专题73 一次函数在实际应用中的最值问题(解析版)

专题73 一次函数在实际应用中的最值问题(解析版)
专题73 一次函数在实际应用中的最值问题(解析版)

专题73 一次函数在实际应用中的最值问题

【专题说明】

1、通过图象获取信息

通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.

【注】函数图象中的特殊点

观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.

2、一次函数图象的应用

一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.【注】函数y=kx+b图象的变化形式

在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等.

1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:

(1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了_______ m.

(2)请你求出:

①甲队在0≤x≤6的时段内,y与x之间的函数关系式;

②乙队在2≤x≤6的时段内,y与x之间的函数关系式.

(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?

分析:(1)由图象可以直接看出乙队开挖到30 m时,用了2 h.开挖6 h时甲队比乙队多挖了10 m;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x(k1≠0),由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x.设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b(k2≠0),由图可知,函数图象过点(2,30),(6,50),代入y=k2x+b,求出k2=5,b=20,∴y=5x+20.(3)由题意,得10x=5x+20,解得x=4(h).

解:(1)210

(2)①y=10x.②y=5x+20.

(3)由题意,得10x=5x+20,解得x=4(h).

故当x为4 h时,甲、乙两队所挖的河渠长度相等.

2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:

(1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算?

(2)每月行驶的路程等于多少时,租两家车的费用相同?

(3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?

分析:本题从给出的两个函数图象中可获取以下信息:都是一次函数,一个是正比例函数;两条直线交点的横坐标为1 500;表明当x=1 500时,两个函数值相等;根据图象可知:x>1 500时,y2>y1;0<x<1 500时,y2<y1.

解:观察图象,得:

(1)每月行驶的路程小于1 500 km时,租国有出租车公司的车合算;

(2)每月行驶的路程为1 500 km时,租两家车的费用相同;

(3)如果每月行驶的路程为2 600 km,那么这个单位租个体车主的车合算.

析规律函数图象交点规律

两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处的函数值相等.

3、某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(L)与行驶时间t(h)的关系如下表,与行驶路程x(km)的关系如下图.请你根据这些信息求A型车在实验中的速度.

分析:考查综合利用一次函数的相关知识解决问题的能力.

解法一:∵余油量y与行驶路程x的关系图象是一条直线,

∴可设关系式为y=kx+b(k≠0).

由图象可知y=kx+b经过两点(0,100)和(500,20),则有b=100,20=500k+b.

把b=100代入20=500k+b,得20=500k+100,解得k=-4

25.

∴直线的解析式为y=-4

25x+100.

当y=100时,x=0;

当y=84时,x=100.

由图表可知,油箱中的余油量从100 L到84 L,行驶时间是1 h,行驶路程是100 km. ∴A型汽车的速度为100 km/h.

解法二:由图表可知:A型汽车每行驶1 h的路程耗油16L.

由图象可知:A 型汽车耗油80 L 所行驶的路程为500 km.

可设汽车耗油16 L 所行驶的路程为x km ,

则500∶80=x ∶16,解得x =100.

∴A 型汽车1 h 行驶的路程为100 km.

∴它的速度为100 km/h.

点评:有时,我们利用一次函数的图象求一元一次方程的近似解.

3、有A B 、两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.

(1)求焚烧1吨垃圾,A 和B 各发多少度电?

(2)A B 、两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.

【答案】(1)焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度;(2)当60x =时,y 取最大值25800度.

【详解】

(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则

4030201800a b b a -=??-=?,解得:300260a b =??=?

答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.

(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧()90x -吨,总发电量为y 度,则

300260(90)4023400y x x x =+-=+

∵2(90)x x ≤-

∵60x ≤

∵y 随x 的增大而增大

∵当60x =时,y 取最大值25800度.

4、学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.

(1)求A ,B 两种奖品的单价;

(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的

13

.请设计出最省钱的购买方案,并说明理由. 【答案】(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少

【详解】

解:(1)设A 的单价为x 元,B 的单价为y 元,

根据题意,得

3212054210

x y x y +=??+=?, 3015x y =?∴?=?

, ∴A 的单价30元,B 的单价15元;

(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3

z z ≥-, 152

z ∴≥, 3015(30)45015W z z z =+-=+,

当=8z 时,W 有最小值为570元,

即购买A奖品8个,购买B奖品22个,花费最少;

5、某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.

