三升四年级数学奥数计数专题3、标数法解析

三升四年级数学奥数计数专题3、标数法解析

三年级奥数.计算综合.数阵图与幻方(B级).学生版

一、数阵图定义及分类: 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图. 数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 二、解题方法: 解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围; 第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用. 三、幻方起源: 幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”, 知识框架 数阵图与幻方

这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图: 9 8 7 6 5 4 3 2 1 我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们. 四、幻方定义: 幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33 ?的数阵称作三阶幻方,44 ?的数阵称作四阶幻方,55 ?的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样, 9 8 7 6 5 4 3 2 1 13 4 14 15 1 6 129 7 8105 11 3216 。 五、解决这幻方常用的方法: ⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往 下填,右出框时往左填.排重便在下格填,右上排重一个样. ⑵适用于三阶幻方的三大法则有: ①求幻和:所有数的和÷行数(或列数) ②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2. 六、数独简介: 数独前身为“九宫格”,最早起源于中国。数千年前,我们的祖先就发明了洛书,其特点较之现在的数独更为复杂,要求纵向、横向、斜向上的三个数字之和等于15,而非简单的九个数字不能重复。 中国古籍《易经》中的“九宫图”也源于此,故称“洛书九宫图”。而“九宫”之名也因《易经》在中华文化发展史上的重要地位而保存、沿用至今。

(完整版)4年级有趣的数阵图

4年级有趣的数阵图 相传,大禹治水时,洛水中出现了一个“神龟”,背上有美妙的图案,史称“洛书”。 这个图案用现在的数字翻译出来,就是三阶幻方,也就是将 1~9这九个数字填在方格中,使每横行、每竖列和对角线的3个 数的和都相等。 幻方经过演变就得到我们即将要学习的数阵图,他们的解题 思路基本一样,接下来我们就一起看看数阵图吧! 例1:把1~5这五个自然数,分别填入下图中的五个圆圈内,使相交成十字的两条直线上三个数之和都等于9。 我发现一条直线上三个数相加时,端 点四个数只加一次,中间的数加了两 次。 不论那5个数填在哪里,从整体来看,5个数都加了1 次,其中有1个数还多加了一次,得到了2个和,也 就是6个数相加等于2×9=18。 说得对,我们把多加一次的那个数用括号或 者字母表示,就可以得到一个等式。 解答数阵图的关键是重叠数,所以填数阵时,一般优先考虑重叠数。可以把这个数位用括号或字母表示,列出等式,再根据条件解 答出来。

把1~7这七个数分别填入图中七个圆圈内,使每条直线上三个圆圈内各数之和都是12。 例2:将从1~10填入各○中,使每条线上的数字和相等,你有几种填法? 我发现一条直线上四个数相加时,中间的数 加了三次,其他的三个数只加一次。而且, 和前面不一样的地方是:没有告诉我们直线 上的和是多少。 和上题一样,不论这10个数怎么填,所有的数都加了 一次,其中还有1个数多加了2次,它们的总和等 于3条直线上数字的和,我们同样可以列出一个等式。

例3:把1~9这九个数分别填入下图中九个圆圈内,使每条直线上三个圆圈内各数之和都相等,你有几种填法? 将1~9这九个数分别填入下图的小方格里,使横行和竖列上五个数之和相等。(至少找出两种本质上不同的填法 ) 例4:把5~10这六个数,分别填入图中三角形三条边的六个○内,使每条边上三个○内数的和都是24。 中间的三个数只加一次,三个角上的数都加了二次,有三个数要设字母吗? 按照前面学习的方法,先列出一个等式,再考虑三个未知的数吧。

四年级数学数阵图(二)例题讲解

第17讲数阵图(二) 例1在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21。 解:由上一讲例4知中间方格中的数为7。再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x)。 因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10。考虑到5,7,9已填好,所以x只能取4,6,8或10。经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4 或10时可得两个解(见下图)。这两个解实际上一样,只是方向不同而已。

