GPA 2261-13天然气组分分析-GC法

GPA 2261-13天然气组分分析-GC法
GPA 2261-13天然气组分分析-GC法

DISCLAIMER

GPA publications necessarily address problems of a general nature and may be used by anyone desiring to do so. Every effort has been made by GPA to assure accuracy and reliability of the information contained in its publications. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed. It is not the intent of GPA to assume the duties of employers, manufacturers, or suppliers to warn and properly train employees, or others exposed, concerning health and safety risks or precautions.

GPA makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any federal, state, or municipal regulation with which this publication may conflict, or for any infringement of letters of patent regarding apparatus, equipment, or method so covered.

FOREWARD

GPA 2261 provides the gas processing industry a method for determining the chemical composition of natural gas and similar gaseous mixtures using a Gas Chromatograph (GC).

The precision statements contained in this standard are based on the statistical analysis of round-robin laboratory data obtained by Section B.

This standard was developed by the cooperative efforts of many individuals from industry under the sponsorship of GPA Section B, Analysis and Test Methods.

Throughout this publication, the latest appropriate GPA Standards are referenced

“Copyright? 2013 by Gas Processors Association. All rights reserved.

No part of this Report may be reproduced without the written consent

of the Gas Processors Association.”

1. SCOPE

1.1 This standard covers the determination of the chemical composition of natural gas and similar gaseous mixtures within the ranges listed in Table 1, using a Gas Chromatograph (GC). The three columns represent the original Table 1, but separate the values to three distinct groups. The first group is concentrations lower than the data obtained from the round-robin project (RR-188). The second group is concentrations used in the round-robin project (RR-188). The equations listed in the precision statement in this standard cover the range listed in the middle column, after outliers were removed. The third group is concentrations higher than the data obtained from the round-robin project (RR-188).

The precision statement in this standard utilizes equations derived from a regression of the data in RR-188 and is detailed in GPA TP-31. The precision statement criterion applies only to values listed in Section 10, Table 6.

1.2 Components sometimes associated with natural gases, i.e., helium, hydrogen sulfide, water, carbon monoxide, hydrogen and other compounds are excluded from the main body of the method. These components may be determined and made a part of the complete compositional data. Refer to Appendix A.

Table I Ranges of Natural Gas Components Covered

Component Lower

Region

Round

Robin

Higher

Region

Nitrogen 0.01 - 0.1 0.1 - 30 > 30 Carbon Dioxide 0.01 - 0.1 0.1 - 30 > 30 Methane 0.01 - 40 40 - 100 N / A Ethane 0.01 - 0.1 0.1 - 10 > 10 Propane 0.01 - 0.1 0.1 - 10 > 10 Isobutane 0.01 - 0.25 0.25 - 4 > 4

n-Butane 0.01 - 0.25 0.25 - 4 > 4 Isopentane 0.01 - 0.12 0.12 - 1.5 > 1.5

n-Pentane 0.01 - 0.12 0.12 - 1.5 > 1.5

* Hexanes Plus 0.01 - 0.1 0.1 - 1.5 > 1.5

* Heptanes Plus 0.01 - 0.1 0.1 - 1.5 > 1.5 *Data from round –robin was only obtained for Hexanes

Plus

Table Note: Uncertainty in the Lower region can easily be ten times greater and in the higher region two to three times greater than the center column.

NOTE 1 – Components not listed in Table 1 may be determined by procedures outlined in Appendix A or other applicable analytical procedures. Refer to Appendix A. 2. SUMMARY OF METHOD

2.1 Components to be determined in a gaseous sample are physically separated by gas chromatography and compared to calibration data obtained under identical operating conditions. A fixed volume of sample in the gaseous phase is isolated in a suitable inlet sample system and entered onto the column.

2.2 The full range analysis of a gaseous sample may require multiple runs to properly determine all components of interest. The primary run is on a partition column to determine air, methane, carbon dioxide, ethane and heavier hydrocarbons. When oxygen/argon content is critical in the unknown sample, or is suspected as a contaminant, a secondary run should be made to determine oxygen/argon and nitrogen in the air peak on the partition column. When carbon dioxide content in the unknown sample does not fall within the calibrated range on the partition column, a secondary run should be made to determine carbon dioxide content. When helium and/or hydrogen content are critical in the unknown sample, a secondary run should be made to determine helium and/or hydrogen.