(1)改网店甲、乙两种口罩每袋的售价各多少元?

(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于

乙种口罩的4

5

,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几

种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?

【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.

【详解】

解:(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y元,根据题意得:

5 23110 x y

x y

-=

?

?

+=

?

解这个方程组得:

25

20

x

y

=

?

?

=

?

,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;

(2)设该网店购进甲种口罩m袋,购进乙种口罩(500﹣m)袋,根据题意得

4

(500)

5

22.418(500)10000 m m

m m

?

>-

?

?

?+-≤

?

解这个不等式组得:222.2<m≤227.3,因m为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;

购进甲种口罩224袋,乙种口罩276袋;

购进甲种口罩225袋,乙种口罩275袋;

购进甲种口罩226袋,乙种口罩274袋;

购进甲种口罩227袋,乙种口罩273袋;

设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,w

最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.

6、某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.

(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式.

(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.

【答案】(1)W=8t+900;(2)有三种购买方案.为了使拍照的资金更充足,应选择方案:购买30件文化衫、15本相册.

【详解】

1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.

(2)根据题意得:,解得:30≤t≤32,∵有三种购买方案:

方案一:购买30件文化衫、15本相册;

方案二:购买31件文化衫、14本相册;

方案三:购买32件文化衫、13本相册.

∵W=8t+900中W随x的增大而增大,∵当t=30时,W取最小值,此时用于拍照的费用最多,∵为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.

7、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收

割机和5台小型收割机1小时可以收割小麦2.5公顷.

(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?

(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.

【答案】(1)每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷;(2)有七种方案,当大型收割机用8台时,总费用最低,最低费用为4800元.

【详解】

(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:,解得:.

答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.

(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.

∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∵,解得:5≤m≤7,∵有三种不同方案.

∵w=200m+4000中,200>0,∵w值随m值的增大而增大,∵当m=5时,总费用取最小值,最小值为5000元.

答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.

8、为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:

(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?

(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);

(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?

【答案】(1)购进篮球40个,排球20个;(2)y=5x+1200;(3)共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.最大利润为1415元.

【详解】

解:(1)设购进篮球m个,排球n个,根据题意得:

60

80504200

m n

m n

+=

?

?

+=

?

,解得:

40

20

m

n

=

?

?

=

?

答:购进篮球40个,排球20个.

(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据题意得:y=(105﹣80)x+(70﹣50)(60﹣x)=5x+1200,∵y与x之间的函数关系式为:y=5x+1200.

(3)设购进篮球x个,则购进排球(60﹣x)个,根据题意得:512001400 8050(60)4300 x

x x

+≥

?

?

+-≤?,解得:40≤x≤

130

3

∵x取整数,∵x=40,41,42,43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.

∵在y=5x+1200中,k=5>0,∵y随x的增大而增大,∵当x=43时,可获得最大利润,最大利润为

5×43+1200=1415元.

9、为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用

(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:

(1)∵当x≤10时,y与x的关系式为:;

∵当x>10时,y与x的关系式为:;

(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;

(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?

【答案】(1)∵y=300x﹣600;∵y=﹣12x2+420x﹣600;(2)停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;(3)每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.【详解】

(1)∵由题意得:y=300x﹣600;

∵由题意得:y=[300﹣12(x﹣10)]x﹣600,即y=﹣12x2+420x﹣600;

(2)依题意有:﹣12x2+420x﹣600=3000,解得x1=15,x2=20.

故停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;

(3)、当x≤10时,停车300辆次,最大日净收入y=300×10﹣600=2400(元);

当x>10时,y=﹣12x2+420x﹣600=﹣12(x2﹣35x)﹣600=﹣12(x﹣17.5)2+3075,

∵当x=17.5时,y有最大值.但x只能取整数,∵x取17或18.

显然x取17时,小车停放辆次较多,此时最大日净收入为y=﹣12×0.25+3075=3072(元).

由上可得,每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.

10、攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).

(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?

(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.

【答案】(1)A品种芒果售价为每箱75元,B品种芒果售价为每箱100元;(2)购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;其中购进A品种芒果6箱,B品种芒果12箱总费用最少.