例2将九个数填入右图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有

证明:设中心数为d。由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d。由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图)。 根据第一行和第三列都可以求出上图中★处的数由此得到 3d-c-(2d-b)=3d-a-(2d-c), 3d-c-2d+b=3d-a-2d+c, d——c+b=d——a+c, 2c=a+b, a+b

c=2。 值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同。 例3在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90。 解:由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图)。其它数依次可填(见右下图)。 例4在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等。

四年级奥数 标数法

第四讲:计数方法(八) ——标数法 知识与方法归纳 数学世界是一个充满的惊喜的世界,在这个奇特的世界里,总是会有很多闪亮的星星指引我们走向更美好的星空。标数法是这个世界里比较闪亮的一颗星星,它是解决数学中一类问题的捷径,一般用于求从某地到某地最短路线的条数,是一个有用而不失有趣的数学方法。欢迎您来感受神奇的标数法! 标数法一般适用于求从点A到点B的最短路线的条数。 标数法的核心思想是:从起点到达任何一点的最短线路,都等于从起点出发到达与这一点相邻的点的最短路线数之和。这种思想本质上就是利用加法原理进行分类计数。 经典例题 例1.图中的线段表示的是汽车所能经过的所有马路,这辆汽车从A走到B处共有多少条最短路线 例2.五(二)班少先队开展智力游戏活动。先在大操场内用石灰画好如图所示的线路。从A点出发沿线走到B点,只能按由北到南,从西向东(即不能倒回走),共有多少种不同的走法如果有21个同学从A点到B点,问他们能不能都走不同的路线 体验训练1 从学校到少年宫有4条东西向的马路和3条南北向的马路相通。如图所示,李楠从学校出发,步行到少年宫(只许向东或向南行进),问最多有多少种不同的走法 例3.如图所示,从P到Q共有多少种不同的最短路线 例4.如图所示,图为某城市的街道示意图,若从A走到B(只能由北向南,由西向东),问共有多少种不同的走法 体验训练2 沿图中的格线,选最近的路线从A走到B,问共有多少种不同的走法 *例5.如图所示,从甲地到乙地,最近的道路有几条 *例6.取两排蜂巢,如图所示,一只蜜蜂要从A爬到B去,它爬行的方向只允许是向右(→)、向右上(↗)、向右下(↘)这三种中的任一种,并爬到相邻的下一个蜂巢。问从A到B有多少种不同的爬行路线 *7.如图所示,这是一张某城市的主要公路示意图,今在C、D、E、F、G、H路口修建立交桥,车辆不能通行,问从A到B的最近路线共有几条 过关检测总分15分时间10分钟得分

三年级奥数简单数阵与幻方

数阵与幻方 【知识点与方法】 一、数阵和幻方的概念:(1)数阵:每一条直线段的数字和相等。(2)幻方:在一个由若干个排列整齐的数组成的正方形中,任意一横行、一纵行及对角线的和都相等。 二、联系之前所学的高斯求和的知识,首先找到中心项:首项、末项、中间项。然后对称找和相等的成对的项。 【经典例题】 例1、将1、2、3、4、5这五个数分别填入下图中,使横行3个数的和与竖行3个数的和相等。 例2、将1、4、7、10、13这五个数分别填入下图中,使横行3个数的和与竖行3个数的和都等于25。 例3、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都相等。 例4、将5~11这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于24。 例5、将1~9这九个自然数填入下图的九个方格内,使得它成为一个幻方(每行、每列、每条对角线和都相等)。 练习与思考