2.2.1 These analyses are independent and may be made in any order, or may be made separately to obtain less than the full range analysis. The configuration can consist of a single or multiple GC’s to accomplish this. Refer to Appendix A.

2.3 Response factors or response curves derived from calibration data are essential to accurately determine the composition of an unknown sample. The reference standard blend and the unknown samples must be run using identical GC operating conditions.

3. APPARATUS

3.1 Chromatograph - Any Gas Chromatograph may be used as long as the specifications for repeatability and reproducibility stated in Section 10 within the round-robin test component ranges listed in Table 1are met or exceeded. The equipment described in this section has been proven to meet the above requirements; however other configurations including portable and online may be acceptable.

3.1.1 Detector- The Thermal Conductivity Detector (TCD) has proven to be a reliable and universal detector for this method.

3.1.2 Sample Inlet System- A gas sampling valve capable of introducing sample volumes of up to 0.500 ml may be used to introduce a fixed volume into the carrier gas stream at the head of the analyzing column. The

Analysis for Natural Gas and Similar Gaseous Mixtures by Gas Chromatography

sample volume should be repeatable such that successive runs meet the precision requirements of Section 10.

NOTE 2 – The sample size limitation of 0.500 ml or smaller is selected relative to linearity of detector response and efficiency of column separation. Larger samples may be used to determine low-quantity components in order to increase measurement accuracy.

3.1.3 Chromatographic Columns

3.1.3.1 Partition Column - This column must separate nitrogen (air), carbon dioxide, and the hydrocarbons methane through n-Pentane. (or n-Hexane when a C7 plus analysis is performed). Silicone DC 200/500, 30% by weight on 80/100 mesh Chromosorb P, acid washed,

packed into 30’ x 1/8” SS tubing has proven to be satisfactory for this purpose.

3.1.3.2 Precut Column – A backflush column similar to the partition column described in 3.1.3.1. This column must be of the same diameter and long enough to clearly separate the hexanes plus or heptanes plus fraction from the lighter components. Figure 1A shows an example chromatogram of a natural gas mixture using the precut column for grouping the hexanes and heavier (heptanes and heavier in Figure 1B).

3.1.3.3 Pressure Buffer Column- A lightly loaded column placed between the detector inlet and the column switching/sampling valve (Figure 2A, Column 3) may help to position the hexanes and heavier peak to provide better resolution. This column is usually 1 wt% Silicone 200/500 between 12” and 40” long. (Figures 2A and 2B show a typical column switching/sampling valve arrangement).

NOTE 3 – The arrangements of columns, detectors and valves depicted in Figure 2A and 2B have been determined to meet or exceed the performance criteria of this standard. (See Section 10, “Precision”.)

3.1.4 Temperature Control -The chromatographic columns and the detector should be maintained at temperatures consistent enough to provide repeatable peak retention times and compositional precision within the limits described in Section 10 during the reference standard and corresponding sample runs.

3.2 Carrier Gas - The contaminants in the carrier gas must be limited to levels that are known not to interfere with the analysis or cause maintenance problems with the GC. Refer to manufacturer for recommendations regarding carrier gas quality

3.2.1 Pressure and Flow Control Devices- These devices should maintain flow rate consistent enough to provide repeatable peak retention times and compositional precision within the limits described in Section 10 during the reference standard and corresponding sample runs. Two Stage regulators with stainless steel diaphragms have been shown to be satisfactory for this purpose.

Figure 1A Chromatogram of early backflush of

hexanes and heavier (C6+).

Figure 1B Chromatogram of early backflush of

heptanes and heavier (C7+).

3.3 Sample Conditioning Systems - GPA 2166 gives guidance for proper design and use of sample conditioning systems. The sample conditioning system should not cause the GC precision to fall outside the requirements in Section 10.

NOTE 4 – Valves and sample introduction system must be maintained at a temperature above the hydrocarbon dew point of the calibration blend and unknown samples. Supplemental heating may be required to accomplish this. Refer to GPA 2166 for guidance.