【详解】

解:(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:

23450

{

2275

x y

x y

+=

+=

,解得:

75

{

100

x

y

=

=

.

答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.

(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,∵18﹣n≥2n且18﹣n≤4n,∵ 18

5

≤n≤6,

∵n非负整数,∵n=4,5,6,相应的18﹣n=14,13,12;

∵购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;

∵所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∵购进A品种芒果6箱,B品种芒果12箱总费用最少.

一次函数练习题及答案(较难)

初二一次函数与几何题 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少 ~ 6、如图,已知一次函数图像交正比例函数图像于第二象限的A 点,交x 轴于点B (-6,0),△AOB 的面积为15,且AB=AO ,求正比例函数和一次函数的解析式。 A B C ( x y x [ A B O

7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6) 求k1,k2的值 ( 如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标 9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。 10、在平面直角坐标系中,一次函数y=Kx+b(b小于0)的图像分别与x轴、y轴和直线x=4交于A、B、C,直线x=4与x轴交于点D,四边形OBCD的面积为10,若A的横坐标为-1/2,求此一次函数的关系式 11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y轴交于点A,且OA=OB:求这个一次函数解析式 12、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,m)在第一象限,直线PA 交y轴于点C(0,2),直线PB交y轴于点D,S AOP=6. ; 求:(1)△COP的面积 (2)求点A的坐标及m的值; (3)若S BOP =S DOP ,求直线BD的解析式

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

2020年中考二轮专题《一次函数与实际应用》(含答案)

2020年中考二轮专题实际应用 1.已知A,B两地相距200km,甲、乙两辆货车装满货物分别从A,B两地相向而行,图中l1,l2分别表示甲、乙两辆货车离A地的距离s(km)与行驶时间t(h)之间的函数关系.请你根据以上信息,解答下列问题: (1)分别求出直线l1,l2所对应的函数关系式; (2)何时甲货车离B地的距离大于乙货车离B地的距离? 2.为更新树木品种,某植物园计划购进甲、乙两个品种的树苗栽植培育若计划购进这两种树苗共41棵,其中甲种树苗的单价为6元/棵,购买乙种树苗所需费用y(元)与购买数量x(棵)之间的函数关系如图所示. (1)求出y与x的函数关系式; (2)若在购买计划中,乙种树苗的数量不超过35棵,但不少于甲种树苗的数量.请设计购买方案,使总费用最低,并求出最低费用.

3.春季正是新鲜草莓上市的季节,甲、乙两家水果店,平时以同样的价格出售品质相同的草莓,“草莓节”期间,甲、乙两家商店都让利酬宾,顾客的折后付款金额y 甲、y 乙(单位:元)与标价应付款金额x (单位:元)之间的函数关系如图所示. (1)求y 甲、y 乙关于x 的函数关系式; (2)“草莓节”期间,如何选择甲、乙两家水果店购买草莓更省钱? 4.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克),增种果树x (棵),它们之间的函数关系如图所示. (1)求y 与x 之间的函数关系式; (2)在投入成本最低的情况下,增种多少棵树,果园总产量6750千克?

5.为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动,自行车队从甲地出发,目的地为乙地,在自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往乙地,到达乙地后立即按原路返回甲地.自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的3倍.如图所示的是自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地的时间x(h)的关系图象,请根据图象提供的信息,回答下列问题. (1)自行车队行驶的速度是;邮政车行驶的速度是;a=.(2)邮政车出发多少小时与自行车队相遇? (3)当邮政车与自行车队相距15km时,此时离邮政车出发经过了多少小时? 6.A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中L1、L2分别表示甲、乙俩人离B地的距离y(km)与甲出发时间x(h)的函数关系图象. (1)根据图象,直接写出乙的行驶速度; (2)解释交点A的实际意义; (3)甲出发多少时间,两人之间的距离恰好相距5km; (4)若用y3(km)表示甲乙两人之间的距离,请在坐标系中画出y3(km)关于时间x (h)的的数关系图象,注明关键点的数据.

