油浸式主变压器油位异常原因及对策探讨

油浸式主变压器油位异常原因及对策探讨
油浸式主变压器油位异常原因及对策探讨

油浸式主变压器油位异常原因及对策探讨

发表时间:2017-12-30T18:43:46.727Z 来源:《电力设备》2017年第24期作者:尹明明

[导读] 摘要:变压器油位是反映油浸式变压器运行状况重要判据之一,结合现场工作中遇到的实际情况,对主变压器安装验收、运行维护、设计选型等方面产生油位异常原因进行了探讨,分析总结出主变压器油位异常应对策略并提出相关工作要求。

(国网江苏省电力公司检修分公司江苏淮安 223002)

摘要:变压器油位是反映油浸式变压器运行状况重要判据之一,结合现场工作中遇到的实际情况,对主变压器安装验收、运行维护、设计选型等方面产生油位异常原因进行了探讨,分析总结出主变压器油位异常应对策略并提出相关工作要求。

关键词:油浸式变压器;油位异常;原因;对策

0 引言

油浸式电力变压器铁芯和绕组浸在变压器绝缘油中,变压器油是变压器的重要组成部分,起着绝缘和冷却的作用,有载分接开关内的电弧靠变压器油灭弧,变压器油还起着灭弧介质的作用。变压器油温是随着负荷和环境温度的变化而变化,油温的变化带来的是变压器油体积的变化,变压器储油柜担负着油体积调节作用,应能满足在最高环境温度下,满负载运行时油不溢出;在最低环境温度变压器停止运行时储油柜内有一定油量。当变压器无较严重渗漏油情况时,储油柜油位的变化具有一定内在规律,其变化情况,直接反映变压器的运行情况。

1 几起油位异常案例及处理

1.1主变有载油位告警信号频发

城南变 110kV 2号主变间歇性发出有载油位或高或低信号。现场检查发现有载油位指示在正常,同时油位表有明显进水的痕迹。经停电检查,油位计外壳密封良好,但二次引线护套在高于表计的位置局部老化开裂,水份从开裂部位进入,顺着护套流入表计,导致表计进水受潮,告警信号接点被导通,误发告警信号。现场对该表计进行了更换,并让油位计二次接线从油位计的下方通过,避免由于二次线护套密封不好所导致的表计进水隐患。

1.2主变有载独立储油柜油位难以调节

马坝变 110kV 5号主变为SSZ10-M-31500/110有载调压变压器。在实际运行中,有载储油柜冬天油位低到需要补油,夏天油位高到需要放油。经过实际检测,油位计指示准确。通过对该储油柜现场测量计算发现储油柜容积设计不够。后来在该设备的增容换型时,注意加强了对储油柜容积的核算,避免此类缺陷的发生。

1.3油循环自冷变压器80%负荷达到最大油位

学府变1号主变为油循环自冷变压器,投运前油位按照温度曲线调整在合适位置。运行中发现带有功负荷约3万千瓦时该主变本体油位计指示达最大值。经检查分析,片散下部离地面只有40cm,安装位置太低造成散热效果差引发油位过高。后联系厂家对其进行技术改造,抬高散热器。散热器水平中心线相对于油箱水平中心线的高度差值越大,由温差引起的油流循环效果就越好;而油流循环效果越好,散热器进出口温度差值就越小[1]。这种设计的综合效果是,在散出同样热量的情况下可以降低变压器热点温升或减小有效散热表面,同一散热器安装的高度提高,其散热效率自然可以得到提高。

2 油位异常原因分析及其对策

主变压器油位指示异常的主要原因有:主变渗漏油带来的油位降低;安装检修时本体注油偏高或偏低,温度变化后引起油位异常;主变压器和调压开关油路互相渗透;油路不通或储油柜呼吸通道堵塞;油位指示器异常,出现假油位;产品设计制造不合理带来的油位异常等等[2]。结合变压器日常运行检修工作,具体分析总结变压器油位异常的原因及其防范措施。

2.1主变的渗漏及主变本体和调压开关油路互相渗透导致的油位异常

主变渗漏油原因主要来自密封材料和结构、焊接、外购组部件、检修工艺和装配程序五个方面,对于渗油缺陷只要发现的早,及时采取控制措施,大都可以将缺陷消除在萌芽状态,根据渗漏部位不同,可以采取焊、堵、换、改等多种处理措施。

2.2储油柜油位调节不当

在主变压器安装、检修中,若是按照环境温度调整油位,而不是按照油温调整油位,那么在运行之后就容易产生油位异常问题。例如主变压力释放阀动作之后,已经有部分变压器油喷出,压力已经得到释放,油温高达85℃,此时就不能再按照环境温度去放油。因此注油或调整油位时,调整油位依据是对照变压器铭牌上油温油位曲线调整,并做好记录,以便运行时进一步观察油温油位变化情况。

2.3片散变形或阀门未充分完全打开

目前变压器散热多采用片式散热器,在吊装过程中保护不好,碰撞变形或者安装时采用硬力拉装,损伤散热器,造成管路不畅或渗油。另外,若部分片散阀门未打开或者阀门本身存在问题,打开不到位,这都将影响到变压器冷却效果,造成温度及油位不同程度的增高。散热片安装、检修时,应对片散做好保护,以免受到硬力碰撞变形;主变投入运行时,检查散热器阀门开启情况,通过借助手触摸感知或红外测温等方式比较运行温度与其他散热器有无明显温差,由此判定阀门打开程度。

2.4油位计指示错误,即假油位

造成假油位原因,一是储油柜排气不彻底,造成油、气混合,由于液体、气体膨胀系数不一样造成油位计指示失准;二是油位计故障,比如指针或连杆的卡涩、脱落,浮球损坏,连杆弯曲变形等造成表计不能准确指示油位,还有就是指示正确但是误发告警信号;三是呼吸系统堵塞;四是注油方法不当,造成油压迫胶囊后堵住下部油口,指示油位不是真实油位;五是胶囊破损,导致胶囊内进油,势必造成油位指示失准,还有胶囊内进油(水)后,胶囊内液体对浮球产生压力,两种情况都导致油位指示比实际变小,产生假油位。

因此油位计在安装过程中应进行检查校验。变压器安装或维护时,对于储油柜要彻底排气。变压器运行过程中可以采用红外测温等手段,监测变压器储油柜实际油位,与油位计指示比较判断。还可用透明橡皮管进行校核,具体方法是利用连通器原理将主变储油柜油位外引至外设透明橡皮管,通过观察比较判断对油位计指示校核。同时也要关注油位计的密封问题,对于表计进水的现象要加以关注,及时处理。

2.5变压器设计制造方面造成油位异常

储油柜设计过小,设计余量不足会导致实际运行过程中冬天油位过低,夏天油位过高。储油柜容积设计应满足:储油柜应在最低环境

GE_KELMAN安装手册

GE KELMAN 一、需要了解的一些资料 1、重要特性 TRANSFIX 是变压器油中溶解气体及微水在线监测系统,它被用来测量反映变压器状态分析的关键气体数值。这些气体有:氢气、甲烷、乙烷、乙烯、一氧化碳、二氧化碳、氧气及乙炔。TRANSFIX 也同样测量绝缘油中的水分含量及变压器负载电流。TRANSFIX 从变压器绝缘油中取得气样并使用光声光谱技术分析气样。这些数据被储存在设备内部并可以下载至电脑上。 关键特性 ●TRANSFIX 使用动态顶空脱气法从油样中获取目标气体。 ●不需要消耗气体,例如载气等。 ●可在一小时内测量出精确的结果,不需要因为薄膜平衡脱气法而等待数小 时。 ●安装后免维护。 ●使用高精度及高稳定性的光声光谱技术。 ●完全嵌入式微处理器及固态内部记忆体可存储10,000 条记录(采用1 小时 的采样间隔至少可存储1 年的测量数据)。 ●室外等级为NEMA 4X, IP55 的不锈钢外壳通过坚固的不锈钢钢管连接到 变压器上。 ●TRANSFIX 本体上提供手动采样口。 ●所有气体测量装置均安装在TRANSFIX 内部,没有任何外部气体测量探头。 ●可使用变压器负载监测。 ●外壳表面上安装有一个红色及一个黄色的抗日光冲刷且用户可设定的LED 指示灯,并且对于气体 ●及微水的绝对数值或气体变化率配有四个用户可设定的继电器输出。 ●外壳上安装有一个绿色LED 电源指示灯及一个蓝色LED 维护灯。 ●通讯选项包括:以太网、RS-232、移动电话Modem (GSM 或CDMA)、 固定电话Modem、租用线路Modem、RS-485 及其他可选通讯方式。 ●为调试及本地数据下载提供USB 连接。 2、对变压器的要求: 变压器应该满足如下要求: ●含有矿物类型油(石蜡或环烷烃)的变压器应满足IEC-60296、BS EN148、 VDE 0370 或 ●ASTM D 3487 标准中规定的内容。 ●变压器油内不含多氯联苯。 ●变压器出油阀处的油温应该介于-10°C~120°C。 ●变压器应处于大气压力或以上。(见下) ●变压器油箱上应有独立的连接TRANSFIX 和变压器的系统取油及回油阀

变压器油介损异常分析及处理

92 | 电气时代2006年第9期 EA 应用与方案供配用电 变 压器油在交变电场作用下 统称为介质损耗因数(通常用tan 原 因 分 析 1.溶胶杂质的影响 变压器在出厂前油品或固体绝缘材料中存在着尘埃 投入运行一段时间后 一般仅在1010 扩散慢 粒子可自动聚结处于非平 衡的不稳定状态油中 存在溶胶后 从而导致油tan 电压的影响 造成分散体系在各水平面上的浓度不 等 底部浓度较大 则上层油的介损值较小 取样部位的不同 直接影响变压器油介质损耗的测定 蚊子和细 菌类生物侵入所造成的 因此 而 微生物胶体都带有电荷 变压器油处在全密封 油中的微 生物厌氧 特别是在 无色透明玻璃瓶中放置时 运行油温不同 油温在50 范围内 运行 所以介损相对增加比较快 一般冬季的 介质损耗因数比较稳定 可以通过油中的生物化验来确定 线圈铜导线严重 过热或烧损等都会使铜离子溶入到油中 导致介损的升高 当油中含水量较低(如30 对油的tan 其介质损耗因数急剧增加 目前有的变压器制造厂家取 消了净油器(热虹吸器)减少 了渗漏油点 尽管 目前变压器油是通过油枕内的胶囊与外界空气是隔绝的 但变压器上装有净油器(热虹吸器)更有利于 绝缘油质量的稳定 吸出 从而减缓了绝缘中水分的 增加对没有安装净油器(热虹吸器)的变压器油介损增 大 制造厂家的油介损测试设备进行油样试验 时 电桥的准确度达不到要求或温控装置加热过快 由于充电导体对绝缘油的介质损耗影响十分显著净化程度和变压器的运行 状况

电气时代2006年第9期 | 93 EA 应用与方案 供配用电应避免取样容器受到污染 保证空杯的介损值并在湿度小的清洁的试 验室内进行加热到终点温度 后立即测量 一般认为 最好在达到温度平衡后立即测量 需用两台介损仪进行对比试验 还应根据其他试验项目进 行综合判定应采用再生处理的 方法进行处理 恢复或改善油的理化指标 吸附剂法适合于处理劣化程度较轻的油 接触法系采用粉状吸附剂(如白土 而渗滤法即强迫油通 过装有颗粒状吸附剂(如硅胶 进行渗滤再生处理 当遇到油介损升高时 油经真空 净化处理后但油 的介质损耗因数值仍较高 而且与许多因数有关 大多数变压器油介质损耗因数增大的 原因是油中溶胶杂质等影响所致 9 能通过压板滤油机的滤纸 往 往不能达到目的 通常采用接触法和渗滤法再生处理可以得到良好效果 801 又能使油介损降到合格范 围 801 4%比例进 行浸泡 801 60  最后用压板式滤油机将浸泡后的变压器 油进行过滤后 使用AL2O3 吸附剂进行油再生时 油从变压器本体出来 真空滤油机 最后到油罐当中 将本体中的 油全部倒入油罐中 吸附 将油温加热至70  该滤油纸形状 及大小与普通滤油纸相同 四周用缝纫机缝好皱 纹纸内有丝棉 首先将药粉滤油纸放入烘箱内干 燥油温控制在 70  待油全部过滤一遍后 随着过滤遍数的增多 经过6 可将换纸时间固定为8 h/次 就会使油达到较好的处理效果 就采用硫酸 硫酸处理能除去油中多种老化产物 硫酸 主要包括沉降1)沉降阶段 首先 沉降下来的水分和杂质从沉降罐底部排渣阀排出 加酸处理时 边加酸边搅拌 酸 渣分次排出加入白土前 预热温度一般为100 温度一般不超过60 则认为反应基本完全 从罐底排掉白土渣 EA (收稿日期

变压器油取样方法

变压器油取样方法 一、取样工具 ?1.取样瓶:KDZD-GKP油化瓶,规格500CC;KDZD-ZSQ针筒油化瓶规格100CC。500~1000mL 磨口具塞玻璃瓶,并应贴标签。 适用范围:适用于常规分析。发电厂,电力,钢铁,铁路,变电站,石化等部门相关单位实验室做油品取样试验。 ?取样瓶的准备:取样瓶先用洗涤剂进行清洗,再用自来水冲洗,最后用蒸馏水洗净,烘干、冷却后,盖紧瓶塞。 2.注射器:应使用20~100mL的全玻璃注射器(最好采用铜头的),注射器应装在一个专用油样盒内,该盒应避光、防震、防潮等。注射器头部用小胶皮头密封。适用于油中水分含量测定和油中溶解气体(油中总含气量)分析。 3.注射器的准备 ??取样注射器使用前,按顺序用有机溶剂、自来水、蒸馏水洗净,在105℃温度下充分干燥,或采用吹风机热风干燥。干燥后,立即用小胶头盖住头部待用(最好保存在干燥器中)。 4.油桶取样用的取样管 5.油罐或油槽车取样用的取样勺 从充油电气设备中取样,还应有防止污染的密封取样阀(或称放油接头)及密封可靠的医用金属三通阀和作为导油管用的透明胶管(耐油)或塑料管。 6. 二、取样方法和取样部位 1.对于变压器、油开关或其他充油电气设备,应从下部阀门处取样。取样前,油阀门需先用干净甲级棉纱或布擦净,再放油冲洗干净。对需要取样的套管,在停电检修时,从取样孔取样。 ?没有放油管或取样阀门的充油电气设备,可在停电或检修时设法取样。进口全密封无取样阀的设备,按制造厂规定取样。 2.检查油的脏污及水分时,自油箱底部取样。 注:①在取样时应严格遵守用油设备的现场安全规程。

?②基建或进口设备的油样除一部分进行试验外,另一部分尚应保存适当时间,以备考查。 ?③对有特殊要求的项目,应按试验方法要求进行取样。 三、变压器油中水分和油中溶解气体分析取样 取样方法: 1.取样的要求 ??a.油样应能代表设备本体油,应避免在油循环不够充分的死角处取样。一般应从设备底部的取样阀取样,在特殊情况下可在不同取样部位取样。 ??b.取样要求全密封,即取样连接方式可靠,不能让油中溶解水分及气体逸散,也不能混入空气(必须排净取样接头内残存的空气),操作时油中不得产生气泡。 ??c.取样应在晴天进行。取样后要求注射器芯子能自由活动,以避免形成负压空腔。 ??d.油样应避光保存。 2.取样操作 ??a.取下设备放油阀处的防尘罩,旋开螺丝6让油徐徐流出。 ??b.将放油接头4安装于放油阀上,并使放油胶管(耐油)置于放油接头的上部,排除接头内的空气,待油流出。 ??c.将导管、三通、注射器依次接好后,装于放油接头5处,按箭头方向排除放油阀门的死油,并冲洗连接导管。 ??d.旋转三通,利用油本身压力使油注入注射器,以便湿润和冲洗注射器(注射器要冲洗2~3次)。 ??e.旋转三通与设备本体隔绝,推注射器芯子使其排空。 ??f.旋转三通与大气隔绝,借设备油的自然压力使油缓缓进入注射器中。 ??g.当注射器中油样达到所需毫升数时,立即旋转三通与本体隔绝,从注射器上拔下三通,在小胶头内的空气泡被油置换之后,盖在注射器的头部,将注射器置于专用油样盒内,填好样品标签。 3.取样量: ??a.进行油中水分含量测定用的油样,可同时用于油中溶解气体分析,不必单独取样。 ??b.常规分析根据设备油量情况采取样品,以够试验用为限。

电力中断随时都会发生,因此必须进行实时监测。

电力中断随时都会发生,因此必须进行实时监测。/ 采用维萨拉产品,有助于防止电力变压器发生故障

好消息是:电力变压器故障中的50%可以通过使用适当的在线监测手段进行预防,这些手段包括实时监测变压器油中的水分含量和溶解气体。 油中水分降低了变压器油的绝缘性能,同就收入损失和品牌信誉损害两项而言,最严重的情况就是意外性电力中断。在典型的大型公共设施范围内,每年平均会有六个变压器出现但是如果您的监测系统发出错误警报或者需要定期保养,那么你就可能因为无法预测即将发生的故障而浪费时间和损失金钱。 你需要一个可以为您完成所有工作的在

系统重新进行了设计,以期最大程度地消除误报并提供可靠的长期趋势。您可以获得真实的数据,用于安全的延长您的电力变压器寿命所使用以及简化主要设备投资决策,例如:当维护或改造现有变压器时。 我们了解您在这个行业中所面临的压力。逐步老化的电力变压器,如果更换即昂贵又费时。一旦出现故障,则会付出巨大的代价。 在线监测可以解决这个问题。但是如果

测量参数 ? 氢气H 2?一氧化碳CO ?二氧化碳CO 2?甲烷CH 4?乙烷C 2H 6?乙烯C 2H 4?维萨拉Optimus DGA 监测装置为什么会如此不同? 用于变压器状态监测的维萨拉Optimus DGA OPT100监测系统是基于本公司几十年来对客户需求的关注和理解以及现有的设备研究,包括利用我们80年的安全行业和严苛环境下的传感器和检测设备生产经验,精心设计的一款巅峰之作。 可在任何地方使用的装置 不锈钢管,IP66级温控机箱,磁力泵和磁力阀门意味着其具有卓越的性能和耐用性,适用范围从北极可以延伸到热带地区。不存在替换或维修产生的耗材。 针对无障碍监测的智能功能 用于变压器的维萨拉O p t i m u s D G A

变压器油色谱异常分析及处理_图文(精)

变压器油色谱异常分析及处理 (陕西延安) 摘要:介绍了延安发电厂3#主变压器油色谱分析数据超标后的检查、试验、分析判断及处理。 关键词:变压器;色谱;分析;处理 延安发电厂3#主变压器(型号SFSb-20000/110,额定容量20MW),在8月13日的油样色普分析结果中,发现乙炔含量为6.51ppm,超过注意值5.0ppm,引 起注意,及时汇报加强监督,为了进一步判断分析,在8月17日,又取油样送检,分析结果仍然是油样不合格,且乙炔含量增长较快,由6.5 1ppm 增长到7.26 ppm,在8月18日,再次送检油样,分析结果仍然是油样不合格,且乙炔含量增长较快,增长到11.76 ppm,根据三比值计算编码为102,判断设备内部存在裸金属放电故障,及时汇报,立即退出运行安排检查。 1 设备修前测量试验情况 1.1变压器油气相色谱分析报告 采样时间气体组分 (uL/L) H 2 CO CO 2 CH4 C 2H6 C 2H4 C 3H8 C 2H2 C 3H6 C 1+C2 86.95 16281514 6 5

.13 6.32 7.95 .77 .77 1.31 .51 5.36 8 .17 13.35 22 1.87 275 5.66 5 .66 2 .22 4 2.82 7 .26 5 7.96 8 .18 60.6 22 5.75 341 6.01 1 1.57 1 .82 5 4.3 1 1.76 7 9.45 8 .20 64.82 21 7.14 359 1.95 1 4.34 2 .31 6 5.67 1 4.15 9 6.47 结论根据三比值计算 编码为102,判断设 备内部存在裸金属放 电故障,建议立即停 运检修。 以8月20日的数据为依据,利用三比值法对其故障进行判断: (1)C2H2/ C2H4=14.15/65.67=0.27,比值范围的编码为:1; (2)CH4/ H2=14.34/64.28=0.22,比值范围的编码为:0; (3)C2H4/C C2H6=65.67/2.31=28.42,比值范围的编码为:2; 通过三比值计算编码为102,初步判断其故障性质为高能量放电。 1.2在西北电研院专家的指导下,对变压器进行了修前检测、试验。绕组绝缘测试合 格;绕组直流泄漏电流测试合格;各绕组介质损耗测试合格;高压侧110kv套管介质

变压器色谱在线监测系统及其关键技术

变压器色谱在线监测系统及其关键技术 1 引言 变压器是电力系统的主要设备之一,保证变压器的安全可靠运行,对提高电力系统的供电可靠性具有十分重要的意义。变压器油中溶解气体色谱分析的在线监测方法是基于油中溶解气体分析理论,它直接在现场实现油色谱的定时在线智能化监测与故障诊断,不仅可以及时掌握变压器的运行状况,发现和跟踪存在的潜伏性故障,并且可以及时根据专家系统对运行工况自动进行诊断。 从变压器安全可靠运行的重要性与变压器油色谱在线监测装置的性价比来看,采用在线监测装置在技术和经济上有显著的优势,既提高了变电站运行的管理水平,又可为状态检修体系奠定基础。因此,变压器油中溶解气体在线监测及故障诊断装置的应用具有重要的现实意义和实用价值。本文中介绍了现有的几种在线监测方法,并以宁波某公司生产的MGA2000-6 型变压器油色谱在线监测系统为例,说明变压器色谱在线监测系统的原理及结构方式。 2 变压器在线监测方法 从检测机理上讲,现有油中气体检测产品大都采用以下三种方法。 (1)气相色谱法。 色谱气体检测原理是通过色谱柱中的固定相对不同气体组分的亲和力不同,在载气推动下,经过充分的交换,不同组分得到了分离,经分离后的气体通过检测转换成电信号,经A/D 采集后获得气体组分的色谱出峰图。根据组分峰高或面积进行浓度定量分析。大部分变压器产品的在线监测都采用气相色谱法,但这种方法具有需要消耗载气、对环境温度很敏感以及色谱柱进样周期较长的缺点。

(2)阵列式气敏传感器法。 采用由多个气敏传感器组成的阵列,由于不同传感器对不同气体的敏感度不同,而气体传感器的交叉敏感是极其复杂的非线性关系,采用神经网络结构进行反复的离线训练可以建立各气体组分浓度与传感器阵列响应的对应关系,消除交叉敏感的影响,从而不需要对混合气体进行分离,就能实现对各种气体浓度的在线监测。其主要缺点是传感器漂移的累积误差对测量结果有很大的影响;训练过程(即标定过程)复杂,一般需要几十到一百多个样本。 (3)红外光谱法。 红外光谱气体检测原理是基于气体分子吸收红外光的吸光度定律(比耳定律,Beer’s Law),吸光度与气体浓度以及光程具有线性关系。由光谱扫描获得吸光度并通过吸光度定律计算可得到气体的浓度。这种方法具有扫描速度快、测量精度高的特点,但其有价格昂贵。精密光学器件维护量大、检测所需气样较多(至少要100mL)以及对油蒸汽和湿度敏感等缺点。 (4)光声光谱法。 光声光谱检测技术是基于光声效应,光声效应是由于气体分子吸收电磁辐射(如红外线)而造成。气体吸收特定波长的红外线后温度升高,但随即以释放热能的方式退激,释放出的热能使气体产生成比例的压力波。压力波的频率与光源的截波频率一致,并可通过高灵敏微音器检测其强度,压力波的强度与气体的浓度成比例关系。由敏感元件(微音器或压电元件)检测,配合锁相放大等技术,就得到反映物质内部结构及成分含量的光声光谱。光声光谱方法的检测精度主要取决于气体分子特征吸收光谱的选择、窄带滤光片的性能和电容型驻极微音器的灵敏度;分析所需样品量小(仅需2mL~3mL),不需载气。其主要缺

关于变压器油处理的方法探讨

关于变压器油处理的方法探讨 发表时间:2016-12-14T14:37:07.157Z 来源:《电力设备》2016年第20期作者:杨立新[导读] 变压器安装是变电站安装工艺中最核心的一个部分,变压器油的状况又是变压器安装中最重要的一项指标。 (中设工程机械进出口有限责任公司) 摘要:变压器油是流动的液体,可充满油箱内各部件之间的气隙,排除空气,从而防止各部件受潮而引起绝缘强度的降低。变压器本身绝缘强度比空气大,所以油箱内充满油后,可提高变压器的绝缘强度。变压器油还能使木质及纸绝缘保持原有的物理和化学性质,并对金属起到防腐的作用,从而使变压器得绝缘保持良好的状态。此外,变压器油在运行中还可以吸收绕组和铁芯产生的热量,起到冷却的作用。所以变压器油的作用是绝缘和冷却。变压器油需要按国家质量标准检验合格后方可使用,如果达不到国家质量标准要求,需进行处理。介绍了变压器油从开始过滤到抽真空注入整个阶段过程控制的一些流程及工艺,阐述了通过使用这些方法来提高施工进度,有效地保证施工质量,减轻劳动强度。 关键词:变压器油;过程控制;过滤 变压器安装是变电站安装工艺中最核心的一个部分,变压器油的状况又是变压器安装中最重要的一项指标。随着电力技术的发展,电压等级越高变压器用油量越大,油的试验项目要求越多,验收标准也越来越高(见表1),在工期紧,工作量大、滤油设备有限的变压器油处理中,极易造成返工。因此,探讨变压器油的处理技术成为一项重要的课题。本文主要给出了普通变压器、直流变压器以及特高压变压器油从开始过滤、注入以及抽真空注入整个阶段的过程控制,以确保变压器用油各项指标的合格性。 1变压器油初始过滤阶段 1.1变压器滤油机和管道材料的选用及清洁 在500kV及以上的变压器油处理中使用的滤油机参数为:油处理能力为12000L/h,过滤器的粗滤芯为0.25mm,精过滤芯为1μm,体积为1869L,4组加热器功率为180kW。滤油机联管使用的为钢丝网骨架保温可伸缩性复合管。在使用滤油设备前,先对滤油机、联管整个系统进行30min以上抽真空除湿处理,再进行30min以上1t左右的热油循环过滤处理,取样合格后(含水量、电气强度)才能进行正常过滤处理。 1.2变压器油过滤时并联油路的设计 按单台变压器(换流变)注入100t油考虑,需准备8~9个15~20t油罐,到达现场的油罐一般布置在变压器附近,呈两行均匀排列,油罐的出口均朝向内侧布置在一条直线上,每个油罐的出口处安装控制阀对油的流入、流出进行单体控制,控制阀出口接一个T型三通接口,所有油罐的接口通过油管连接在一起,留一个空油罐作为滤油时油的转换使用。这样实现了油在过滤时,可以按需要进行任意油罐内油的过滤,避免了频繁拆除管道的繁琐。 1.3变压器油的防潮控制 在南方的天气湿度很大,已滤好油罐中油的含水量搁置一段时间后往往不能满足要求,处理方法为:在单罐油过滤时,油罐上的呼吸器保持通畅,当某个油罐过滤结束,油温降至常温后,可立即将油罐顶部的呼吸器连同顶盖一起用多层塑料布包紧,以防止空气中的水分渗入罐中。 1.4变压器油颗粒度的控制 一般来讲变压器油颗粒度是最难以控制的,在油样的其他值满足要求,仅颗粒度值不满足要求的前提下,可以在不投入滤油机的加热装置的情况下,进行反复过滤。防止油加热时间过长,造成油的粘度增加,而降低了油的品质。 特高压变压器油对颗粒度的控制,在使用普通滤油机过滤后还使用了精滤器进行再过滤,选用的精滤器参数为:油处理能力为12m3/h,运行温度为40~75℃,设计压力为0.4MPa,精滤器的系统分4级过滤,后3级过滤采用绝对过滤精度的滤材进行过滤。 1.5变压器油取样的控制 变压器油取样也是非常重要的一个环节,往往因为取样的方法不适宜,而造成油样的指标不合格。取油样一般适宜在晴朗天气,上午11:00至下午14:00之间进行。先放掉最初的油约1000mL进行放油油嘴的清洗,再取油进行取样瓶的清洗。取样时宜搭建简易的塑料棚进行防护,取样的人员2人为宜,周围10m内不宜有人走动,并禁止进行任何其他作业,以防止周围的扬尘影响颗粒度数值的控制。取样时操作人员不仅要将手部清洗干净,衣袖扎紧,在取样时还宜减缓呼吸。取变压器本体油样可用大瓶、小瓶、针管分别进行取样,大瓶的油样可用于简化分析取样,小瓶可用于颗粒度分析取样,针管可用于含气量、微水、色谱的分析取样。 2变压器抽真空注油阶段 2.1变压器油注入时排气阀和真空压力计的设计 a)排气阀。用于排出变压器油注入前管道内的空气。具体做法为:关闭注油阀,打开排气阀,打开滤油机,将油罐中的油缓缓注入连通变压器的油管内,在变压器油快到油管的底部入口时,将进油速度减缓,油面产生的许多气泡夹杂着油沫通过放气阀排出管道外部。调整从滤油机出口到变压器入口之间的油管,确保油管内的空气均被放气阀排出管外。

油中气体分析技术综述

变压器油色谱在线监测 目前110kV及以上等级的大型电力变压器及电抗器主要采用油纸绝缘结构。绝缘油同时承担着绝缘介质和冷却媒质两方面的作用。在热和电的作用下,绝缘油会逐渐老化、分解而产生各种低分子烃、氢气以及有机酸和石蜡等。而以纤维素为基础的固体绝缘材料(纸和纸板)发生劣化分解时,除释放出水、醛类、酮类和有机酸外,还会产生相当数量的一氧化碳和二氧化碳。 变压器油中溶解的各种气体分析的相对数量形成速度主要取决于故障能量的释放形式以及故障的严重程度,所以根据色谱分析结果可以进一步判断设备内部是否存在异常,推断故障类型及故障能量等。对变压器油中溶解气体的分析是变压器故障诊断采用的基本方法,通过对其的分析能够发现变压器的过热、局部放电等潜伏性故障。 气相色谱分析具有选择性好、分离性高、分离时间快(几分钟到几十分钟)、灵敏度高和适用范围广等优点。但常规的色谱分析是一套庞大、精密而复杂的检测装置。整个分析时间长,需熟练的试验人员,对环境的要求高,整套设备体积较大,只适用于在试验室内进行检测。且油样从现场采集后运送到试验室进行分析,不仅耗时而且采样、运输、保存过程中还会引起气体组份的变化,更不能做到实时在线监测。为了实现在线监测油中气体分析,需要简化色谱分析装置,使之适用于在线监测和现场检测[2]。 变压器油中溶解气体在线监测原理如图1-1-1所示[3]。 图1-1-1. 变压器油中溶解气体在线监测系统结构框图监测过程可分为以下4部分: a.进行油气分离,从油中分离出需要检测的混合气体; b.利用气体分离技术把几种气体分离,再用气体检测器把气体浓度信号转

换成电压或电流信号; c.数据采集系统进行A/D转换,将电压或电流信号转换成数字信号,并上 传到工作站; d.工作站软件根据各种气体的含量对变压器运行状态进行评估,预测变压 器潜伏性故障。 在变压器溶解多种气体检测中,油中汲取气体是一个重要环节。英国中央发电局(CEGB)认为产生测量误差的原因多半是在脱气阶段。实现变压器油中多种气体在线监测,油气分离模块必须能在线、自动分离出油中溶解多种(至少六种以上)气体,并且不对变压器油箱中的油形成污染,另外油气平衡时间相对较短,一般应小于24小时,对于一些变压器运行过程中出现“紧急情况”需在线监测系统来自动看护,如内部故障发展速度较为迅速,还需要在线监测系统油气分离时间达到2小时,甚至更短。另外,油气分离的关键元件使用寿命应能满足在线监测产品正常使用,一般情况下应大于六年。 1.1.1几种常用的油气分离方法 目前油气分离技术按其取气方法可分为高分子聚合物分离方法、真空泵法、油中吹气法等几大类,其中平板分离膜、毛细管、血液透析装置、中空纤维等都属于高分子聚合物分离方法的不同运用形式。美国Sevenron公司就采用医学上的血液透析装置,研制出TrueGas变压器油中溶解气体在线监测系统。该方法透气快,效果好,但此种装置价格昂贵,在我国使用较少。目前应用比较多的几种在线油气分离方法主要有平板高分子透气膜法、真空脱气法、载气脱气法、动态顶空平衡法、动态顶空脱气法和中空纤维脱气法几种。 1.平板高分子透气膜法 这种方法的原理是利用某些合成材料薄膜(如聚酰亚胺、聚四氟乙烯、氟硅橡胶等)的透气性,让油中所溶解的气体经薄膜透析到气室里。当渗透时间相当长后,透析到气室的气体浓度c将达到稳定,它与油中溶解气体的浓度v 之间的关系如图1-1-3所示。这样,测出气室中的各气体浓度就可以换算出油中气体的含量。

变压器油的处理和再生

变压器油的处理和再生 1 变压器油的过滤 1.1 当油化验酸值符合标准,而其它指标有部分不符合标准时,应进行滤油处理,使油达到标准规定的要求方为合格。滤油的方法可根据油的情况,采用压力式滤油机或油处理设备进行。过滤时主要是除支油中的水份和杂质。当处理油量大或者要除去油中大量水份时,采用油处理机进行曲,一般情况下采用压力式滤油机进行。 1.2 滤油时按滤油机的操作规程进行。用压力滤油机时,油温最好在40℃-60℃,用油处理机时,油温最好在60℃-80℃。滤油时,对油应进行2-3个循环,不满足要求时,还应继续进行。滤油时滤油纸必须先干燥,新油纸在100℃要干燥8小时以上,旧油纸在85℃-95℃范围内必须干燥24小时以上。油纸要求是中性的。在空气相对湿度超过70%时,以及雨雪天气不能进行滤油工作。用压力式滤油机滤油时,正常时压力表指示应在480Kpa以下,若超过490Kpa时,说明油纸已饱和或堵塞,要停机检查,油纸脏时,应更换。 1.3 滤脏油时,要一天清洗一次滤油机,一般情况下每隔三天清洗一次滤油机。滤油时,应在滤油处至少放置两只灭火器,工作人员应会使用灭火器,滤油机上应写“禁止烟火”字样或挂上“严禁吸烟”的标示牌。所有擦洗用的棉纱应妥善保管。 1.4 油的过滤起止时间应记入档案。 2变压器油的再生 当油的酸值不合要求时,采用滤油机过滤是不能解决问题的,必

须经过再生还原,使油恢复原有性能。将油里所含的酸除去,一般是利用表面吸附力强的吸附剂或利用酸—白土洁进行处理。利用吸附剂除酸有接触法和过滤法两种。过滤法是让油通过吸附剂的过滤器;接触法是把油加热和吸附剂的细粉仔细均匀地搅拌,然后澄清并过滤。

变压器油中溶解气在线监测综述

变压器油中溶解气体在线监测综述 (长沙理工大学化学与生物工程学院应用化学专业) 摘要变压器油中溶解气体的分析是获取变压器运行状态信息的重要手段之一。本文综述了国内外变压器油中溶解气体在线监测技术的现状,提出了目前存在的问题及今后的发展趋势。 关键词电力变压器变压器油溶解气体分析在线监测发展趋势 电力变压器在电力系统中属于最重要和最昂贵的设备之列,同时也是导致电力系统事故最多的设备之一。其运行状态的好坏直接关系着电力系统的安全,稳定运行,因而如何及时,准确地检测出电力变压器的早期潜伏性故障就显得十分重要。 为确保变压器的安全运行,许多国家研究了多种技术来监测和诊断变压器故障。其中变压器油中溶解气离线色谱分析法因其能够在变压器运行过程中进行,不受外界电场和磁场的影响,而且可以发现设备中一些用局部放电法所不能发现的缺陷(如局部性过热等),故得到了广泛认可。 但近几年,因离线监测试验环节较多,操作手续较繁,检测周期较长,而且难以发现类似匝间绝缘缺陷等故障。因而国内外都已致力于在线色谱监测装置的研制,以实现连续监测,及时发现故障。下面从在线监测方法类别及其典型的监测仪器作介绍。 一、研究现状 1、在线监测技术方法类别 在线监测技术主要根据脱气原理不同,检测的气体不同可分为两类,单组份气体在线检测技术和多组分气体在线检测技术。 1.1单组份气体在线检测技术 最主要的特征是在线监测变压器油中如:H2、C2H2、微水等某一特征气体组分含量或以它为主的混合气体浓度,不进行气体组分分离而直接测量气体体积分数。又可细分为: (1)测量可燃性气体总量 可燃性气体总量指H2、CO和各种气态烃类含量的总和。这类装置以日本三菱电力公司TCG检测装置为代表,只给出可燃性气体的总量,不能给出某一组分的单独含量。 大连地区220kV及以上变压器安装的加拿大HYDRAN201i早期故障在线装置,监测4种主要故障气体(H2、CO、C2H4、C2H2)的总和,当气体数值偏离基线值,设备提示不同程度的报警,从而采取适当维护措施,这一点正符合状态维修的原则。 (2)测量单一H2组分 当设备内部存在局部过热或局部放电时,所产生的分解气体大多都含有氢气,

油浸式变压器运行中的检查内容项目

油浸式变压器运行中的检查内容项目 变压器的运行情况,可通过仪表,保护装置及各种指示信号等设备来反映,对仪表不能反映的问题,需值班人员去观察、监听,及时发现,如运行环境的变化、变压器声音的异常等等。经常有人值班的,每天至少检查一次,每星期进行一次夜间巡视检查。无固定值班人员的至少每两个月检查一次。在有特殊情况或气温急变时,要增加检查次数或进行即时检查。 1.监视仪表 变压器控制盘的仪表,如电流表、电压表、功率表等应1~2h抄表一次,画出日负荷曲线。在过负载下运行时,应每0.5h抄表一次,表计不在控制室时,每班至少记录两次。 2.监视变压器电源电压 电源电压的变化范围应在士5%额定电压以内。如电压长期过高或过低,应通过调整变压器的分接开关,使二次电压趋于正常。 3.测量三相电流是否平衡 对于Y、Yn0接线的变压器,线电流不应超过低压侧额定电流的25%,超过时应调节每相负荷,尽量使各相负荷趋于平衡。 4.变压器的允许温度和温升 (1)允许温度 变压器在运行时,要产生铜损和铁损,使线圈和铁芯发热。变压器的允许温度是由变压器所使用绝缘材料的耐热强度决定的。油浸式电力变压器的绝缘属于A级,绝缘是浸渍处理过的有机材料,如纸、木

材和棉纱等,其允许温度是105℃。变压器温度最高的部件是线圈,其次是铁芯,变压器油温最低。线圈匝间的绝缘是电缆纸,而能测量的是线圈的平均温度,故运行时线圈的温度应≤95℃。 电力变压器的运行温度直接影响到变压器的输出容量和使用寿命。温度长时间超过允许值,则变压器绝缘容易损坏,使用寿命降低。变压器的使用年限的减少一般可按“八度规则”计算,即温度升高8℃,使用年限减少1/2。试验表明:如果变压器绕组最热点的温度一直维持在95℃,则变压器可连续运行20年。若绕组温度升高到105℃,则使用寿命降低到7.5年,若绕组温度升高到120℃,使用寿命降低到2.3年,可见变压器使用寿命年限主要决定于绕组的运行温度。 变压器绕组温度与负载大小及环境温度有关。变压器温度与环境温度的差值叫变压器的温升。对A级绝缘的变压器,当环境温度为40℃(环境最高温度)时,国家标准规定绕组的温升为65℃,上层油温的允许温升为45℃,只要上层油温及温升不超过规定值,就能保证变压器在规定的使用年限内安全运行。 允许温度=允许温升+40℃ 当环境温度>40℃,散热困难,不允许变压器满负荷运行。当环境温度<40℃时,尽管有利散热,但线圈的散热能力受结构参数限制,无法提高,故不允许超负荷运行。如当环境温度为零度以下时,让变压器过负荷运行,而上层油温维持在90℃以下,未超过允许值95℃,但由于线圈散热能力无法提高,结果线圈温度升高,发热,超过了允许值。

变压器油务处理施工方案

变压器油务处理施工方案 1概述 1.1 油务处理是220KV XX变变压器安装工程中一项十分关键和重要的作业,其工程量大,时间短,要求油质高,并且在安装变压器前要处理好。为保证滤油工作的顺利进行,首先要切实做好安全施工措施。由于变压器绝缘油是易燃品,尤其要注意防火工作,施工人员一定要提高警惕,思想上重视,克服麻痹大意思想,落实好防火措施和其它安全措施,以确保油务处理工作的安全开展。 1.2 主要编制依据 GBJ 148-90 《电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范》 GB2536 《电气装置安装工程电气设备交接试验标准》(GB50150-2006),《变压器油》 G/CSG 10017.2 – 2007 《100kV~500kV送变电工程质量检验及评定标准第2部分:变电电气安装工程》 1.3 现场工地必须加强对油务处理的组织领导,实行全面和全过程的严格质量管理,贯彻执行ISO-9002的质量体系程序,为此施工现场成立油务处理组,组织分工应明确,实行岗位责任制,确保滤油系统设备工作正常,保证绝缘油的处理工作优质高效一次完成。油务处理工作如果厂家有明确的技术要求,则按厂家要求执行。 组长:1人技术负责人:1人 油务员:3人油样试验员:2人 安全员:1人 2总滤油量 220KV XX变电站本期安装2组SFSZ11-H-180000/220TH型主变压器,主变选用常州西电变压器有限公司产品,油重约178吨,。 3.绝缘油标准 本站绝缘油处理合格标准为:

a.凝点:-25℃; b.闪点(闭口)不低于;140℃; c.击穿电压不少于:60KV(2.5mm); d.介质损耗因数(90℃)不大于:0.4%; e.水分:≤10mg/L; f.含气量:≤0.2%; g.表面张力不少于:40Nm/m(25℃) 色谱分析和简化试验项目应符合国标要求。 4.油务工作流程

油浸式主变压器油位异常原因及对策探讨

油浸式主变压器油位异常原因及对策探讨 发表时间:2017-12-30T18:43:46.727Z 来源:《电力设备》2017年第24期作者:尹明明 [导读] 摘要:变压器油位是反映油浸式变压器运行状况重要判据之一,结合现场工作中遇到的实际情况,对主变压器安装验收、运行维护、设计选型等方面产生油位异常原因进行了探讨,分析总结出主变压器油位异常应对策略并提出相关工作要求。 (国网江苏省电力公司检修分公司江苏淮安 223002) 摘要:变压器油位是反映油浸式变压器运行状况重要判据之一,结合现场工作中遇到的实际情况,对主变压器安装验收、运行维护、设计选型等方面产生油位异常原因进行了探讨,分析总结出主变压器油位异常应对策略并提出相关工作要求。 关键词:油浸式变压器;油位异常;原因;对策 0 引言 油浸式电力变压器铁芯和绕组浸在变压器绝缘油中,变压器油是变压器的重要组成部分,起着绝缘和冷却的作用,有载分接开关内的电弧靠变压器油灭弧,变压器油还起着灭弧介质的作用。变压器油温是随着负荷和环境温度的变化而变化,油温的变化带来的是变压器油体积的变化,变压器储油柜担负着油体积调节作用,应能满足在最高环境温度下,满负载运行时油不溢出;在最低环境温度变压器停止运行时储油柜内有一定油量。当变压器无较严重渗漏油情况时,储油柜油位的变化具有一定内在规律,其变化情况,直接反映变压器的运行情况。 1 几起油位异常案例及处理 1.1主变有载油位告警信号频发 城南变 110kV 2号主变间歇性发出有载油位或高或低信号。现场检查发现有载油位指示在正常,同时油位表有明显进水的痕迹。经停电检查,油位计外壳密封良好,但二次引线护套在高于表计的位置局部老化开裂,水份从开裂部位进入,顺着护套流入表计,导致表计进水受潮,告警信号接点被导通,误发告警信号。现场对该表计进行了更换,并让油位计二次接线从油位计的下方通过,避免由于二次线护套密封不好所导致的表计进水隐患。 1.2主变有载独立储油柜油位难以调节 马坝变 110kV 5号主变为SSZ10-M-31500/110有载调压变压器。在实际运行中,有载储油柜冬天油位低到需要补油,夏天油位高到需要放油。经过实际检测,油位计指示准确。通过对该储油柜现场测量计算发现储油柜容积设计不够。后来在该设备的增容换型时,注意加强了对储油柜容积的核算,避免此类缺陷的发生。 1.3油循环自冷变压器80%负荷达到最大油位 学府变1号主变为油循环自冷变压器,投运前油位按照温度曲线调整在合适位置。运行中发现带有功负荷约3万千瓦时该主变本体油位计指示达最大值。经检查分析,片散下部离地面只有40cm,安装位置太低造成散热效果差引发油位过高。后联系厂家对其进行技术改造,抬高散热器。散热器水平中心线相对于油箱水平中心线的高度差值越大,由温差引起的油流循环效果就越好;而油流循环效果越好,散热器进出口温度差值就越小[1]。这种设计的综合效果是,在散出同样热量的情况下可以降低变压器热点温升或减小有效散热表面,同一散热器安装的高度提高,其散热效率自然可以得到提高。 2 油位异常原因分析及其对策 主变压器油位指示异常的主要原因有:主变渗漏油带来的油位降低;安装检修时本体注油偏高或偏低,温度变化后引起油位异常;主变压器和调压开关油路互相渗透;油路不通或储油柜呼吸通道堵塞;油位指示器异常,出现假油位;产品设计制造不合理带来的油位异常等等[2]。结合变压器日常运行检修工作,具体分析总结变压器油位异常的原因及其防范措施。 2.1主变的渗漏及主变本体和调压开关油路互相渗透导致的油位异常 主变渗漏油原因主要来自密封材料和结构、焊接、外购组部件、检修工艺和装配程序五个方面,对于渗油缺陷只要发现的早,及时采取控制措施,大都可以将缺陷消除在萌芽状态,根据渗漏部位不同,可以采取焊、堵、换、改等多种处理措施。 2.2储油柜油位调节不当 在主变压器安装、检修中,若是按照环境温度调整油位,而不是按照油温调整油位,那么在运行之后就容易产生油位异常问题。例如主变压力释放阀动作之后,已经有部分变压器油喷出,压力已经得到释放,油温高达85℃,此时就不能再按照环境温度去放油。因此注油或调整油位时,调整油位依据是对照变压器铭牌上油温油位曲线调整,并做好记录,以便运行时进一步观察油温油位变化情况。 2.3片散变形或阀门未充分完全打开 目前变压器散热多采用片式散热器,在吊装过程中保护不好,碰撞变形或者安装时采用硬力拉装,损伤散热器,造成管路不畅或渗油。另外,若部分片散阀门未打开或者阀门本身存在问题,打开不到位,这都将影响到变压器冷却效果,造成温度及油位不同程度的增高。散热片安装、检修时,应对片散做好保护,以免受到硬力碰撞变形;主变投入运行时,检查散热器阀门开启情况,通过借助手触摸感知或红外测温等方式比较运行温度与其他散热器有无明显温差,由此判定阀门打开程度。 2.4油位计指示错误,即假油位 造成假油位原因,一是储油柜排气不彻底,造成油、气混合,由于液体、气体膨胀系数不一样造成油位计指示失准;二是油位计故障,比如指针或连杆的卡涩、脱落,浮球损坏,连杆弯曲变形等造成表计不能准确指示油位,还有就是指示正确但是误发告警信号;三是呼吸系统堵塞;四是注油方法不当,造成油压迫胶囊后堵住下部油口,指示油位不是真实油位;五是胶囊破损,导致胶囊内进油,势必造成油位指示失准,还有胶囊内进油(水)后,胶囊内液体对浮球产生压力,两种情况都导致油位指示比实际变小,产生假油位。 因此油位计在安装过程中应进行检查校验。变压器安装或维护时,对于储油柜要彻底排气。变压器运行过程中可以采用红外测温等手段,监测变压器储油柜实际油位,与油位计指示比较判断。还可用透明橡皮管进行校核,具体方法是利用连通器原理将主变储油柜油位外引至外设透明橡皮管,通过观察比较判断对油位计指示校核。同时也要关注油位计的密封问题,对于表计进水的现象要加以关注,及时处理。 2.5变压器设计制造方面造成油位异常 储油柜设计过小,设计余量不足会导致实际运行过程中冬天油位过低,夏天油位过高。储油柜容积设计应满足:储油柜应在最低环境

变压器油检验规范与流程

变压器油检验规范与流程: 1、取样工具: 1.1、取样瓶: 500ml-1000ml磨口具塞玻璃瓶两只,一瓶用于冲洗设备,一瓶用于试验,并贴标签。 1.1.1、适用范围: 适用于常规分析,对于我公司来说包括:介损测试和耐压试验。 1.1.2、取样瓶的准备: 取样瓶先用洗涤剂清洗,再用自来水冲洗,最后用蒸馏水冲洗干净,烘干、冷却后盖紧瓶塞。 1.2、注射器: 使用100ml的全玻璃注射器(最好采用铜头的),注射器应装在专用的油样盒内,该盒应避光、防震、防潮。注射器头部用小胶皮头密封。 1.2.1、适用范围: 试用于油中水分含量的测定和油中溶解气体含量的测定。 1.2.2、注射器的准备 取样注射器使用前,按顺序使用有机溶剂、自来水、蒸馏水洗净,在105℃温度下充分干燥,干燥后,立即用小胶皮头盖住头部待用。 2、取样方法和取样部位: 2.1、常规分析取样: 2.1.1、油罐或槽车中取样:

2.1.1.1、油样应从污染最严重的底部取出,必要时可抽查上部油样。 2.1.1.2、从油罐或槽车中取样前应先排去取样工具内存油,然后取样。 2.1.2、变压器中取样: 对于变压器油箱应从下部油样活门处取样,取样前油阀门应先用干净甲级棉纱或布擦干净,再放油冲洗干净。 2.2、变压器油中水分和油中溶解气体分析取样: 2.2.1、取样方法: 2.2.1.1、取样的要求: a、油样应能代表设备本体油,应避免在油循环不够充分的死角处取样。一般应从设备底部的取样阀取样,在特殊情况下可在不同取样部位取样。 b、取样要求全密封,即取样连接方式可靠,不能让油中溶解水分及气体逸散,也不能混入空气(必须排净取样接头内残存的空气),操作时不能使油中产生气泡。 c、取样应在晴天进行。取样后要求注射器芯子能自由活动,使内外压力平衡。 d、油样应避光保存。 2.2.1.2、取样操作: a、取下设备放油阀处的防尘罩,旋开密封螺栓,让油徐徐流出。 b、将准备好的注射器芯子拔掉,倒置倾斜30°~ 45°接满油,用手指堵住针头处,插上芯子,排净空气,用小橡皮头堵上针孔 2.2.2、取样量: 2.2.2.1、进行油中水分含量测定用的油样,可同时用于油中气体分析,不必单独取样。 2.2.2.2、常归分析根据设备油量情况采取样品,以够试用为限。 2.2.2.3、做溶解气体分析时,取样量为60~100ml。

废变压器油处理

关于印发废变压器油处理的通知 司属各单位,多经企业: 为严格执行国家环境保护制度,进一步做好环境保护工作,完善三废管理制度,针对我司实际情况,对生产过程中形成的废变压器油作如下规定: 一、废油的界定: 废变压器油主要是指油中化学成分已经发生变化,比如油中烃类无素的改变、抗氧化能力,绝缘性能下降等;油的物理性能已达不到标准,比如油的闪点、凝固点等已达不到要求。同时,对一些变压器油因为特征气体乙炔等的含量过多,已无利用或再生价值的一般也划作废油。 二、废变压器油的来源: 1.变压器内的油运行已久,油的性能或指标已永久性达不到标准; 2.10kV少油开关动作(跳闸)满一定次数之后替换下来的油; 3.110kV及以上少油开关、35kV多油开关中的变压器油运行已久且历次大修中已经再生(过滤)过,性能和指标已永久性不到标准; 4.因爆炸、烧毁、击穿、放电等原因设备中更换或淘汰的油;

5.变压器有载开关内更换下来的油; 6.受其他油类污染的变压器油; 7.油化验室化验后的剩油; 8.用于冲洗电焊过的变压器附件等设备的变压器油; 9.变压器、互感器拆旧后无再生能力的变压器油; 三、废油的处理措施: 1.废旧变压器油的存储 (1)变电所内一般都设有变压器事故油池,变压器故障喷落在变压器油池内的油通过地下油道流入事故油 池内; (2)变电所内其他注油设备检修时回收的废油一般利用容器罐装后直接存放在现有的废变压器油池内; (3)在变电所或者生产车间检修,对带电油污的擦布需经过统一收集后存放在指定地点。 2.废旧变压器油的处理措施 (4)通过器材公司出售给需用废油的单位; (5)罐装后返回变压器生产厂家。 四、废油库(池)的定期检修、维护措施 1.变电所内的事故油池,当主变发生故障或渗漏油在事故油池达到一定容积时,罐装回工区存储。每年进行一次渗漏检查(抽空油后)。 2.变电工区的废变压器油池,当油达到一定容积时,若

相关文档
最新文档