3.4 Integration System- The integration system should be configured to properly integrate all peaks of interest. Integration systems can not correct for inadequate component separation. The integration system should not cause the GC precision to fall outside the requirements in Section 10.

Figure 2A Two Six port valves used for sample

injection and precut backflush.

Figure 2B One Ten port valve used for sample

injection and precut backflush.

4. NATURAL GAS QUALITY ASSURANCE

4.1 Determination of Linear Range - GPA 2198 describes procedures to establish the linear range of a GC system. This process is necessary to determine the proper calibration and analytical procedures for each instrument.

4.2 Fidelity Plot - GPA 2198 describes the procedure to create a Fidelity Plot. The Fidelity Plot is a tool that can be used to monitor the validity of calibration standards and performance of GC systems.

4.3 Control Charts -GPA 2198 describes the use of Control Charts. Control Charts can be used to monitor each component in the calibration blend and the GC performance over time.

4.4 Precision Test- Section 10 of this document establishes the precision requirements of this standard.

5. SAMPLE INTRODUCTION

5.1 Sample Introduction-The sample introduction must be performed in the same manner for calibration and subsequent unknown samples. It is acceptable to either perform a purged or evacuated introduction. Successive runs must be repeatable and not contain contamination from the previous injection. Refer to Appendix A for discussions on linearity, calibration and other related topics.

5.1.1 Purged Introduction - Determine the rate and duration of the purge. Perform alternate injections using a suitable reference blend and instrument carrier gas. Perform alternate injections of each material at various purge rates and purge durations. Note the rate and duration of each purge test and the component concentrations from each run. Repeatability of each component must meet the criteria listed in Section 10, “Repeatability” on the sample runs for the purge rate to be acceptable. Results from the carrier gas blank run must not contain carryover (individual peaks) greater than 0.01 un-normalized mol % from the previous injection of sample for the duration to be sufficient. Once this has been established, this rate and duration should be used for all calibration and analytical runs.

5.1.2 Evacuated Introduction - Evacuate the sample entry system and observe the vacuum gage or manometer for pressure changes indicating a leak. Leaks must be repaired before proceeding. Determine the pressure to be used for injections. Perform alternate injections of a suitable reference blend and carrier gas. Make replicate runs at the selected pressure. Repeatability of each component must meet the criteria listed in Section 10, “Repeatability”. Use this pressure for calibration and analytical runs. Results from the carrier gas blank run must not contain carryover (individual peaks) greater than 0.01 un-normalized mol % from the previous injection of sample.

5.1.3 Equilibration- All sample injections must be performed in the same manner for known and unknown sample compositions. The sample introduction system must be allowed to equilibrate prior to operation of the gas sample valve.

5.2 Preparation and Introduction of Sample – Samples must be properly conditioned prior to analysis. GPA 2166 gives guidance on proper heating of sample containers and sampling systems. Refer to GPA 216

6.

NOTE 5 – To ensure representative samples are obtained in the field, refer to GPA Publication 2166.

5.2.1 Sample connections and tubing used in the sample entry system of the GC must be composed of material that does not cause sample distortion. Stainless Steel and Nylon 11 have proven to perform in this manner. Rubber and other plastic tubing must not be used since these materials readily absorb hydrocarbons.

6. CALIBRATION PROCEDURE

6.1 Calibration

6.1.1 Response factors for the components of interest are determined in accordance with the calculations discussed in Section 8. This can be accomplished by

various means. Either single level calibration(s) using one or more certified reference blend(s) or a multi-level calibration using at least three certified reference blends is acceptable.

6.1.2 Procedures discussed in Section 4 and the calibration type will determine the calibrated range. All components in the unknown samples should lie within the calibrated range for a specific GC.(See Section 10, “Precision”.)

6.1.3 Calibration should be verified on a set frequency. Verifications can utilize a single blend or multiple blends. At least two runs should be made to verify repeatability. If the calculated concentrations deviate by more than the precision requirements for repeatability listed in Section 10, or the un-normalized total deviates by more than 1% from 100 %, instrument maintenance or recalibration may be necessary. First verify the calibration blend is valid, then verify the instrument is operating properly (repair as required), and then recalibrate if necessary.