二次函数在实际生活中的应用

二次函数在实际生活中的应用 【经典母题】 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元? 解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x, y=(x-9)(1 360-80x) =-80x2+2 080x-12 240(10≤x≤14). -b 2a=- 2 080 2×(-80) =13, ∵10≤13≤14,∴当x=13时,y取最大值, y最大=-80×132+2 080×13-12 240=1 280(元). 答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元. 【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论. 【中考变形】 1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示. (1)图中点P所表示的实际意义是__当售价定为35元 /件时,销售量为300件__;销售单价每提高1元时, 销售量相应减少__20__件; (2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1

一次函数练习题(含答案)

巩固练习 一、选择题: 1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3 2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过() (A)一象限(B)二象限(C)三象限(D)四象限 3.直线y=-2x+4与两坐标轴围成的三角形的面积是() (A)4 (B)6 (C)8 (D)16 4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x (kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2, 如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙 弹簧长为y2,则y1与y2的大小关系为() (A)y1>y2(B)y1=y2 \ (C)y1a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是() 6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限. (A)一(B)二(C)三(D)四 7.一次函数y=kx+2经过点(1,1),那么这个一次函数() (A)y随x的增大而增大(B)y随x的增大而减小 (C)图像经过原点(D)图像不经过第二象限 8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在() (A)第一象限(B)第二象限(C)第三象限(D)第四象限

$ 9.要得到y=-3 2 x-4的图像,可把直线y=- 3 2 x(). (A)向左平移4个单位(B)向右平移4个单位 (C)向上平移4个单位(D)向下平移4个单位 10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为() (A)m>-1 4 (B)m>5 (C)m=- 1 4 (D)m=5 11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是(). (A)k<1 3 (B) 1 3 1 (D)k>1或k< 1 3 12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,?这样的直线可以作() (A)4条(B)3条(C)2条(D)1条 13.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是() | (A)-4

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

《一次函数的性质及运用》专题练习(含答案)

《一次函数的性质及运用》专题练习 (时间:90分钟 满分:100分) 一、选择题(每小题3分,共30分) 1.下列图像中,表示y 是x 的函数有 ( ) A .1个 B .2个 C .3个 D .4个 2.下列函数中自变量的取值范围选取错误的是 ( ) A .y =x 2中x 取全体实数 B .y =11x -中x ≠0 C .y =11 x +中x ≠-1 D .y x ≥1 3.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升,如果每升汽油2.6元,则油箱内汽油的总价y (元)与x (升)之间的函数关系是 ( ) A .y =2.6x(0≤x ≤20) B .y =2.6x +26(0k 2x 的解为 ( ) A .x>-1 B .x<-1 C .x<-2 D .无法确定 8.如图所示中的折线ABC 为甲地向乙地打长途电话需付的电话费y (元)与通话时间t (分钟)之间的函数关系,则通话8分钟应付电话费_______元. ( )

二次函数在实际生活中的应用及建模应用

二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 一、利用二次函数解决几何面积最大问题 1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。 (1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式; (2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴? ??- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是: 利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式 中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18) (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时, 81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回答问题实际时,一定注意不要遗漏了单位。 2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 252 1)250(2+-=-=中,a=21-<0,∴y 有最大值,

一次函数专项训练及答案

一次函数专项训练及答案 一、选择题 1.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( ) A .a <0 B .a >0 C .a <-1 D .a >-1 【答案】C 【解析】 【分析】 【详解】 ∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<, ∴该函数图象是y 随x 的增大而减小, ∴a+1<0, 解得a<-1, 故选C. 【点睛】 此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题. 2.如图,函数4y x =-和y kx b =+的图象相交于点()8A m -,,则关于x 的不等式()40k x b ++>的解集为( ) A .2x > B .02x << C .8x >- D .2x < 【答案】A 【解析】 【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可. 【详解】 解:∵函数y =?4x 和y =kx +b 的图象相交于点A (m ,?8), ∴?8=?4m ,

解得:m =2, 故A 点坐标为(2,?8), ∵kx +b >?4x 时,(k +4)x +b >0, 则关于x 的不等式(k +4)x +b >0的解集为:x >2. 故选:A . 【点睛】 此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键. 3.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( ) A .2 B 2 C 5 D 3【答案】D 【解析】 【分析】 【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征: 当x=0时,y=﹣22,则A (0,2), 当y=0时,﹣2=0,解得2,则B (2,0), 所以△OAB 为等腰直角三角形,则2OA=4,OH=12 AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到22OP OM -21OP - 当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-= 故选D .

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

一次函数的应用专题

精心整理 一次函数的应用 一.选择题 1.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法: ①甲、乙两地之间的距离为560km; ②快车速度是慢车速度的1.5倍; ③快车到达甲地时,慢车距离甲地60km; ④相遇时,快车距甲地320km A.1 2 A. 3.t(小时)③A、 A.1 4 A.1 5 6l1、l2分 x= h 人相距7km. (6题图)(7题图) 7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中: ①甲队每天挖100米; ②乙队开挖两天后,每天挖50米; ③甲队比乙队提前3天完成任务; ④当x=2或6时,甲乙两队所挖管道长度都相差100米. 正确的有.(在横线上填写正确的序号)

8.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是. 三、解答题: (行程问题) 8.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点) (1 (2 及 9. (1 (2 为t (3 10.小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示. (1)小林的速度为米/分钟,a= ,小林家离图书馆的距离为米;(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象; (3)小华出发几分钟后两人在途中相遇? 11.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t (小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答: (1)甲车出发多长时间后被乙车追上? (2)甲车与乙车在距离A地多远处迎面相遇?

二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。 一. 以几何为背景问题 原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中: (1)求抛物线的函数解析式; (2)求水流的落地点D 到A 点的距离是多少m ? 【答案】(1)213222y x x =-++;(2)(2+m . 【解析】 试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式; (2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=, 点坐标为(23.5), (1)设抛物线的函数解析式为2 (0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5), , 当0x =时, 1.5y c == 由22b a -=,得4b a =-, 由24 3.54ac b a -=,得2 616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222 y x x =-++. 考点:本题考查点的坐标的求法及二次函数的实际应用 点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从 中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型. 原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ). (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少? 【答案】(1)x x y 202 12+- =)150(≤

一次函数解析式专题练习(全面)

1 / 3 一次函数解析式的确定练习题 第1题?如图所示,直线I 是一次函数y 二kx ? b 的图象,看图填空: 则y 与x 之间的函数关系式是 第5题.已知直线y = _5x ? a 与直y = 5x ? b 的交点坐标为 (m,8), 贝H a b 的值是 _________________ . 1 第6题.若直线y x ? n 与直线y = mx -1相交于(1, - 2),则( ) 2 第7题.已知下表是y 与x 的一次函数,请写出函数表达式, x -2 -1 0 2 3 y 4 第8题.如图所示,直线I 是一次函数y 二kx ?b 的图象. (1 )图象经过(0, _ )和( _ -)点; (2)贝廿 k 二 ___ - b 二 _________ 第9题.某一次函数的图象经过点 (-1,2)-且函数y 的值随自变量2 出一个符合上述条件的函数关系式是 _____________________ 1 第10题.已知y-m 与3x+6成正比例关系(m 为常数当帚 -1 -2 第11题.已知一次函数y 二kx ? b 的图象经过点 A (2,5)和点E ,点E 是一次函数y = 2x -1 的图象与y 轴的交点,则这个一次函数的表达式是 ___________________ . 1 第12题.直线y =kx ? b 过点(-2,5)且与y 轴交于点P ,直线y x 3与y 轴交于Q - (1) b = k 二 ; (2 )当 x = 6 时, y = ; (3 )当 y =6时, X 二 . 第 2题. 一次函数 y =bx 2的图象经过点A (_1,1) ,I 则 b Y 第3题.正比例函数的图象经过点 A (-2,-3),求正比例函数的关系式. 第4题.y ?3与x 1成正比例,且当x = 1时,y =1 -T O k y / I /的增大而减小,请你写 I | 4 时,a yp4,当 x = 3 时, y =7,那么y 与x 之间的函数关系式是 1 2 3 2

最新一次函数的应用典型练习题

一次函数的应用典型练习题 1、若点(1,2)及(m ,3)都在正比例函数y=kx 的图象上,求m 的值. 2、已知直线y=kx+b 经过点(-2,-1)和点(2,-3),求这条直线的函数解析式. 3、某一次函数的图象平行于直线 ,且过点(4,7),求函数解析式. 4、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式. 5、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,求y 与x 之间的函数关系式. 6、 声音在空气中传播的速度y (米/秒)(简称音速)是气温x (℃)的一次函数,下表列出了一组不同气温时的音速: (1)求y 与x (2)气温x=22(℃)时,某人看到烟花燃放5秒后才听到声音响,那么此人与燃放的烟花所在地约相距多远? x y 2 1

7、去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用 水,采取分段收费标准,若某居民每月应交水费是用水量的函数,其函数图象如图所示: (1)分别写出x≤5和x>5时,y与x的函数解析式; (2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准. (3)若某户居民该月用水3.5吨,则应交水费多少元?若该月交水费9元,则用水多少吨? 8、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓 球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价 的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒). (1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的 付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系 式. (2)就乒乓球盒数讨论去哪家商店购买合算? 9、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这 两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示. (1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系 式; (2)两种租书方式每天租书的收费分别是多少元? (3)若两种租书卡的使用期限均为一年,则在这一年中如何选择这两种租书方式比较合 算?

二次函数在实际中的应用

二次函数在实际中的应用 法国著名数学家的卡尔说过:“我们所解决的每一个问题,将成为一种模式,用于解决其它问题”.本文用二次函数的模式,解答生产、生活、体育等实际中的问题,达到触类旁通的目的. 一、借助二次函数解答桥梁问题 例1、(2006吉林省)如图1,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m . ⑴ 建立如图所示的直角坐标系,求此抛物线的解析式; ⑵ 现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米? 解:(1)设抛物线的解析式为2y ax =,桥拱最高点O 到水面CD 的距离为h 米,则D (5,h -),B (10,3h --). ∴25100 3.a h a h =-??=--?,解得1251a h ?=-???=? ,∴抛物线的解析式为2125y x =-. (2)水位由CD 处涨到点O 的时间为:1÷0.25 = 4(小时), 货车按原来速度行驶的路程为:40×1+40×4 = 200<280, ∴货车按原来速度行驶不能安全通过此桥,设货车速度提高到x 千米/小时, 当4401280x +?=时,解得60x = , ∴要使货车安全通过此桥,货车的速度应超过60千米小时. 二、应用二次函数剖析撞车问题 例2、(2006苏州市)司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”,如图2. 已知汽车的刹车距离s(单位:m)与车速v(单位:m /s)之同有如下关系:s=tv+kv 2其中t 为司机的反应时间(单位:s),k 为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=O.7s 图1

(完整版)一次函数专项练习题

一次函数专项练习题 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A , B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 任意两点(,),(,)A A B B A x y B x y 的距离为22()()A B A B x x y y -+-; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为 A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点(,)A A A x y 到原点之间的距离为 22A A x y + 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ????- ? ???? ?,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时, ()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数; 4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法: ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y 轴上同一点。 ☆特殊直线方程: X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。 2、对于函数1223 y x =-, y 的值随x 值的________而增大。 3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__。4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。 5、直线y=kx+b 经过第一、二、四象限,则直线y=-bx+k 经过第____象限。 6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。 7、已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点? 题型五、待定系数法求解析式 方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。 ☆ 已知是直线或一次函数可以设y=kx+b (k ≠0); ☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。 1、若函数y=3x+b 经过点(2,-6),求函数的解析式。 2、直线y=kx+b 的图像经过A (3,4)和点B (2,7), 4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。6、已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。 7、已知直线y=kx+b 与直线y= -3x+7关于x 轴对称,求k 、b 的值。8、已知直线y=kx+b 与直线y= -3x+7关于原点对称,求k 、b 的值。 5、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值的范围是-11≤y ≤9,求此函数的解析式。 题型六、平移 方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。 1. 直线y=5x-3向左平移2个单位得到直线 。 2. 直线y=-x-2向右平移2个单位得到直线 3. 直线y=21x 向右平移2个单位得到直线 4. 直线y=22 3+-x 向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线

二次函数在实际问题中的应用

孟老师12月23日初三学案 二次函数在实际问题中的应用 一抛物线形的物体 研究抛物线的问题,需要建立适当的平面直角坐标系,根据已知条件,求出相关点的坐标,确定解析式,这是解答其它问题的基础,. (2012?益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明 通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等 于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号) 2(2010?南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内? 二应用二次函数解决实际问题中的最值 求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法. 二次函数的性质在实际生活中的应用

相关文档
最新文档