植物基因组学

植物基因组学
植物基因组学

1.基因组的结构和变异

2.分子标记连锁图谱构建基因

3.QTL定位的原理和方法

4.QTL精细定位

5.基因和QTL的可隆

5.1插入突变方法

5.2图位克隆的方法(含比较图位克隆)

5.3候选基因法

6.资源评估和利用

7.分子标记辅助选择(含分子设计育种)

8.转基因

8.1转基因体系和实证研究

8.2转基因的生态学安全研究

9.比较基因组

9.1标记水平比较基因组

9.2序列水平的比较研究

9.3性状水平的比较研究

9.4功能比较研究

10.***优势研究

10.1遗传学解释

10.2分子生物学解释

11.分子进化(主要是玉米进化)

12.基于连锁不平衡的关联分析

12.1实证研究

12.2方法学研究

13.基因组研究中的一些新技术运用

13.1DNA芯片技术

13.2 DNA shuffling

13.3Gene Trap

13.4 Gene therapy in plants

13.5 TILLING 技术

1.植物基因组的结构和变异

在越来越多的植物基因组被测完后,该研究的重要性逐渐显现,该方面的文章可以说是汗牛充栋.在玉米方面该领域的大牛是Buckler, ES; Messing, J, Dooner HK, Doebley J ; Gaut, BS.

1. Buckler, E. S., Gaut, B. S. and McMullen, M. D. (2006) Molecular and functional diversity of maize. Curr. Opin. Plant Biol. 9, 172-176

这是关于玉米基因组结构的REVIEW文章,先了解大概,在细读研究文章.其任何2个玉米自交系之间的遗传变异大于人和大猩猩之间的差异的经典论断充分说明玉米变异的广泛性.最近因为人类基因组研究的进展而似乎可以改写.

2.Messing J, Dooner HK. Organization and variability of the maize genome. Curr Opin Plant Biol.

2006 Apr;9(2):157-63

两位大牛的联合REVIEW, 值得一读.

3.Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, et al. A Draft Sequence of the Rice Genome Oryza sativa L. ssp. japonica. Science, 2002, 296: 92-100

大家或许都知道这篇文章,但我相信看完的不多,尽管全基因组测序的文章许多,强烈建议大家读这篇,讨论写的太好了.同期中国测序的文章就相形见拙许多,当然之后水稻精细图谱的公布,这篇文章也可以读读.

4. International Rice Genome Sequencing Project. The map-based sequence genome. nature, 2005, 436: 793-800

5.Fu H H, Dooner H K. Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA, 2002, 99: 9573-9578

改文章给我的启示许多,基因的存在和缺失也是等位基因的一种形式就是其一,尽管后来该文章的结论不断被修正.

6.Song R, Messing J: Gene expression of a gene family in maize based on noncolinear haplotypes. Proc Natl Acad Sci USA 2003, 100:9055-9060.

宋任涛代表作之一, 与Fu的文章有异曲同工之妙,给***优势提供了新的解释.

7.Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A: Evolution of DNA sequence non-homologies among maize inbreds. Plant Cell 2005, 17:343-360.

5,6工作的基础上提供了更多的数据

8. Lai J, Li Y, Messing J, Dooner HK: Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 2005, 102:9068-9073.

赖锦盛的代表工作之一,为玉米基因组的扩张提供了全面的解释.

9. Lai J, Ma J, Swigonova Z, Ramakrishna W, Linton E, Llaca V, Tanyolac B, Park YJ, Jeong OY, Bennetzen JL et al.: Gene loss and movement in the maize genome. Genome Res 2004, 14:1924-1931

部分阐述了玉米基因组的结构的成因,更多的是插入而不是缺失.

10. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A:Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize.Nat Genet 2005, 37:997-1002

与8讲的同一个故事.

11.Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS: Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 2001, 8:9161-9166

该数据表明,在玉米基因组大约只保留了其祖先大刍草60%的遗传变异.

12.Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF et al.: Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 2004, 101:14349-14354

玉米有59000个基因的预测就出自此文.

13. Bruggmann R, Bharti AK, Gundlach H, Lai J, Young S, Pontaroli AC, Wei F, Haberer G, Fuks G, Du C, Raymond C, Estep MC, Liu R, Bennetzen JL, Chan AP, Rabinowicz PD, Quackenbush J, Barbazuk WB, Wing RA, Birren B, Nusbaum C, Rounsley S, Mayer KF, Messing J. Uneven chromosome contraction and expansion in the maize genome. Genome Res. 2006 Oct;16(10):1241-51

14.Emrich SJ, Li L, Wen TJ, Yandeau-Nelson MD, Fu Y, Guo L, Chou HH, Aluru S, Ashlock DA, Schnable PS. Nearly Identical Paralogs: Implications for Maize (Zea mays L.) Genome Evolution.Genetics. 2007 Jan;175(1):429-39

Schnable 提出的NIP概念给我们以后的关联分析和其他一系列研究提出了新的挑战,尽管在玉米基因组的频率只有1%.

15. Fu Y, Emrich SJ, Guo L, Wen TJ, Ashlock DA, Aluru S, Schnable PS.

Quality assessment of maize assembled genomic islands (MAGIs) and large-scale experimental verification of predicted genes. Proc Natl Acad Sci U S A. 2005 23;102(34):12282-7.

看看什么是MAGI,也是Schnable的贡献,其超大的课题组(在美国而言)和永不疲倦的精力让他文章如麻,而且牛文不断。

2.分子标记连锁图谱构建和基因定位

该领域的理论发展最大贡献者当然属于Lincoln,而玉米连锁图的构建, 全世界多个实验室都有重要贡献,比如Coe EH, 法国的Falque, 和访问过农大的Schnable.这尽管是一项非常基础的工作,但非常重要.从下面文章的清单不难看出,只要做的好有特色,同样能发好文章.其它各个重要的动植物都走过类似的历程,在植物里这一领域的研究,玉米应该还是比较靠前的,因为它不但重要,而且也算得上模式植物.

16. Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0. Cambridge: MA: Whitehead institute Technical Report, 1992

尽管新的方法不断涌现,但MAPMAKER 目前仍然是连锁图构建和基因定位的经典方法.