6.1.4 Fidelity plots and Control Charts, as described in GPA 2198, are excellent tools to monitor instruments and calibration blends.

6.2 Calibration types

6.2.1 Single Level Calibration(s)

6.2.1.1 One or more certified gas reference standard blends of known composition are used to determine response factors for anticipated component ranges in the unknown samples. The results from the “Linearity Check” and the response factors determined for each component can be used to identify the calibrated range for concentrations anticipated in the unknown samples.

6.2.1.2 One gas reference standard blend of known composition may be used to determine response factors for each component. Unknown samples are analyzed and the results determined from the response factors derived from the reference standard blend.

6.2.1.3 More than one gas reference standard blend of known composition may be used to determine response factors for each component. The composition of these standards should cover the anticipated range of compositions in the unknown samples. Unknown samples are analyzed and the results determined from the certified reference blend more closely matching the unknown.

6.2.1.4 The calibrated range, when within the ranges listed in Section 10, must meet the precision requirements listed in the column “Reproducibility”.

6.2.2 Multi-level Calibration

6.2.2.1 Multi-level calibrations may be used for single components, select components, or the full range of components in each standard. A multi-level calibration with three or more gas reference standard may be used to determine response factors for component(s) of interest. The results from the “Linearity Check” and response factors determined for each component can be used to identify the calibrated range for concentrations anticipated in the unknown samples.

6.2.2.2 The calibrated range, when within the ranges listed in Section 10, must meet the precision requirements listed in the column “Reproducibility”.

NOTE 6 – See Appendix A for more information on linearity, calibrations, and other related topics.

7. ANALYTICAL PROCEDURE

7.1 Precut Backflush Method for Nitrogen, Carbon Dioxide, Methane, and Heavier Hydrocarbons - Using the same instrument conditions and sample introduction technique that were used in the calibration run(s) for the unknown sample, obtain a chromatogram through n-pentane with hexanes and heavier eluting as the first peak in the chromatogram.

7.1.1 This is accomplished by the GC system configured as shown in Figures 2A and 2B.

7.1.2 The sample is loaded into the sample loop as determined in Section 5 and allowed to equilibrate. The sample is injected by valve actuation. The lighter components, including n-pentane, move through the pre-column and into the analytical column. Column switching must occur before hexanes and heavier material exit the pre-column. The exact valve timing must be determined for each GC system.

7.1.3 The pre-column is initially in series upstream of the analytical column to isolate the hexanes plus. After the valve switch the pre-column is in series downstream of the analytical column, with flow reversed to back-flush the hexanes plus into a single peak. See Figure 1A.

7.1.4 This recommended approach to the hexanes and heavier separation has two distinct advantages: (1) better precision of measuring the peak area, and (2) a reduction in analysis time over the non-precut (single) column approach.

7.1.5 To perform this procedure as a heptanes plus analysis the valve timing must be adjusted so that the valve switch occurs after the elution of normal hexane from the pre-column onto the analytical column. See Figure 1B.

7.1.6 In order to reduce the pressure disturbance from the valve actuation on the plus fraction peak, a delay or buffer column may be utilized. A column between 12” and 40”, with 1% DC 200/500 on Chromosorb P has been found effective.

8. CALCULATIONS

8.1 Determine the peak areas of each component for the reference standard blend and unknown sample.

8.2 Response factors are calculated for each component using peak areas from the reference standard blend in accordance with the following relationship:

K = Ms / Ps where: K - Response factor

Ms – Mol % of component in reference standard Ps -Peak area in arbitrary units for reference standard

8.3 Concentrations are calculated for each component in accordance with the following relationship:

Mu = Pu x K where:

Mu - Mol% of component in unknown

Pu- Peak area of each component in unknown sample

K - Response factor as determined in 8.2

9. REPORTING AND NORMALIZATION

9.1 Normalization is the process of forcing the sum of the concentrations of components to the desired total. This is accomplished by multiplying each component by the normalization factor. This factor is determined as follows:

F norm = Σunnormalized / Σdesired

where:

F norm = normalization factor

Σunnorm = unnormalized total Σdesired = desired total

9.2 Normally the desired total is 100%, except in cases such as secondary analyses such as those described in Appendix A, Section A-1.2. Refer to Appendix A and Table 5 below.