1.将3、6、9、12、15这五个数分别填入下图中,使横行3个数的和与竖行3个数的和相等。 2. 将1、3、5、7、9这五个数分别填入下图中,使横行3个数的和与竖行3个数的和为17。 (2题图) (3题图a) (3题图b) 3. 将1~9这九个数分别填入右上图的小方格里,使横行和竖列上五个数之和相等。(至少找出两种本质上不同的填法) 4.将3~9这七个数分别填入左下图的○里,使每条直线上的三个数之和等于20。 (4题图) (5题图) 5.将1~11这十一个数分别填入右上图的○里,使每条直线上的三个数之和相等,并且尽可能大。 6. 将2~10这九个自然数填入下图的九个方格内,使得它成为一个幻方(每行、每列、每条对角线和都相等)。 7.将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。

四年级数学数阵图讲解(一)

四年级数学数阵图讲解(一) 我们在三年级已经学习过辐射型和封闭型数阵.其解题的关键在于“重叠数”。本讲和下一讲.我们学习三阶方阵.就是将九个数按照某种要求排列成三行三列的数阵图.解题的关键仍然是“重叠数”。我们先从一道典型的例题开始。 例1把1~9这九个数字填写在右图正方形的九个方格中.使得每一横行、每一竖列和每条对角线上的三个数之和都相等。 分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。我们可以这样去想:因为1~9这九个数字之和是45.正好是三个横行数字之和.所以每一横行的数字之和等于45÷3=15。也就是说.每一横行、每一竖列以及每条对角线上三个数字之和都等于15。 在1~9这九个数字中.三个不同的数相加等于15的有: 9+5+1.9+4+2.8+6+1.8+5+2. 8+4+3.7+6+2.7+5+3.6+5+4。 因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。 因为中心方格中的数既在一个横行中.又在一个竖列中.还在两对角线上.所以它应同时出现在上述的四个算式中.只有5符合条件.因此应将5填在中心方格中。同理.四个角上的数既在一个横行中.又在一个竖列中.还在一条对角线上.所以它应同时出现在上述的三个算式中.符合条件的有2.4.6.8.因此应将2.4.6.8填在四个角的方格中.同时应保证对角线两数的和相等。经试验.有下面八种不同填法:

上面的八个图.都可以通过一个图的旋转和翻转得到。例如.第一行的后三个图.依次由第一个图顺时针旋转90°.180°.270°得到。又如.第二行的各图.都是由它上面的图沿竖轴翻转得到。所以.这八个图本质上是相同的.可以看作是一种填法。 例1中的数阵图.我国古代称为“纵横图”、“九宫算”。一般地.将九个不同的数填在3×3(三行三列)的方格中.如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等.那么这样的图称为三阶幻方。 在例1中如果只要求任一横行及任一竖列的三数之和相等.而不要求两条对角线上的三数之和也相等.则解不唯一.这是因为在例1的解中.任意交换两行或两列的位置.不影响每行或每列的三数之和.故仍然是解。 例2用11.13.15.17.19.21.23.25.27编制成一个三阶幻方。 分析与解:给出的九个数形成一个等差数列.对照例1.1~9也是一个等差数列。不难发现:中间方格里的数字应填等差数列的第五个数.即应填19;填在四个角上方格中的数是位于偶数项的数.即13.17.21.25.而且对角 两数的和相等.即13+25=17+21;余下各数就不难填写了(见右图)。 与幻方相反的问题是反幻方。将九个数填入3×3(三行三列)的九个方格中.使得任一行、任一列以及两条对角线上的三个数之和互不相同.这样填好后的图称为三阶反幻方。 例3将前9个自然数填入右图的9个方格中.使得任一行、任一列以及两条对角线上的三个数之和互不相同.并且相邻的两个自然数在图中的位置也相邻。 分析与解:题目要求相邻的两个自然数在图中的位置也相邻.所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线。经试验有下图所示的三种情况:

奥数:7-6计数方法与技巧综合

7 计数综合 7-6 计数方法与技 巧综合 7-6-1归纳法 7-6-2整体法 7-6-3对应法 7-6-3-1图形中的对应关系 7-6-3-2数字问题中的对应关系 7-6-3-3对应与阶梯型标数法 7-6-3-4不完全对应关系 7-6-4递推法 前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用. 模块一、归纳法 从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系. 【例 1】 (难度等级※※)一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直 线最多分这个平面为多少部分? 【解析】 方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表: 由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n 条直线时,最多可将 平面分成2+2+3+4+…+n= ()12 n n ++1个部分. 方法二:如果已有k 条直线,再增加一条直线,这条直线与前k 条直线的交点至多k 个,因而至多被分成k+1段,每一段将原有的部分分成两个部分,所以至多增加k+1个部分.于是3条直线至多 例题精讲 教学目标 计数方法与技巧综合

将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分. 一般的有k 条直线最多将平面分成:1+1+2+…+k=()12 k k ++1个部分,所以五条直线可以分平面为16 个部分. 【巩固】(难度等级※※)平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内 部分成几部分? 【解析】 假设用a k 表示k 条直线最多能把圆的内部分成的部分数,这里k =0,1,2,…… a 0=1 a 1=a 0+1=2 a 2=a 1+2=4 a 3=a 2+3=7 a 4=a 3+4=11 …… 故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分 【例 2】 (难度等级 ※※)平面上10个两两相交的圆最多能将平面分割成多少个区域? 【解析】 先考虑最简单的情形.为了叙述方便,设平面上k 个圆最多能将平面分割成k a 个部分. 1413121110 9 8765 43 218 76 5 2134 4 3 122 1 从图中可以看出,12a =,24221a ==+?,38422a ==+?,414823a ==+?,…… 可以发现k a 满足下列关系式:()121k k a a k -=+-. 实际上,当平面上的(1k -)个圆把平面分成1k a -个区域时,如果再在平面上出现第k 个圆,为了保证划分平面的区域尽可能多,新添的第k 个圆不能通过平面上前()1k -个圆之间的交点.这样,第k

三年级奥数_简单数阵与幻方

简单的数阵与幻方 【知识点与方法】 一、数阵和幻方的概念:(1)数阵:每一条直线段的数字和相等。(2)幻方:在一个由若干个排列整齐的数组成的正方形中,任意一横行、一纵行及对角线的和都相等。 二、联系之前所学的知识,首先找到中心项:首项、末项、中间项。然后对称找和相等的成对的项。 【经典例题】 例1、将1、2、3、4、5这五个数分别填入下图中,使横行3个数的和与竖行3个数的和相等。 例2、将1、4、7、10、13这五个数分别填入下图中,使横行3个数的和与竖行3个数的和都等于25。 例3、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都相等。 例4、将5~11这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于24。 例5、将1~9这九个自然数填入下图的九个方格内,使得它成为一个幻方(每行、每列、每条对角线和都相等)。 练习与思考

1.将3、6、9、12、15这五个数分别填入下图中,使横行3个数的和与竖行3个数的和相等。 2. 将1、3、5、7、9这五个数分别填入下图中,使横行3个数的和与竖行3个数的和为17。 (2题图) (3题图a) (3题图b) 3. 将1~9这九个数分别填入右上图的小方格里,使横行和竖列上五个数之和相等。(至少找出两种本质上不同的填法) 4.将3~9这七个数分别填入左下图的○里,使每条直线上的三个数之和等于20。 (4题图) (5题图) 5.将1~11这十一个数分别填入右上图的○里,使每条直线上的三个数之和相等,并且尽可能大。 6. 将2~10这九个自然数填入下图的九个方格内,使得它成为一个幻方(每行、每列、每条对角线和都相等)。 7.将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。

学而思三年级奥数第 讲 数阵图进阶

把8,9,10,11,12,14,16这7个数分别填入图中的圆圈中,使得每条直线上4个数的和都等于46. 把1,2,4,5,6,8,10这7个数分别填入图中的圆圈中,使得每条直线上4个数的和都等于20. 数阵图进阶 第九讲 第4级下·提高班·学生版

第4级下·提高班·学生版 把2,3,4,5,6,7,8这七个数分别填入图中的圆圈中,使两个正方形中四个数之和都等于19. 将5,9,13,14,17,21,25这7个数分别填入图中的圆圈中,使得每条直线上3个数的和都等于44.

第4级下·提高班·学生版 将5,6,9,11,14,15这6个数分别填入图中的圆圈里,使两个大圆上4个数的和都等于40. 把1,5,9,10,16,21这6个数分别填入图中的○里,使每一个大圆上的四个数之和都等于36.

第4级下·提高班·学生版 1. 把5,6,7,8,9这5个数分别填在下图的 内,使横行、竖列3个数的和都等于( )中的 数. 把1,3,4,5,6,8,11,15这8个数分别填入图中的圆圈里,使得每个大圆上5个数的和都等于33.

第4级下·提高班·学生版 2. 把3,5,7,9,11,13,15这7个数分别填入图中的圆圈内,使每条直线上的3个数的和都等于 27. 3. 把2,4,6,8,10,12,14,16,18这9个数分别填入下图的圆圈中,使得每条直线上的3个数 的和都等于24.

4.把2,3,4,5,6,7,8这七个数分别填入图中的圆圈内,使两个正方形中四个数之和都等于21. 5.把1,2,4,5,6,11这6个数分别填入图中的○里,使每个圆圈上的四个数之和都等于22. 第4级下·提高班·学生版

四年级数学巧填数阵图

巧填数阵图 课前练习: 1、用0、 2、5、8、9可以组成多少个不同数字的三位数 2、大小两个正方形对应边的距离为4厘米,两个正方形之间的部分面积为160平方 厘米,求小正方形的面积 3、在420为的环形跑道上,甲、乙两人同时同地起跑,如果同向而行1分钟10秒相遇,如果背向而行30秒相遇,已知甲比乙快,求甲乙的速度 4、哥哥和弟弟在同一所学校读书,哥哥每分钟走80米,弟弟每分钟走50米,有一天,弟弟先走12分钟,哥哥才出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远 学习新知 例1、把1—7这七个数分别填入下图的圆圈中,使得每条边上的三个数的和都等于12。

例2、把数字1——8分别地填入下图中的小圆圈内,使每个圆上的五个数的和都等于20。 例3、将1—6这六个数填入图中的圆圈中,要求四条直线上的数字之和都等于10,那么a是多少 例4、下图中有5个圆,它们相交后分成9个区域,现在两个区域里已经填上了11与7,请在另外的七个区域里分别填入2、3、4、5、6、9、10这七个数,使每个圈内的和都等于17。 课堂练习

1、把1—7这七个数分别填入下图的圆圈中,使得每条边上的三个数的和都等于14。 2、把数字1—8分别填入下图中的小圆圈内,使得每个圆上五个数的和都等于22。 3、把5—14这十个自然数分别填入下图中的圆圈中,使每个大圆上的六个数的和等 于55,求a+b等于多少 例1、4、下图中有5个圆,它们相交后分成9个区域,现在两个区域里已经填上了10与6,请在另外的七个区域里分别填入2、3、4、5、6、 7、9这七个数,使每个圈内的和都等于15。

小学奥数-几何计数-专题

几何计数 知识框架图几何计 数8计数综合7-7 教学目标 .掌握计数常用方法;1熟记一些计数公式及其推导方法;2. .根据不同题目灵活运用计数方法进行计数.3本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并 渗透分类计数和用容斥原理的计数思想. 知识要点 一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些条直线最多将平面分成处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n12个部分;n个圆最多分平面的部分数为n(n-1)+2;n个三角形将平面最多分2)(nn?n??????223……2成3n(n-1)+2部分;n个四边形将平面最多分成4n(n-1)+2部分…… 在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解. 排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.

二、几何计数分类 数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条 数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形 也有15个,所以图中共有30个三角形. 数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个. 例题精讲 【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层, 共用了多少根小棍?(4级) 【例 2】用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?(4

小学奥数四年级幻方与数阵图

幻方与数阵图扩展 [内容概述] 本讲有两部分主要内容: 1、 幻方的概念和性质,简单幻方的编制; 2、 把一些数字按照一定要求排列成相应的图形,叫做数阵图。大致分为三类:封闭型数阵图、辐射型数阵图和复合型数阵图。 幻方的概念: 所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。 幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。 幻方又称为魔方,方阵等,它最早起源于我国。宋代数学家杨辉称之为纵横图。关于幻方的起源,我国有“河图”和“洛书”之说。相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,反作为礼物献给他,这就是“河图”了,是最早的幻方。伏羲氏凭借着“河图”而演绎出了八卦。后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。“洛书”所画的图中共有黑、白圆圈45个。把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。 幻方问题主要方法: 一、 累加法:利用累加的方法可以求出“幻和”和关键位置上的数字。通常将若干个“幻和”累加在一起, 再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。 二、 求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特 殊的数字和位置入手。 三、 比较法:利用比较的方法可以直接填出某些位置的数字。注意观察数阵图中相关联的“幻和”之间的关 系,注意它们之间共同的部分,去比较不同的部分。 四、 掌握好3阶幻方中的规律。 本讲还有一部分内容是数阵图拓展,也就是在三年级数阵图初步的基础上继续学习数阵图问题的解题方法。数阵图问题方法多样且特殊,我们将在例题中详细讲解。其实这些方法和幻方是一致的,大家可以在下面的学习中体会到这一点。 [思考题] 我们先来一起解决三道难度相差很大的题目,目的在于总结出三阶幻方的若干重要性质。 1. 如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你 一共可以得到多少种填法? 「分析」首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。它是多少呢?哦,如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3 倍的“幻和”吗?而另一方面,我们也知道, 第1题

小学三年级奥数--数阵图

数阵图(一) 在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。 那么,到底什么是数阵呢我们先观察下面两个图: 左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。 上面两个图就是数阵图。准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。要排出这样巧妙的数阵图,可不是一件容易的事情。我们还是先从几个简单的例子开始。 例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。 ) 同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。 分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。因为横行的三个数之和与竖列的三个数之和都等于9,所以

(1+2+3+4+5)+重叠数=9+9, 重叠数=(9+9)-(1+2+3+4+5)=3。 重叠数求出来了,其余各数就好填了(见右上图)。 试一试:练习与思考第1题。 例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。 分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。所以,必须先求出这个“和”。根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于 ; [(1+2+3+4+5)+5]÷2=10。 因此,两条直线上另两个数(非“重叠数”)的和等于10-5=5。在剩下的四个数1,2,3,4中,只有1+4=2+ 3=5。故有右上图的填法。 试一试:练习与思考第2题。 例3把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等。 分析与解:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样什么都不知道。但由例1、例2的分析知道, (1+2+3+4+5)+重叠数 `

四年级奥数:数阵图

四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。我们先从一道典型的例题开始。例1 把1~9 这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。 分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。我们可以这样去想:因为1~9 这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。 在1~9 这九个数字中,三个不同的数相加等于15的有: 9+5+1,9+4+2,8+6+1,8+5+2, 8+4+3,7+6+2,7+5+3,6+5+4。因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。 因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5 符合条件,因此应将5填在中心方格中。同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因 此应将2,4,6,8 填在四个角的方格中,同时应保证对角线两数的和相等。经试验,有下面八种不同填法: 上面的八个图,都可以通过一个图的旋转和翻转得到。例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。所以,这八个图本质上是相同的,可以看作是一种填法。 例1 中的数阵图,我国古代称为“纵横图”、“九宫算”。一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。

小学奥数 加法原理之树形图及标数法.学生版

1.使学生掌握加法原理的基本内容; 2.掌握加法原理的运用以及与乘法原理的区别; 3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则. 加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致. 一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决. 例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法? 分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法. 在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数. 二、加法原理的定义 一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这 知识要点 教学目标 7-1-3.加法原理之树形图及标数法

(完整版)小学三年级奥数数阵图一知识点与习题

数阵图(一) 在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。 那么,到底什么是数阵呢?我们先观察下面两个图: 左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。 上面两个图就是数阵图。准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。要排出这样巧妙的数阵图,可不是一件容易的事情。我们还是先从几个简单的例子开始。 例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。 同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。 分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。因为横行的三个数之和与竖列的三个数之和都等于9,所以 (1+2+3+4+5)+重叠数=9+9, 重叠数=(9+9)-(1+2+3+4+5)=3。 重叠数求出来了,其余各数就好填了(见右上图)。 例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。 分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。所 以,必须先求出这个“和”。根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于 [(1+2+3+4+5)+5]÷2=10。

四年级数学上册数阵图(三)讲解

四年级数学上册数阵图(三)讲解 数阵问题是多种多样的,解题方法也是多种多样的,这就需要我们根据题目条件灵活解题. 例1把20以内的质数分别填入下图的一个○中,使得图中用箭头连接起来的四个数之和都相等. 分析与解:由上图看出,三组数都包括左.右两端的数,所以每组数的中间两数之和必然相等.20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有 5+19=7+17=11+13, 于是得到下图的填法.

例2在右图的每个方格中填入一个数字,使得每行.每列以及每条对角线上的方格中的四个数字都是1,2,3,4. 分析与解:如左下图所示,受列及对角线的限制,a处只能填1,从而b 处填3;进而推知c处填4,d处填3,e处填4,……右下图为填好后的数阵图.

例3将1~8填入左下图的○内,要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个○内. 分析与解:因为中间的两个○各自只与一个○不相邻,而2~7中的任何一个数都与两个数相邻,所以这两个○内只能填1和8.2只能填在与1不相邻的○内,7只能填在与8不相邻的○内.其余数的填法见右上图. 例4在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等.

分析与解:因为大三角形的三个顶点与中间倒三角形的三个顶点正好是图中的六个○,又因为每个三角形顶点上的数字之和相等,所以每个三角形顶点上的数字之和为20÷2=10.10分为三个质数之和只能是2+3+5,由此得到右图的填法. 例5在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除.

a小学数学奥赛5-1-3-3数阵图(三).教师版

1. 了解数阵图的种类 2. 学会一些解决数阵图的解题方法 3. 能够解决和数论相关的数阵图问题 知识点拨 、数阵图定义及分类: 1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图. 2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐 射型数阵图和复合型数阵图. 3. 二、解题方法: 解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用. 例题精讲 数阵图与数论 例1】把0—9 这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差关键词】迎春杯,三年级,初赛,第8 题 数列的各项之和为55,那么这个等差数列的公差有种可能的取值. 考点】数阵图与数论难度】 3 星题型】填空 解析】设顶点分别为A、B、C、D、E,有45+A+B+C+D+E=55,所以A+B+C+D+E=10,所以A、B、C、D、 E 分别只能是0-4 中的一个数字.则除之外的另外 5 个数(即边上的)为45-10=35. 设所形成的等差数 列的首项为a1,公差为 d.利用求和公式5(a1+a1+4d)2=55,得a1+2d=11,故大于等于 0+1+5=6 ,且为奇数,只能取7、9或11,而对应的公差d分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0. 答案】 2 种可能 例2】将1~ 9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.

奥数标数法练习 计数之标数法经典例题讲解

奥数标数法练习计数之标数法经典例题讲解 解答: 第1步:在起点A处标1。再观察点B,要想到达点B,只有一个入口A,所以在B点也标1。 第2步:再观察点C,要想到达点C,它有两个入口A和B,所以在点C处标1+1=2。 同理重复点F,点D,点E,点G,点H,点I 【第三篇】 分析:既然要走最短路线,自然是不能回头走,所以从A地到B地的过程中只能向右或向下走. 我们首先来确认一件事,如下图 从A地到P点有m种走法,到Q点有n种走法,那么从A地到B 地有多少种走法呢? 就是用加法原理,一共有m+n种走法.

这个问题明白了之后,我们就可以来解决这道例题了: 首先由于只能向右或向下走,那么最上面一行和最左边一列的每一个点都只能有一种走法,(因为不可以走回头路). 我们就在这些交点的旁边标记上一个数字,代表走到这个位置有多少种方法. 【第四篇】 有一个5位数,每个数字都是1,2,3,4,5中的一个,并且相临两位数之差是1.那么这样的5位数到底有多少个呢?(数字可以重复) 这是一道数论的题目,但是我们也可以使用标数法来解答,并且非常直观. 到第一站可以有5种选择,每种选择有一种走法, 那么下一站,

走1号门就只有一种走法(就是第一站走的2号门), 走2号门就有2种走法(第一站走1号或3号门) 走3号门也是2种走法(第一站走2号门或4号门) 走4号门2种走法(第一站走3号门或者5号门) 走5号门只有一种走法(第一站走的是4号门) 我们发现在这一站经过某个门有多少种走法,正好等于他左上和右上的两个数字和.于是我们可以将数字标全. 这道题的答案就是42种, 虽然很多同学会用枚举法也能做出42种,但是一旦这道题给的不是5位数,而是7位数,9位数的话,枚举法就显得无力了.这种时候标数法是个不错的选择. 可以用到标数法的问题有很多,大家掌握这种方法之后可以解决很多平时看起来很麻烦的题目。

小学奥数16数阵图

1.10.5数阵图 1.10.5.1基础知识 数阵是由幻方演化出来的另一种数字图。幻方一般均为正方形。图中纵、横、对角线数字和相等。数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。变幻多姿,奇趣迷人。一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。 数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。 它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。 解数阵问题的一般思路是: 1.求出条件中若干已知数字的和。 2.根据“和相等”,列出关系式,找出关键数——重复使用的数。 3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。有时,因数字存在不同的组合方法,答案往往不是唯一的。 1.10.5.2辐射型数阵 例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。 解:已给出的五个数字和是:1+2+3+4+5=15 题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。只有5连加两次才能使五个数字的和增加5,关键找到了,中心数必须填5。确定中心数后,按余下的1、2、3、4,分别填在横、竖线的两端,使每条线上数的和是10便可。 例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。

解:图中共有3条线,若每条线数字和相等,三条线的数字总和必为3的倍数。设中心数为a,则a被重复使用了2次。即,1+2+3+4+5+6+7+2a=28+2a,28+2a应能被3整除。 (28+2a)÷3=28÷3+2a÷3 其中28÷3=9…余1,所以2a÷3应余2。由此,便可推得a只能是1、4、7三数。 当a=1时,28+2a=30 30÷3=10,其他两数的和是10-1=9,只要把余下的2、3、4、5、6、7,按和为9分成三组填入两端即可。同理可求得a=4、a=7两端应填入的数。 例3将从1开始的连续自然数填入各○中,使每条线上的数字和相等。 解:图中共有三条线,若每条线数字和相等,三条线的数字总和必为3的倍数。设中心数为a,a被重复使用了两次,即:1+2+3+……+10+2a=55+2a,55+2a应能被3整除。(55+2a)÷3=55÷3+2a÷3 其中,55÷3=18余1,所以2a÷3应余2。由此,可推知a只能在1、4、7中挑选。在a =1时,55+2a=57,57÷3=19,即中心数若填1,各条线上的数字和应为19。但是除掉中心数1,在其余九个数字中,只有两组可满足这一条件,即:9+7+2=18,8+6+4=18,7+5+3=15所以,a不能填1。经试验,a=7时,余下的数组合为12(19-7=12),也不能满足条件。因此,确定a只能填4。 例4将1~9九个数字,填入下图各○中,使纵、横两条线上的数字和相等。

相关文档
最新文档