17.Helentjaris T, Slocum M, Wright S, Schaefer A, Niehhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet, 1986, 72: 761–769

玉米第一张分子标记连锁图

18.Burr, B., Burr, F., Thompson, K.H., Albersten, M. and Stuber, C. W. (1988) Gene mapping with recombinant inbreds in maize. Genetics 118, 519–526

玉米第一张RIL图谱

19.Beavis, W. D., and Grant, D. (1991) A linkage map based on information from 4 F2 populations of Maize (Zea mays L.). Theor. Appl. Genet. 82, 636–644

玉米的F2图谱

20.Gardiner, J. M., Coe, E. H., Melia-Hancock, S., Hoisington, D. A. and Chao, S. (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134, 917–930.

玉米第一张IF2图谱(注意不同于我们提到的IF2群体)

21.Gardiner, J., Schroeder, S., Polacco, M. L., Sanchez-Villeda, H., Fang, Z., Morgante, M., Landewe, T., Fengler, K., Useche, F., Hanafey, M., Tingey, S., Chou, H., Wing, R., Soderlund, C. and Coe Jr., E.

H. (2004) Anchoring 93 971 maize expressed sequence tagged unigenes to the bacterial artificial chromosome contig map by two-dimensional overgo hybridization. Plant Physiol. 134, 1317-1326.

遗传图谱和物理图谱的整合

22.Davis, G. L., McMullen, M. D., Baysdorfer, C., Musket, T., Grant, D., Staebell, M., Xu, G., Polacco, M., Koster, L., Melia-Hancock, S., Houchins, K., Chao, S., and Coe Jr, E. H. (1999). A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152, 1137–1172

23.Natalya S, McMullen M D, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register J C, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH. Development and mapping of SSR markers for maize. Plant Mol Bio, 2002, 48: 463-481

几张玉米的高密度连锁图

24.Falque, M., Décousset, L., Dervins, D., Jacob, A. M., Joets, J., Martinant, J. P., Raffoux, X., Ribière, N., Ridel, C., Samson, D., Charcosset, A. and Murigneux, A. (2005) Linkage Mapping of 1454 New Maize Candidate Gene Loci. Genetics 170, 1957-1966

玉米的大规模基因定位及连锁图谱

25.Fu Y, Wen TJ, Ronin YI, Chen HD, Guo L, Mester DI, Yang Y, Lee M, Korol AB, Ashlock DA, Schnable PS. Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize.Genetics. 2006 Nov;174(3):1671-83.

玉米的大规模的IDP图谱

而目前各类标记(IDP, Gene, cDNA, SSR, RFLP, SNP等)都被整合到IBM图谱,并有机与玉米物理图谱进行了整合,详细信息参考MAIZEGDB.

3.QTL定位的原理和应用

该领域让我们记住一个名字,那就是毕业于华中农业大学,现供职于北卡州立大学的曾昭邦教授.他1994年发表在Genetics的文章,已经是QTL定位领域不可超越的传奇,其正面引用应该接近或者超过1000次.他也是大陆动物遗传育种专业留学生中在美国唯一的正教授.他多次回国和母校讲学,2000年在华农讲学,在分子数量遗传学门外徘徊的我根本听不懂他在讲什么,错失良机.其发展的QTL定位软件几经改进,可以说在数量遗传学领域路人皆知.

26. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468

经典中的经典,但我估计认真读过的人不多,尤其新近入门的同学.同时在此基础上, 还发展了一系列分析方法.

27. Cockerham CC and Z. B. Zeng Design III With Marker Loci.Genetics 1996 143: 1437-1456

重新对Stuber的数据进行分析,认为超显性都是拟超显性.为我们的遗传设计提出了新的指导思想,但听从的不多.

28. Chen-Hung Kao, Zhao-Bang Zeng, and Robert D. Teasdale Multiple Interval Mapping for Quantitative Trait Loci. Genetics 1999 152: 1203-1216

提出了MIM的算法,为我们估计总的遗传效应提供了方法.

29.Chen-Hung Kao and Zhao-Bang Zeng Modeling Epistasis of Quantitative Trait Loci Using Cockerham's Model Genetics 2002 160: 1243-1261

提出了上位性的算法.

30. Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185–199

经典的区间作图法, CIM是该基础上发展而来,贡献卓越,引用超过2000次.

31. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255-1264

浙江大学的朱军教授也是该领域的著名人物,在CIM基础上发展出MCIM(混合线性模型)的方法,也是一个重要的贡献,同时也提出条件QTL的定位方法,经典文章有下面2篇.

32. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633–1639

老鼠尾巴的长度和体重有什么关系?呵呵,这篇文章就研究这个,至少问题有趣.

33. Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998, 150: 1257-1265

株高发育性状的QTL定位,这篇文章给了我启示,而让我的论文有了点副产品,想了解改领域的基本知识,可以参考我2003科学通报的文章.

34. Wei-Ren Wu, Wei-Ming Li, Ding-Zhong Tang, Hao-Ran Lu, and A. J. Worland Time-Related Mapping of Quantitative Trait Loci Underlying Tiller Number in Rice. Genetics 1999 151: 297-303 现在浙江大学的吴为人教授对时间序列的QTL分析也有贡献,但没有好的软件出来.

关于QTL定位的应用文章枚不胜举,下面2篇文章是经典.

35. Schon, C. C., Utz, H. F., Groh, S., Truberg, B., Openshaw, S. and Melchinger, A. E. (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167, 485-498

该研究用了超过1000个单株的超大群体,和19个环境的田间数据. 估计目前这2个数字仍然是无法超越的.

36. Laurie, C. C., Chasalow, S. D., LeDeaux, J. R., McCarrol, R., Rush, D., Hauge, B., Lai, C. Q., Clark,

D., Rocheford, T. R. and Dudley, J. W. (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168, 2141-2155

该研究用了高油玉米长期选择的极端材料和大群体,所以对效应值小的QTL有很好的估计.

37. 章元明. 作物QTL 定位方法研究进展. 科学通报, 19, 2223-2231.

我认为是迄今关于这方面最好的中文综述.尤其关于经典QTL的定位介绍的比较详细和到位,是对初进该领域的研究者最好的开门文章,几乎囊括了所有经典文章.我们常常知道QTL定位要选择显著标记对背景控制?原因是什么,多少合适?如果不选或者选多了会出现什么问题?如果理解了这些理论问题,大家对QTL定位的结果就会有更深刻的认识,而不会简单堆积结果了.

QTL定位下一步的一个发展方向将是:

1) Nested Association Mapping and Diallel Association Mapping, 也就是结合连锁和连锁不平衡的分析方法,该方法有Buckler首先提出来并付诸实践,相信不久就有实际实验结果的文章出来,下一步是第一篇方法探讨文章.

38. Benjamin Stich, Jianming Yu, Albrecht E. Melchinger, Hans-Peter Piepho, Friedrich Utz, Hans P Maurer, and Edward S Buckler Power to detect higher-order epistatic interactions in a metabolic pathway using a new mapping strategy. Genetics 2006: doi: 10.1534/genetics.106.067033

2) eQTL定位

这也是将来QTL定位的一个重要内容,也是联系遗传学上QTL定位和表达水平基因表达谱研究的桥梁.在动物方面(人,小鼠等)相关研究进展很多,下一波就是植物了。

39 Gibson G, Weir B. The quantitative genetics of transcription. Trends Genet, 2005, 21(11): 616—623

如何从转录水平认识数量性状

40 Schadt E E, Monks S A, Drakes T A, et al. Genetics of gene expression surveyed in maize, mouse and man.Nature, 2003, 422:297-302

eQTL定位的经典文章

41 Brew R B, Yvert G, Clinton R, et al. Genetic dissection of transcriptional regulation in budding yeast. Science, 2002, 296: 752-755

虽然是酵母的数据但值得借鉴.

3) PTL 差异表达蛋白和QTL位置的比较与分析(目前相关文章还比较少)

42 Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci, 2005, 10: 297-304

相关的综述文章

43 Consoli L, Lefevre A, Zivy M, et al. QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize. Plant Mol Biol, 2002, 48(5-6): 575-581

好象是仅有的研究文章,不过已经有一段时间没有追踪了

4 QTL精细定位

毫无疑问,近年来发展而来的基于NIL的定位方法和策略取得了长足进步.

该策略首先被Paterson提出来,然后被Zamir发扬广大,我们国家在这方面的研究应该说取得了长足的进步.其中Paterson(现在偏理论了),Zamir,Tanksley,McCouch以及日本和中国的多位科学家是这方面的领军科学家。

44 Paterson AH, DeVerna JW, Lanini B et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990, 124: 735-742

45 Eshed Y, Zamir D.An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics , 1995, 141:1147-1162

较早的研究,现在看起来比较简单,但你要承认原创。

46 Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S,van Beuningen L, Isaac P, Edwards K, Phillips RL: Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 2002, 48:601-613

我一直以为这将是玉米中第一个被克隆的QTL,而追踪很久,但呼之欲出好多年终没有见到正式文章,但有消息表明已经拿到基因.Tuberosa是意大利的知名科学家,当时在武汉开会的时候希望我申请奖学金到他那里做博士后,还给我许多他发表的文章.

47 Li JM, Thomson M, McCouch S R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics, 2004 168: 2187-2195

48 Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. Related Articles, Links

GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.

Theor Appl Genet. 2006, 112:1164-71

两篇文章做的同一个QTL位点,可见这个领域竞争的惨烈(事实上还有至少2个组在做这个位点)。但第二篇的遗传设计比较简单,第一篇太复杂了。但讨论起来是一套一套。

49 Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93: 15503-15507

看看着篇定位的文章,你就知道Tanksley克隆第一个QTL是多么不容易.

50 Ishimaru K. Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol. 2003 Nov;133(3):1083-90

这篇文章只有一个作者,可见日本人做研究有多么厉害了。这个人最近文章雪片般飘逸,绝对是后起之秀。

5.基因和QTL的克隆

51 Ashikari M, Matsuoka M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci, 2006, 11(7): 344-350

52 Bortiri E, Jackson D, Hake S. Advances in maize genomics: the emergence of positional cloning.Curr Opin Plant Biol. 2006 Apr;9(2):164-71

这两篇综述告诉我们重要形状QTL的克隆将是未来竞争最为激烈的领域,同时已经克隆的QTL也尽收眼底,如果对这方面感兴趣,无疑给你做了很好的文献收集工作。

5.1插入突变方法

53 Bensen, R.J., G. S. Johal, V. C. Crane, J. T. Tossberg, P. S. Schnable, R. B. Meeley, and S. P. Briggs. 1995. Cloning and characterization of the maize An1 gene. The Plant Cell. 7: 75-84

与株高有关的一个突变体基因的克隆

54 Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485-488

玉米中克隆的第一个QTL

55 Cui X, Wise RP, Schnable PS. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science. 1996 May 31;272(5266):1334-6

在17万株MU插入玉米中找到5个突变体,最终克隆了玉米的恢复基因Rf2, 从这也可以看出基于突变体的基因克隆与其说是个技术活不如说是一个体力活。应该是Schnable的成名作。

56 Esteban B, George C, Erik V, et al. Ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell, 2006, 18:574-585

57 Vollbrecht E, Springer PS, Goh L, et al. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436:1119-1126

与玉米进化有关的2个QTL

植物基因功能研究方法的新进展

植物基因功能诠释研究方法的新进展 (东北农业大学,150030) 摘要:本文通过阅读大量的文献,总结了植物基因功能注释研究方法的最新进展。对每种方法的原理及优缺点做了综述,拟供初学者和作相关研究者参考。 关键词:基因功能;研究方法;新进展 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics)和以基因功能鉴定为目标的功能基因组(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。[1,2]这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 自华大基因启动“千种动植物基因组参考序列谱构建计划”和“千种植物转录组研究”以来,已完成水稻、黄瓜、马铃薯、白菜等植物的基因组序列图谱绘制,并通过对大豆的重测序研究建立了高密度分子标记图谱。这将是21世纪生命科学研究的重要领域。[3]本文将对研究基因功能的新技术及其新进展作一综述。 1 利用生物信息学方法分析基因的功能 生物信息学是利用生物信息学和电子技术(互联网技术)寻找并克隆新的未知功能的基因,着重于技术和操作层面,利用生物信息学对新基因进行电子克隆,及克隆该新基因的序列后对其进行简单的功能分析,如基因的编码区、启动子区、内含子/外显子、翻译启始位点和翻译终止信号预测,基因的同源比对,编码的氨基酸辨识蛋白质,蛋白质的物理性质,蛋白质的二级/三级结构、特殊局部结构以及功能预测等[4]。 1.1 通过序列比对预测基因功能

植物功能基因组学及其研究技术_崔兴国

第9卷 第1期2007年3月 衡水学院学报 J o u r n a l o f H e n g s h u i U n i v e r s i t y V o l.9,N o.1 Ma r.2007植物功能基因组学及其研究技术 崔兴国 (衡水学院 生命科学系,河北 衡水053000) 摘 要:植物基因组的研究已经由以全基因组测序为目标的结构基因组学转向以基因功能鉴定为目标的功能基因组学研究.植物功能基因组学研究是利用结构基因组学积累的数据,从中得到有价值的信息,阐述D N A序列的功能,从而对所有基因如何行使其职能并控制各种生命现象的问题作出回答.近年来植物功能基因组学的研究技术主要包括表达序列标签、基因表达的系列分析、D N A微阵列和反向遗传学等.对植物功能基因组学的研究将有利于我们对基因功能的理解和对植物形状的定性改造和利用. 关键词:植物;功能基因组学;研究技术 中图分类号:Q3-3 文献标识码:A 文章编号:1673-2065(2007)01-0023-04 基因是细胞的遗传物质,决定细胞的生物学形状,细胞的生物学功能最终是由大量的基因表达完成的.随着人类基因组“工作框架图”的完成,生命科学研究的重点已经从结构基因组学转移到了功能基因组学的研究,特别是模式植物拟南芥(A r a b i d o p-s i s t h a l i a n a)和水稻(O r y z a s a t i v a)基因组测序的完成,公共数据库中已经积累了大量基因序列信息,获得了许多与植物发育相关的功能基因,在此基础上应用实验分析方法并结合统计和计算机分析来研究基因的表达、调控与功能,并相应诞生和发展了一批新的研究技术,为功能基因组学的研究提供了必要而有效的技术支撑.功能基因组学研究的最终目标是解析所有基因的功能,即从基因水平上大规模批量鉴定基因的功能,进而全面研究控制植物生长发育及响应环境变化的遗传机制,在基因组序列与细胞学行为之间起到桥梁作用,共同承担起从整体水平上解析生命现象的重任. 1 植物功能基因组学研究 植物的生长和发育是一个有机体或有机体的一部分形态建成和功能按一定次序而进行的一系列生化代谢反应的总合,反应在分子水平上,它要求相应的遗传代谢途径必须按照特定的时空次序严格进行以保证正常发育.植物功能基因组研究就是要利用植物全基因组序列的信息,通过发展和应用系统基因组水平的实验方法来研究和鉴别基因组序列的作用;研究基因组的结构、组织与植物功能在细胞、有机体和进化上的关系以及基因与基因间的调控关系;从表达时间、表达部位和表达水平3个方面对目的基因在植物中的精细调控进行系统研究.当前植物功能基因组学研究主要集中于一年生的拟南芥与水稻两个物种上,这主要是由于它们的遗传背景清楚,基因组较小,基因结构简单而且易于进行分子生物学操作.拟南芥研究组“2010计划”的宏伟目标是充分利用拟南芥基因组计划获得的序列信息并结合功能基因组研究技术来获知其25000个基因的全部功能,例如开花的诱导过程是植物生活周期中最奇妙的过程,目前从拟南芥中鉴定了提早开花和延迟开花的多种突变体,显示植物开花受多个遗传基因的控制,如延迟开花的两个突变体是由等位基因 C O(C O N S T A N S)和L D(C O L D L U M I N I D E P E N- D E N S)突变引起,这两个基因均已被克隆,并使其在转基因植物的叶片中进行表达,将C O基因转移到拟南芥中,高效表达C O蛋白的转基因植株即使处于短日照条件下也会开花,这说明C O基因具有激活开花基因的作用.对模式植物功能基因组的研究将有助于整个植物基因组学的研究. 目前的功能基因组研究主要包括以下几个方面:(1)c D N A全长克隆与测序;(2)获得D N A芯片 ①收稿日期:2006-10-12 作者简介:崔兴国(1963-),女,河北冀州市人,衡水学院生命科学系副教授.

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

植物功能基因组学概述

植物功能基因组学概述 XXX* (XXXXX) 摘要:植物功能基因组学是从整体水平研究基因的功能及表达规律的科学。对植物功能基因组学的研究将助于我们对基因功能的理解和对植物性状的定性改造和利用。本文简要介绍了植物功能基因组学的概念、研究内容和研究方法。 关键词:植物;功能基因组学;ESTs;SAGE Summarize of Plant Functional Genomics XXX (XXXXX) Abstract:Plant functional genomics studies provide a novel approach to the identification of genome-wide gene expression. It is currently being widely focused on the gene expression by transcript profiling and takes us rapidly forward in our understanding of plant biological traits. In this review, comprehensive of concepts, research contents and methodologies regarding plant functional genomics and transcript profiling are described. Key words: Plant; functional genomics; ESTs; SAGE 1 植物功能基因组学 基因组学(Genomics)是20世纪最后10年研究最活跃的领域之一。基因组学是指对所有基因的结构和功能进行分析的一门学科, 1986年由美国科学家Thomas Roderick提出, 兴起于20世纪90年代[1]。基因组学研究分为结构基因组学( structural genomics) 和功能基因组学( functional genomics)。结构基因组学代表基因组分析的早期阶段, 以建立生物体高分辨率遗传、物理和转录图谱为主, 以研究基因序列为目标。功能基因组学(Functional genomics)的研究又被称为后基因组学(Post genomics)研究,它是利用结构基因组学提供的信息和产物,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向对多个基因或蛋白质同时进行系统研究。 植物功能基因组学是植物后基因时代研究的核心内容,它强调发展和应用整体的(基因 组水平或系统水平)实验方法分析基因组序列信息、阐明基因功能,其特点是采用高通量的实验方法结合大规模的数据统计计算方法进行研究。基本策略是从研究单一基因或蛋白质上升到从系统角度研究所有基因或蛋白质。在植物功能基因组学的研究中,拟南芥和水稻是两种最常用的模式植物。目前, 功能基因组学在水稻、拟南芥等模式植物中取得了较快进展, 主要原因在于这两种植物已完成全基因组测序工作[2], 获得了结构基因组数据, 且遗传背景清楚, 易于开展分子生物学研究, 已率先步入后基因组时代。 2 植物功能基因组学研究内容 2、1基因组多样性研究[1] *联系人Tel:XXXXX;E-mail:XXXXX

基因组学的研究内容

基因组学的研究内容 结构基因组学: 基因定位;基因组作图;测定核苷酸序列 功能基因组学:又称后基因组学(postgenomics基因的识别、鉴定、克隆;基因结构、功能及其相互关系;基因表达调控的研究 蛋白质组学: 鉴定蛋白质的产生过程、结构、功能和相互作用方式 遗传图谱 (genetic map)采用遗传分析的方法将基因或其它dNA序列标定在染色体上构建连锁图。 遗传标记: 有可以识别的标记,才能确定目标的方位及彼此之间的相对位置。 构建遗传图谱 就是寻找基因组不同位置上的特征标记。包括: 形态标记; 细胞学标记; 生化标记;DNA 分子标记 所有的标记都必须具有多态性!所有多态性都是基因突变的结果! 形态标记: 形态性状:株高、颜色、白化症等,又称表型标记。 数量少,很多突变是致死的,受环境、生育期等因素的影响 控制性状的其实是基因,所以形态标记实质上就是基因标记。

细胞学标记 明确显示遗传多态性的染色体结构特征和数量特征 :染色体的核型、染色体的带型、染色 体的结构变异、染色体的数目变异。优点:不受环境影响。缺点:数量少、费力、费时、对生物体的生长发育不利 生化标记 又称蛋白质标记 就是利用蛋白质的多态性作为遗传标记。 如:同工酶、贮藏蛋白 优点: 数量较多,受环境影响小 ?

缺点: 受发育时间的影响、有组织特异性、只反映基因编码区的信息 DNA 分子标记: 简称分子标记以 DNA 序列的多态性作为遗传标记 优点: ? 不受时间和环境的限制 ? 遍布整个基因组,数量无限 ?

不影响性状表达 ? 自然存在的变异丰富,多态性好 ? 共显性,能鉴别纯合体和杂合体 限制性片段长度多态性(restriction fragment length polymorphism , RFLP ) DNA 序列能或不能被某一酶酶切,

植物功能组研究进展

程论文(作业)封面(2011 至2012 学年度第 2 学期)课程名称:_ ___ 课程编号:___________ 学生姓名:__ ________ 学号:_______ 年级:__ ___________ 任课教师: _ ____________ 提交日期:年月日成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周评阅日期:年月日

植物的功能基因组学研究进展 摘要:基因组研究计划包括以全基因组测序为目标的结构基因组学和以基因功能鉴定为 目标的功能基因组学两方面的内容。目前基因功能鉴定的方法主要有:基因表达的系统分析(SAGE) 、cDNA 微阵列、DNA(基因) 芯片、蛋白组技术以及基于转座子标签和T-DNA 标签的反求遗传学技术等。本文对上述各种技术的优缺点以及它们在植物基因功能鉴定中的应用进行了综述。 关键词:功能基因组学; 基因表达的系统分析;cDNA 微阵列;DNA 芯片;蛋白组 以拟南芥和水稻为代表的植物基因组研究已取得了迅速的进展,到目前为止,占拟南芥基因组(100Mb) 近三分之一的DNA 序列已被测定并在GenBank 数据库中登记注册,预期到2001 年通过全球合作将完成拟南芥全基因组的序列测定工作。随着植物基因组计划的实施和进展,GenBank 中累积了大量的未知功能的DNA 序列,如何鉴定出这些基因的功能将成为基因组研究的重点课题, 因此, 基因组研究应该包括两方面的内容: 以全基因组测序为目标的结构基因组学(structural genomics) 和以基因功能鉴定为目标的功能基因组研究, 后者往往又被称为后基因组研究。功能基因组研究的内容是利用结构基因组所提供的信息, 发展和应用新的实验手段系统地分析基因的功能〔1 〕。目前人类和酵母的功能基因组研究已经全面展开, 尤其是对已完成全基因组测序的酵母来说, 其功能基因组研究任务更加紧迫。植物的基因组研究虽然起步较晚, 但由于吸取了人类基因组研究中积累的一些经验, 所以进展也相当迅速, 对植物功能基因组学的研究目前也已经受到重视, 在1998 年12月出版的最新一期Plant Cell (10 :1771) 和Plant Physiol . (118 :713) 上均编发了关于植物功能基因组学研究的编者按, 并由Bouchez 和Hofte (1998) 〔2 〕综述了植物尤其是拟南芥功能基因组学研究的现状, 本文在此基础上综述了目前植物功能基因组学研究中使用的主要技术手段以及最新的研究进展。 1 基因功能的含义 基因的功能主要包括: 生物化学功能, 如作为蛋白质激酶对特异的蛋白质进行磷酸化修饰; 细胞学功能, 如参与细胞间和细胞内的信号传递途径; 发育上的功能, 如参与形态建成等。目前,获得一段DNA 序列的功能信息的最简单的方法是将该DNA 序列与GenBank 中公布的基因序列进行同源性比较,如利用BLASTn 和BLASTx 两种软件分别进行核苷酸和氨基酸序列同源性比较等。同源性比较的结果大体可以分为如下类型: 与生化和生理功能均已知的基因具同源性; 与生化功能已知的基因具同源性, 但该基因的生理功能未知;与其它物种中生化和生理功能均未知的基因具同源性; 虽与生化和生理功能均已知的基因具同源性, 但对该基因功能的了解尚不深入, 仍停留在表观现象上。上述同源性检索分析方法仅仅为该DNA 片段的功能提供了间接的证据,对基因功能的直接证据还需要实验上的数据。Bouchez 和Hofte (1998)〔2 〕将所需要的实验证据归纳如下: (1) 通过研究基因的时空表达模式确定其在细胞学或发育上的功能, 如在不同细胞类型、不同发育阶段、不同环境条件下以及病原菌侵染过程中mRNA 和/ 或蛋白质的表达的差异等。(2) 研究基因在亚细胞内的定位和蛋白质的翻译后调控等。(3) 利用基因敲除(knock - out) 技术进行功能丧分析或通过基因的过量表达(转基因) 进行功能获(gain2of2function) 分析,进而研究目的基因与表型性状间的关系。(4) 通过比较研究自发或诱发突变体与其野生型植株在特定环境条件下基因表达的差异来获取基因功能的可能信息。 2 植物的表达序列标记(EST) 与基因组大规模测序 通过从cDNA 文库中随机挑取的克隆进行测序所获得的部分cDNA 的5′或3′端序列称为表达序列标记( EST) ,一般长300~500bp 左右, 利用EST作为标记所构建的分子遗传图

植物基因组测序

千年基因将应邀参加第十六届全国植物基因组学大会 第十六届全国植物基因组学大会将于2015年8月19日-22日在陕西杨凌召开,千年基因应邀参加此次会议,并将在会场学术交流区设立展台。届时千年基因的技术团队会向大家展示我们最全面的测序平台、一站式的基因组学解决方案以及近年来在植物基因组学领域取得的科研成果,欢迎广大科研人员莅临指导交流! 在测序平台方面,千年基因目前拥有国内最全面的测序平台,能够为科研人员提供一站式解决方案。以PacBio RS II三代平台为例,千年基因自去年提供PacBio RS II测序以来,通过项目经验的积累及严格的质量控制,目前各项数据指标已达国内最高水平。数据产出已稳步升级至1.4Gb/ SMRT cell,读长最长可达42 Kb,reads N50高达18Kb,远超PacBio官方提供的数据标准!在植物基因组de novo测序的研究中,千年基因提供的超长读长测序可更好地跨越基因组高重复序列、转座子区域以及大的拷贝数变异区域和结构变异区,从而实现对高杂合及高重复基因组的完美组装。在植物转录组测序的研究中,千年基因提供的超长读长测序无需拼接即可获得全长转录组序列信息,同时可获得全面的可变剪切、融合基因以及Isoform信息。另外,千年基因提供的HiSeq 4000及HiSeq 2000/2500测序可解决研究人员在植物基因组重测序、转录组测序、小RNA测序等方面的科研需求。 在项目经验方面,千年基因与来自全球的科研人员合作开展了大量植物基因组项目,相关成果已发表于Nature、Nature Genetics、Science等杂志。例如,油棕榈基因组项目在Nature 杂志同时发表两篇文章,辣椒基因组项目的成果发表于Nature Genetics,玉米基因组项目的成果发表于Science。在国外合作方面,千年基因与美国爱荷华州立大学Patrick Schnable教授领导的国际玉米基因组团队合作开展的上万份玉米样本重测序项目也正在进行中;千年基因与国际半干旱热带作物研究所建立长期战略合作关系,正在开展上千份木豆、鹰嘴豆及高粱样本的群体遗传学研究;同时千年基因与华盛顿大学的Evan Eugene Eichler院士及佐治亚大学的Jeffrey Lynn Bennetzen院士也有大量基因组项目合作。在国内合作方面,千年基因与广东省农科院、山东省农科院共同启动的花生基因组项目已全部完成de novo测序及数据挖掘,同时与中国科学院、北京大学、中国农业大学、中国科学技术大学、上海交通大学、

微生物基因组研究

微生物基因组研究 微生物是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、 环保等诸多领域。 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,

植物功能基因组学研究技术

植物功能基因组学研究技术的发展 摘要:随着植物基因组学的发展,植物研究的热点转向了功能基因组学。如何确定大量的基因序列的功能,并进而了解基因与基因之间通过其代谢产物而形成的控制生物体代谢和发育的调控网络是功能基因组学研究的核心问题。在植物功能基因组学研究中,多摒弃原来传统的技术而采用新发展的方法,既省力又节源的研究基因的功能。 关键词:功能基因组学;表达序列标签技术;代谢组学;RNA干扰 二十一世纪以来,基因组学在各种模式生物基因组测序的完成的基础上发展迅速。基因组学已经产生很多个分支,比如结构基因组学,功能基因组学,比较基因组学等。其中,结构基因组学是基因组学发展的初级阶段,以建立生物的高分辨率遗传图和物理图为主。功能基因组学则代表基因组学发展的新阶段,是利用结构基因组学所提供的信息,发展和应用新的研究方法,从单一基因或蛋白质的研究转向多基因和多蛋白质的综合研究的一门学科,又被称为“后基因组学”。植物功能基因组学是植物后基因时代研究的核心内容,它强调发展和应用整体的实验方法分析基因组序列信息、阐明基因功能,其特点是采用高通量的实验方法结合大规模的数据统计计算方法进行研究。在植物功能基因组学的研究中,拟南芥和水稻是两种最常用的模式生物,近年来小麦的功能基因组学研究也在进行,主要集中于基因组中转录表达的部分。 1 植物功能基因组学中的分子标记 如何快速高效的从基因组中获取生物信息,是一个急迫并且有挑战性的课题。然而,表达序列标签(Express Sequence Tags,EST)的出现成为结构基因组学和功能基因组学连接重要依据。EST是从cDNA序列中获得的有特异性特征,能特指某个基因,它的发展成为功能基因组学发展的基础,Genbank中积累的大量EST序列不仅为新基因的发现提供帮助,而且为开发基于PCR的各种分子标记提供资源,如EST-SSR,CAPS,SNP,SRAP和TRAP等。截止2000年数据库dbEST中的主要信息统计如表1所示。

9 人类基因组研究

9.1人类基因组计划简介 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗登月计划并称为三大科学计划。 1986年,诺贝尔奖获得者Renato Dulbecco发表短文《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055-1056)。文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对 DNA 的详细知识而得到巨大推动。” 什么是基因组(Genome)?基因组就是一个物种中所有基因的整体组成。人类基因组有两层意义:遗传信息和遗传物质。要揭开生命的奥秘,就需要从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。

为什么选择人类的基因组进行研究?因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源。 在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。 HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。 HGP的诞生和启动: 对人类基因组的研究在70年代已具有一定的雏形,在80年代在许多国家已形成一定规模。 1984年在Utah州的Alta,White R and Mendelsonhn M受美国能源部(DOE)的委托主持召开了一个小型专业会议讨论测定人类整个基因组的DNA序列的意义和前景(Cook Deegan RM,1989) 1985年5月在加州Santa Cruz由美国DOE的Sinsheimer RL主持的会议上提出了测定人类基因组全序列的动议,形成了美国能源部的“人类基因组计划”草案。 1986年3月,在新墨西哥州的Santa Fe讨论了这一计划的可行性,随后DOE 宣布实施这一计划。 1986年遗传学家McKusick V提出从整个基因组的层次研究遗传的科学称为“基因组学” 1987年初,美国能源部和国立卫生研究院为HGP下拨了启动经费约550万美元(全年1.66亿美元) 1988年,美国成立了“国家人类基因组研究中心”由Watson J出任第一任主任

十字花科植物TPS家族的比较基因组学研究

十字花科植物TPS家族的比较基因组学研究萜类化合物(terpenoid)是植物次生代谢产物中种类最多、结构最为复杂的天然产物,具有重要的生理、生态作用和药用价值。它们可以作为植物激素的合成前体,参与植物生长和发育的调节,例如独角金内酯(strigolactones)、脱落酸(abscisic acid,ABA)等,能够吸引授粉者以及抵御病原菌与植食性动物,例如(E)-a-香柑油烯、(E)-β-金合欢烯等。 萜类合成酶(terpenoid synthase,TPS)是在萜类化合物的合成过程中起关键作用的酶。在植物体内,萜类化合物可通过两条不同途径合成,即甲羟戊酸(mevalonate,MVA)途径与甲基赤藓糖磷酸 (2-C-methyl-D-erythritol-4-phosphate,MEP)途径。 目前己在拟南芥、葡萄、杨树、水稻、番茄、棉花、高粱、玉米、大豆、小立碗藓以及江南卷柏等植物中对TPS在全基因组范围内进行了鉴别与分析。十字花科(Brassicaceae)植物具有较高的经济价值并且与人类生活密切相关,包含了芸薹属、萝卜属等油料与蔬菜作物,桂竹香属、紫罗兰属等观赏植物,以及菘蓝属、糖芥属等药用植物。 目前已经有很多重要的萜类化合物在十字花科植物中被识别,比如(E,E)-香叶基芳樟醇、橙花叔醇等。鉴于十字花科植物萜类化合物的重要性以及TPS在萜类合成中的重要作用,人们己经在模式植物拟南芥中进行了系统研究,而对其它十字花科植物研究尚少。 越来越多十字花科植物基因组的测序完成,为我们利用生物信息学手段在全基因组范围内对TPS进行系统鉴定和比较基因组分析提供了可能。本研究以12种己测序完成的十字花科植物阿拉伯岩芥(Aethionema arabicum)、拟南芥

实验报告 植物基因组的提取和检测

四川大学实验报告 题目:的提取与检测植物基因组DNA一、实验目的 1.了解真核生物基因组DNA提取的一般原理; 2.掌握基因组DNA提取的方法和步骤。 二、实验原理 1.在液氮中对植物组织进行研磨,破碎细胞; 2.SDS等离子型表面活性剂能溶解膜蛋白而破坏细胞膜,使核蛋白解聚,从而使DNA游离出来; 3.苯酚和氯仿等有机溶剂能使蛋白质变性,并使抽提液分相,因核酸水溶性很强,经离心后即可从抽提液中除去细胞碎片和大部分蛋白质; 4.上清液中加入异丙醇使DNA沉淀,沉淀DNA溶于TE缓冲液中,即得植物基因组DNA溶; 5.DNA的琼脂糖凝胶电泳鉴定:带电荷的物质,在电场中的趋向运动称为电泳。DNA的琼脂糖凝胶电泳可以分离长度为200bp至近50kb的DNA分子。DNA的迁移率(U)的对数与凝胶浓度(T)之间存在反平行线性关系。因此,要有效地分离不同大小的DNA片段,选用适当的琼脂糖凝胶浓度是非常重要的。 三、实验材料 1.设备 移液器,台式高速离心机,水浴锅,陶瓷研钵,1.5ml离心管 2.材料 植物幼嫩叶片 3.试剂 (1)细胞提取液:100mmol/L Tris-HCl, pH8.0, 5mmol/L EDTA, 500mmol/L NaCl, 1.25% SDS,1%β-巯基乙醇(去除酚类) (2)氯仿:异戊醇(24:1) (3)其它试剂:液氮、无水乙醇、 TE缓冲液、异丙醇、洗涤缓冲液 四、方法和步骤 0C水浴(金属浴)中加热备用;μ500L细胞提取液于651、取2、研钵用液氮预冷,新鲜植物叶片(自来水清洗,蒸馏水冲洗干),去除叶脉,剪成细条状,置于研钵中研磨成粉末状(越细越好); 0C预热的细胞提取液中,迅速摇匀,65500、取0.1g粉末(大约两勺半)转移至

植物基因组学的的研究进展

基因组学课程论文 题目:植物基因组学的的研究进展姓名:秦冉 学号:11316040

植物基因组学的的研究进展 摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。本文主要对拟南芥、水稻2种重要的模式植物在结构基因组学、比较基因组学、功能基因组学等领域的研究进展以及研究所使用的技术方法进行简单介绍。 关键词:植物;基因组学;研究进展 The recent progress in plant genomics research Abstract: With the completion of genome sequencing ofthe model plant-- Arabid opsis and rice,more and more researches on plant genomics emerge in recent yea rs. The research progress of the 2 important model plant--Arabidopsis and rice in structural genomics,comparative genomics,functional genomics and technology methods used in this research are introduced briefly in this paper. Keywords:plant; genomics; research advances 前言 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念。1986年由美国科学家Thomas Roderick提出的基因组学是指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录本图谱)、核苷酸序列分析、基因定位和基因功能分析的一门科学。自从1990年人类基因组计划实施以来,基因组学发生了翻天覆地的变化,已发展成了一门生命科学的前沿和热点领域。而植物基因组研究与其他真核生物和人类基因组研究有很大的不同。首先,不同植物的基因组大小即使在亲缘关系非常近的种类之间差别也很大; 其次,很多植物是异源多倍体,即便是二倍体植物中有些种类也存在较为广泛的体细胞内多倍化( endopolyp loidy)现象[1]。基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能基因组学,即“后基因组计划”,是结构基因组研究的延伸,利用结构基因组提供的遗传信息,利用表达序列标签,建立以转录图谱为基础的功能图谱( 基因组表达图谱),系统研究基因的功能,植物功能基因组学是当前植物学最前沿的领域之一。③蛋白质组学,是功能基因组学的深入,因为基因的功能最终将以蛋白质的形式体现。 近来,以水稻( Oryza sativa)和拟南芥(Arabadopsis thaliana)为代表的植物基因组研究取得了很大进展,如植物分子连锁遗传图谱的构建,在此基础上,已经在植物基因组的组织结构和基因组进化等方面得到了有重要价值的结论; 植物基因组物理作图和序列测定的研究集中于拟南芥和水稻上; 植物比较基因组作图证实在许多近缘植物甚至整个植物界的部分染色体区段或整个基因组中都存在着广泛的基因共线性,使得我们可以利用同源性对各种植物的基因组结构进行研究、分析和利用。本文主要对拟南芥、水稻2种重要的模