9.3 Reporting is commonly to two decimal places due to limitations on equipment. TCD detectors typically have a linear dynamic range of 10,000:1. Numbers are calculated to three decimal places and then rounded up when the third digit is 5 or higher.

10. PRECISION

10.1 The repeatability and reproducibility statements for this standard are from the statistical data obtained in a GPA RR-188. The testing program included ten samples comprised of ten components analyzed by six laboratories. The standard as revised has been statistically evaluated under ISO and ASTM protocols. The documentation of the statistical evaluation may be found in GPA TP-31.

10.2 To determine the precision for any component at a specific concentration, use the formulae shown in Table 6 and substitute the mole percent of the component for x.

10.3 Repeatability is the expected precision within a laboratory using the same equipment and same analyst. Repeatability is the difference in analyzed values between two sequential runs. Reproducibility is the expected precision when the same method is used by different laboratories using different equipment and different analysts. Reproducibility is the difference between two analyzed values. Neither value represents the difference between an analyzed value and the certified value listed on a blend. (Refer to 10.6 and 10.7).

Table VI Component Ranges for Precision Limits

10.4 The following example calculations show the repeatability and reproducibility for two different blends. The Ranges from the previous precision statement are used in the two examples. Example 1 lists the lower concentration from the original precision statement range of each component and Example 2 lists the higher concentration from the original precision statement range for each component along with the repeatability and reproducibility calculated for those values.

10.5 The values shown in these calculations are in mol percent. These values are the mol % of the component plus or minus the value determined from the appropriate equation. That is to say, if the value is 1.00 and the precision value is 0.02, results that are between 0.98 and 1.02 are acceptable and values that are above or below that range are not acceptable and fail to meet the precision criteria of this standard. When the result is less than 0.01, use 0.01 as the lowest precision value.

Example 1

Example 2

10.6 Performance evaluations commonly use the repeatability and reproducibility of laboratory results compared to a certified blend. This precision statement is based on the data contained in GPA RR-188 and the statistical evaluation described in GPA TP-31. This treatment of data compared laboratory results independent of the certified blend values. Therefore, performance evaluations must either compare the laboratory results in the same manner by using the reproducibility values described in Table 6 and subsequent example calculations, or use the Performance Evaluation Acceptance Criteria listed below.

10.7 The ability of an instrument to match the certified values from a gravimetric blend referred to as is the Performance Evaluation Acceptance Criteria. The blend uncertainty must be known to use this approach. The reproducibility and the uncertainty of the calibration blend are used to determine the Performance Evaluation Acceptance Criteria.

Where:

CV B is the certified value of component in blend

PE is the Acceptance Criteria for component

R is the method reproducibility for component

U B is the blend uncertainty of component

In Example 3, we use the blend from Example 2, with a 1% Certified Reference Blend used in an audit. For more information, refer to Section 11, “Definitions”.

Example 3

Mol % U B Reproducibility PE Nitrogen 7.70 0.077 0.44 0.45 Methane 86.40 0.86 0.14 0.88 CO2 7.90 0.079 0.24 0.25 Ethane 9.70 0.097 0.067 0.12 Propane 4.30 0.043 0.054 0.07

Iso-butane 1.00 0.010 0.018 0.02

N-butane 1.90 0.019 0.045 0.05

Iso-pentane 0.45 0.0045 0.020 0.02

N-pentane 0.42 0.0042 0.020 0.02 Hexanes

Plus 0.35 0.0035 0.030 0.03 From the example above, if the laboratory result for methane is between 85.52 and 87.28 mol % it would be deemed acceptable. For hexanes plus, a result between 0.32 and 0.38 mol % would be acceptable.

10.8 If the Blend Uncertainty is not known, this approach is not acceptable. Instead, compare the individual laboratory results to the robust mean of those results plus or minus the reproducibility of the method. Using the values from Example 2, if the mean result for methane is 86.66 mol %, then acceptable results will be between 86.52 and 86.8 mol %. In example 2, if the hexanes plus mean result is 0.37, acceptable results will be between 0.34 and 0.40 mol %. Refer to TP-31.

11. DEFINITIONS

Analytical Column– The column in the early backflush configuration that separates all compounds of interest except the “Plus” fraction. This is the longer of the two DC200/500columns.

Calibrated Linear Range – An experimentally determined range of concentrations for a component on a particular instrument. (Refer to GPA 2198”)

Carrier Gas– The gas used to deliver the sample to the detector.

Carryover– Components that are left in the GC system from a previous run. Column – The part(s) of the GC system used to separate components from each other.

Detector– The device used to detect the presence and determine the amount of each component within a mixture.

Effluent– A component that has exited the analytical column.

Elute – The act of a component leaving the column.

GC System – The equipment used in gas chromatography, including the sample inlet system, sample conditioning system, outlet tubing, analytical columns, carrier gas tubing, and detectors.

Hydrocarbon Dew Point – The temperature (pressure) at a given pressure (temperature) at which a particular gaseous hydrocarbon mixture begins to condense into the liquid phase.

Integration System– The hardware and software used to calculate peak areas.

Linearity– The ability to obtain test results within the precision limits of the standard for components of interest, using a single response factor for each component.

Linear Range– The range of concentrations where the peak area is proportional to the component mol % for a particular component.

Linearity Check–A process that verifies the degree of nonlinearity for an analytical instrument (Refer to GPA 2198)

Molecular Sieve – A device used to separate a particular component from the rest of a mixture.

Normalized Mol % – T he sum of mol % determined for a mixture, adjusted to 100 %.

Partition Column– A column that separates by liquid partitioning, gas-liquid chromatography, such as the DC200/500.

Peak Windows – The expected time period for a particular component to elute from the column.

Performance Evaluation Acceptance Criteria – A range that acceptable instrument test result must fall within defined by the root sum square of the method reproducibility and uncertainties of the performance evaluation blend. Refer to GPA 2198.

Plus Fraction– A group of components that are lumped together after the last speciated component. In a “C6

Plus” analysis, this is all components that elute after normal pentane on frontal flow.

Porous Polymer Column– A column that separates utilizing polymer beads, gas solid chromatography, such as Porapak Q or Hayesep Q.

Pre-Column– The column in the early backflush configuration that lumps the “Plus” fraction components into a single peak. This is the shorter of the two DC200/500 columns.

Retention Time– The amount of time between sample introduction and elution for a particular component.

Repeatability– The expected precision for a test result when the same method is used utilizing the same equipment and analyst. Values for “Repeatability” can be found in Section 10, “Precision”.

Reproducibility – The expected precision for a test result when the same method is used utilizing different equipment and/or analysts. Values for “Reproducibility” can be found in Section 10, “Precision”.

Response Factor– The response factor is calculated by dividing the peak area for a particular component by the corresponding mol % of the reference standard blend. This factor is then used to determine the mol % of the component in an unknown gas sample.

Robust Mean – The statistical mean of a set of values after outliers have been removed. Refer to TP-31 for guidance on outlier rejection. Sample/Calibration Run – The act of analyzing a gaseous mixture, from sample introduction to elution.

Sample Conditioning System – The portion of the sample system that removes contaminants from the sample.

Sample Inlet/Entry System– The portion of the sample system where the sample is received from a sample container.

Sample System– The equipment used to prepare and introduce a sample onto the pre-column, including the sample inlet/entry system and the sample conditioning system

Thermal Conductivity Detector (TCD)– A detector that may use a wheat-stone bridge to determine the amount of each component. The carrier gas passes over an element with a current running through it, and the sample stream passes over a similar element with the same current running through it. The resistance of each element is measured and the difference between the two coupled with expected retention times is used to determine the amount of each component present.

Un-Normalized Mol % - Un-normalized mol % is the sum total mol % of the components determined for a mixture. (See Normalized Mol %.)

A-1Linearity

Section 4, Appendix C and GPA 2198 discuss Linearity and list procedures to determine the linear range and calibration requirements of GC systems. When it is anticipated that the range of concentrations of components in the unknown samples will not fall in the linear calibrated range of the instrument, it is necessary to make corrections for this. Two means of accomplishing this are through multi-level calibration (calibration curve) or secondary analysis.

A-1.1 Calibration Curves (Multi-level Calibration)

A-1.1.1Calibration Curves Using Multiple Calibration Blends

Once linearity has been determined for a GC, as described in Section 4, and the linear range is found to be inadequate for the range of unknown sample concentrations anticipated, calibration curves for any component may be determined by using multiple calibration blends.

Duplicate injections of at least three concentration levels for the desired component should be made. If the values on duplicate runs agree within the tolerances in Section 10, “Repeatability”, the response factor should be calculated as follows for each concentration level:

K= C n

A n

where

K = Response factor

C n = Concentration of component n

A n = Peak area in arbitrary units of component n

Calibration curves may now be developed by plotting response factors versus concentration. Any program capable of generating a polynomial curve fit may be used.

A-1.1.2Calibration Curves Using Partial Pressures of Pure Components

Once linearity has been established for the instrument as described in Section 4, calibration curves for any component to be measured in the unknown sample may be determined by using pure components.

Attach the pure component to the sample entry system and evacuate the entry system to less than 1 mm of mercury. Using the partial pressure range suggested in Table A-l, inject at least three partial pressures in duplicate and capture data including Barometric Pressure at the time of the injection. When concentrations on duplicate runs meet the criteria listed in Section 10, “Repeatability”, calculate the response factor as follows:

K= (Pi) (100)

(Po) (A)

Where

K = Response factor

Pi = Partial pressure of pure component in mm of

mercury to nearest 0.5 mm

Po = Barometric pressure in mm of mercury to

nearest 0.5 mm

A = Peak area of pure component in arbitrary

units

Calibration curves can now be developed by plotting response factors versus concentration. Most integration software packages have this feature built-in, but if this feature is not available, other programs capable of generating a polynomial curve fit may be used.

Table A-1

Component Partial

Pressure mm

of Hg (Pi)

Barometric

Pressure mm of

Hg (Po)

Pi/Po * 100

Oxygen 100 750 13.33

Nitrogen 100 750 13.33

Methane 500 750 66.67

Carbon

Monoxide

100 750 13.33

Carbon Dioxide 100 (650)* 750 13.33

Ethane 200 (450)* 750 26.67

Propane 100 (200)* 750 13.33 Isobutane 100 (100)* 750 13.33

n-Butane 100 (100)* 750 13.33 Isopentane 50 (50)* 750 6.67

n-Pentane 50 (50)* 750 6.67

*Partial Pressures in parentheses are the maximum pressures to be used to determine response factors. Exceeding these pressures could result in low response factors caused by compressibility of the pure component.

A-1.2Secondary Analyses

Secondary analyses may be used instead of calibration curves (as in the case of Carbon Dioxide on a Porous Polymer column.) or for determination of compounds not determined by the partition column run. The secondary analysis or run may occur separately or simultaneously to the primary analysis or run. When more than one component is determined, add all component concentrations and normalize to 100%. When a single component is determined, it is acceptable to keep that component concentration whole as described below:

F norm= 100- C n

100

Where

F norm = Normalization Factor

C n = Concentration of component n

APENDIX A - Calibrations

All components determined in the primary analyses or run are then multiplied by N, and the single component held whole.

A-1.3Other Documentation– Instrument logbooks, Maintenance logbooks, User Manuals, Calibration Records, QA/QC records, Analytical Methods and SOP’s are documents that form the analytical audit trail. These documents may either be maintained electronically or in written form.

An ideal GC detector will provide a linear response across all sample component concentrations. In this case, a

calibration standard with any concentration of the component of interest could be run and a calibration response factor could be determined:

Example: A calibration standard has 80 Mole % Methane. When the sample is run on the GC, it generated a peak area of 80,000. The response factor for Methane at 80% concentration is:

K methane = Mole % Methane ÷ Peak

Area = 80 ÷ 80,000 = 0.001

When the detector was perfectly linear, and an unknown sample was run and generated a peak area for Methane of 40,000, the Methane concentration in Mole % would be:

Peak Area x K methane = 40,000 x 0.001 =

40 Mole % Methane

A graph of Mole % concentration to peak area would be linear (a straight line): However, many chromatograph detectors are not linear in their response. A graph of Mole % concentration to peak area would not be linear:

In this example,

Calibrating to 80 Mole % would yield the following response factor:

KF Methane = