我们对于中药的研究方法必须加以改进和完善,进而更好的为世人服务,而从中药中提取天然产物是中药现代化的一个重要组成部分。天然产物是药物研发中极具潜力的原料资源,分离纯化天然产物中具有独特生物活性的物质是中药研究的重要基础工作。 天然产物中的有效成分复杂,含量低,难于富集,用传统的分离方法不仅步

膜分离技术研究进展+文献名称

膜分离技术研究进展 组员:吴佳曦、张雯辉、郭志新、李耀睿、刘汉飞、王伦、张振斌膜分离技术在近20年发展迅速,其应用已从早期的脱盐发展到化工、轻工、石油、冶金、电子、纺织、食品、医药等工业废水、废气的处理,原材料及产品的回收与分离和生产高纯水等,是适应当代新产业发展的重要高新技术。膜分离技术不但在工业领域得到广泛应用,同时正在成为解决能源、资源和环境污染问题的重要技术和可持续发展的技术基础。 膜分离是借助于膜,在某种推动力的作用下,利用流体中各组分对膜的渗透速率的差别而实现组分分离的过程。目前常见的膜分离过程可分为以下几种,电渗析(Electrodialysis,ED)、反渗透(Reverse osmosis,RO)、微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,UF)和液膜分离等。 膜技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势,是现代分离技术中一种效率较高的分离手段。 在环境过程中膜分离技术以其独特的作用而被广泛用于水的净化与纯化过程中。下面分类介绍一下膜分离技术的研究现状。 1 电渗析技术研究现状(刘汉飞) 电渗析是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择渗透性(与膜电荷相反的离子透过膜,相同的离子则被膜截留),使溶液中的离子作定向移动以达到脱除或富集电解质的膜分离操作。它可使电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。电渗析技术普遍应用于食品生化行业以及废水处理。下面分类对这几方面的应用现状做一介绍。 1.1 电渗透技术在食品行业中的应用 利用电渗析技术对酱油进行脱盐处理,可以制得低盐酱油并基本保持酱油原有风味,但要损失一部分作为酱油指标的氨基酸态氮和有机酸等有效成分,从而将酱油的含盐量降低。但国内尚无这方面的报导,刘贤杰等采用电渗析技术进行了酱油脱盐的研究。研究结果显示:原酱油食盐含量19.4%,经电渗析处理后,酱油含量降至约9%,食盐以外的有效成分也有一些被除去,比较明显的是作为酱油品质指标的氨基酸态氮,有约8%的损失。酱油风味大致不变,证明了电渗

《生物产品分离分析技术》教学大纲

《生物产品分离分析技术》教学大纲 Separation and Analysis of Bioproducts 课程编码:27A11417 学分: 4.0 课程类别:专业必修课 计划学时:64 其中讲课:32 实验:32 适用专业:生物技术 推荐教材:顾觉奋主编,《分离纯化工艺原理》,中国医药科技出版社,2002。 参考书目:1. 欧阳平凯编著,《生物分离原理及技术》,化学工业出版社,2010。 2. 严希康主编,《生物物质分离工程》,化学工业出版社,2010。 3. 俞俊棠主编,《新生物工艺学(下)》,化学工业出版社,2002。 4. 李俊玲主编,《生物产品分离分析技术实验》,济南大学出版社,2016。 课程的教学目的与任务 通过本课程的学习,使学生了解生物体系的基本特点及对分离过程的特殊要求,掌握生物物质的分离纯化方法的基本原理、工业操控方式与操控因素及其适用性。培养学生结合基础知识分析解决试验研究和工业化生产可能遇到的根本问题的能力。通过对本课程的学习,能使学生针对不同产品的特性,较好地运用各种分离技术来设计合理的提取、精制的工艺路线,并能从理论上解释各种现象,提高分析问题和解决问题的能力。 课程的基本要求 通过本课程的学习,使学生了解生物体系的基本特点及对分离过程的特殊要求,掌握生物物质的分离纯化方法的基本原理、工业操控方式与操控因素及其适用性。培养学生结合基础知识分析解决试验研究和工业化生产可能遇到的根本问题的能力。 各章节授课内容、教学方法及学时分配建议(含课内实验) 第一章:绪论建议学时:2 [教学目的与要求] 掌握生物分离工程在生物工程领域的地位,生物分离过程的特点以及生物分离过程的分类。 [教学重点与难点] 准确理解生物分离过程的特点。难点:正确理解生物分离过程与普通化工产品分离的区别,准确理解生物分离过程的特点。 [授课方法] 以课堂讲授为主,课堂讨论和课下自学为辅。 [授课内容] 1.生物分离工程的历史及应用;2.生物分离过程的特点。 第二章:发酵液的预处理和固液分离建议学时:4

分离工程中重要分离技术的进展与展望

分离工程中重要分离技术的进展与展望 摘要:简要介绍了分离工程产生和发展历史,各主要分离技术的发展现状, 研究前沿以及未来的发展方向.分离工程过去在化学工程以及相近产业的发展中起了重要作用,也将在现在和未来推动现代化工和相关工业的发展,并在高新技术领域的发展中大显身手.评述 10余年来在分离科学与工程领域的进展,这些领域包括:萃取分离(反胶团萃取,双水相萃取,液膜萃取,,超临界萃取,凝胶萃取,胶团萃取)。吸附蒸馏,膜分离,反应强化分离等方面的研究简况。 关键词:分离技术,新进展,展望 引言:化工分离技术是一个面对经济建设,广泛应用于多种工业的技术基础学科,是过程工程的核心技术之一。化工、石化,冶金、医药等所谓“过程工业”一般均包括三大工序,即原料准备、反应与分离。分离即负担反应后未反应物料与产物的分离,也包括目标产物与副产物间的分离、排放到环境中的废气、水、固体物料与有用产物的分离,以及原料中杂质的分离等等。随着高新技术的发展,成千上万种新的化合物被发现、设计和合成,尤其是产物的多样化及深度加工,环境保护的严格标准的实施,都对化工分离技术提出了新的任务和更高要求。例如,大部分生物技术产品以低浓度存在于水溶液中,需要发展在低温条件下的高效分离并富集的方法。随着关系到国计民生和战略储备的矿产资源的枯竭,处理贫矿,复杂矿和回收利用二次资源将成为必然趋势,从而对分离技术的要求越来越高。此外,包括我国在内的世界各国对环境保护日益重视,对废气,废水,废渣的排放制定出越来

越严格的标准。国外报道,过程工业总投资的50%~90%用于分离设备,操作费用60%以上用于分离工序。因此国内外均对分离科学与工程的发展十分重视。随着化学工程科学的发展,不仅其共性应用基础研究扩展为过程工程,而且将研究目标提升为产品工程。分离技术的研究是过程工程的关键性和前沿性的项目之一。把握分离过程的基本规律,吸取和发展化工学科交叉的特点,拓宽分离技术的辐射领域,是分离科学与技术发展的根本所在。近年来,国外对分离科学、分离工艺和分离工程的研究十分活跃,除一般的化工、化学杂志不断介绍分离方面的研究成果外,国际性的分离专业杂志不下十余种。每年还举办大量的各种分离技术的国际会议。因此,对关系到我国“过程工业”如化学工业、石油化工、环境工程、生物化工等国家支柱产业21世纪初在国际上竞争力和综合实力的若干分离技术中带有共性、基础性的课题进行深层次的研究,在逐步进行传统分离技术与设备的根本性的改造的同时,研究和开创具有高效性、针对性和无害化的新型的分离技术,完善分离技术的工程开发,形成知识产权,科学地发展新的分离过程、分离方法、分离体系及分离设备,促进我国高新技术产业的可持续发展,提高我国工业整体水平,实现整个“过程工业”的现代化,是亟待解决的带有战略性的研究任务。十年来,我国以萃取分离、精馏分离与膜分离等为代表的分离科学与技术的研究取得了较大的成就,扩大了国际上的影响,形成的科技成果己在国民经济的诸多领域中得到广泛应用,取得了十分显著的经济效益和社会效益。本文重点就这些方面的新进展进行评价和介绍。

相关文档
最新文档