宏基因组学的一般研究策略

宏基因组学的一般研究策略 摘要: 宏基因组学是目前微生物基因工程的一个重要方向与热点。它把微生物的总群体特性与基因组学实验手段结合了起来,包括从环境样品中提取总DNA、再用可培养的宿主微生物建立文库及筛选目的克隆和基因。该法是研究不可培养微生物、寻找新的基因和开发新活性产物的重要新途径。它避开了微生物分离、纯化和培养的步骤,大大扩展了微生物资源的利用范围。本文旨在介绍宏基因组学的一般研究方法并结合我们的实验情况,对这一崭新领域中的最新研究策略进行了简要综述。 关键词: 宏基因组学, 不可培养微生物, 文库构建, 文库筛选,研究策略 Strategies for accessing metagenomics for desired applications Abstract: Metagenomics is a new field of microbial genetic engineering. It has the characteristics of microbial ecology and the methodology of genomics. Metagenomics includes genomic DNA isolation, library construction and screening strategies, and can be used in the discovery of new gene and biocatalysts and in the study of uncultured microorganism. Metagenomics can overcome the advantages of isolation and cultivation procedures in traditional microbial method, and thus greatly broaden the space of microbial resource utilization. In this paper, we mainly reviewed the metagenomic methodology, together with the latest advances and novel strategy in this research field. Keywords:Metagenomics; Uncultured microorganism;Library construction;Library screening Research strategies 大自然中蕴藏着无数具有重要价值的微生物及其活性产物,也是新基因及生物学资源的重要源泉,对其进行研究成为微生物学和分子生物学研究的一个重要方向。然而人们现在能够培养与利用的不到环境中总微生物的1%[1]。宏基因组学(metagenomics)是直接从环境样品中提取全部微生物的总DNA, 避开了分离、纯化和培养微生物的过程来构建宏基因组文库,用基因组学的研究策略来研究环境样品中的总微生物的组成及其在群落中的功能等。现在,宏基因组学技术方法已在微生物多样性,微生物细胞间的相互作用,新基因和新型生物催化剂的开发,新的抗生素的开发及环境生态等方面得到了广泛应用[2]。本文旨在介绍宏基因组学的一般实验方法并结合我们的研究情况,对这一崭新领域中的最新研究策略进行了简要综述。深化了我们对这一学科的认识,促进了该学科的进步。 1 宏基因组学研究策略 1.1宏基因组学概要 宏基因组学是Handelsman等于1998年提出的[3], 可见是一门很新的学科,其随着基因组实验手段,生物信息学和测序技术等的日新月异也迅猛发展了起来,这个新学科是以环境样品的总微生物基因组为实验对象,通过测序分析、文库评价、产活性物质及其基因的克隆的获取和基因功能的鉴别,对微生物种群组成与生物量、生态学关系、生物化学关系与环境关系以及功能活性进行研究[4]。其主要过程包括样品和基因的富集和提取; 宏基因组文库的构建; 目的基因的筛选; 目的基因活性产物的表达(图1)。 1.2 微生物及其基因的富集 在文库筛选过程中由于目的基因比例较小, 对环境中微生物的富集不但可提高基因总量,有利于基因的提取,还可增加目的基因的比例,如Kouker 等用橄榄油富集产脂肪酶的微生物收到了很好的效果[5 ],橄榄油不仅可作为底物,还可诱导脂肪酶的合成。目前富集技术主要分为细胞水平和基因水平。其中细胞水平主要是用选择培养基来富集某些微生物, 常

植物基因组学

1.基因组的结构和变异 2.分子标记连锁图谱构建基因 3.QTL定位的原理和方法 4.QTL精细定位 5.基因和QTL的可隆 5.1插入突变方法 5.2图位克隆的方法(含比较图位克隆) 5.3候选基因法 6.资源评估和利用 7.分子标记辅助选择(含分子设计育种) 8.转基因 8.1转基因体系和实证研究 8.2转基因的生态学安全研究 9.比较基因组 9.1标记水平比较基因组 9.2序列水平的比较研究 9.3性状水平的比较研究 9.4功能比较研究 10.***优势研究 10.1遗传学解释 10.2分子生物学解释 11.分子进化(主要是玉米进化) 12.基于连锁不平衡的关联分析 12.1实证研究 12.2方法学研究 13.基因组研究中的一些新技术运用 13.1DNA芯片技术 13.2 DNA shuffling 13.3Gene Trap 13.4 Gene therapy in plants 13.5 TILLING 技术 1.植物基因组的结构和变异 在越来越多的植物基因组被测完后,该研究的重要性逐渐显现,该方面的文章可以说是汗牛充栋.在玉米方面该领域的大牛是Buckler, ES; Messing, J, Dooner HK, Doebley J ; Gaut, BS. 1. Buckler, E. S., Gaut, B. S. and McMullen, M. D. (2006) Molecular and functional diversity of maize. Curr. Opin. Plant Biol. 9, 172-176 这是关于玉米基因组结构的REVIEW文章,先了解大概,在细读研究文章.其任何2个玉米自交系之间的遗传变异大于人和大猩猩之间的差异的经典论断充分说明玉米变异的广泛性.最近因为人类基因组研究的进展而似乎可以改写. 2.Messing J, Dooner HK. Organization and variability of the maize genome. Curr Opin Plant Biol.

《分子生物学》实验报告-植物基因组DNA的提取及其定性定量分析

《分子生物学》实验报告 实验一植物基因组DNA的提取及其定性、定量分析 【实验目的】 通过本实验学习利用CTAB法从植物组织中提取DNA并通过琼脂糖凝胶电泳及紫外分光光度法对DNA进行定性定量分析。 【实验原理】 CTAB(十六烷基三甲基溴化铵)是一种阳离子型去污剂,可溶解细胞膜,在高离子强度下(大于0.7 M NaCl),与蛋白和中性多糖形成复合物沉淀出来。利用液氮对植物组织进行研磨,从而破碎细胞。然后加入CTAB缓冲液将DNA溶解出来,再用酚、氯仿抽提的方法去除蛋白,最后经乙醇沉淀得到DNA。 琼脂糖凝胶电泳是分离和纯化DNA片段的常用技术。把DNA样品加入到一块包含电解质的多孔支持介质(琼脂糖凝胶)的样品孔中,并置于静电场上。DNA分子在高于等电点的pH 溶液中带负电荷,在电场中向正极移动。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此,在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的大小和构型。DNA分子的迁移速度与相对分子质量的对数值成反比关系,分子量小的DNA分子比分子量大的DNA分子迁移速率快,迁移距离远,由此得到分离。凝胶电泳也可以分离相对分子质量相同,但构型不同的DNA分子,超螺旋质粒DNA(cccDNA)泳动最快,其次为线状DNA(L DNA),最慢的为开环质粒DNA(ocDNA)。 核酸分子(DNA或RNA)由于含有嘌呤环和嘧啶环的共轭双键,在260 nm波长处有特异的紫外吸收峰,其吸收强度与核酸的浓度成正比,这个物理特性为测定核酸溶液浓度提供了基础。1 OD260相当于dsDNA 50 μg/mL,ssDNA 33 μg/mL和ssRNA 40 μg/mL。可以此来计算核酸样品的浓度。紫外分光光度法不但能确定核酸的浓度,还可通过测定260 nm和280 nm

相关文档
最新文档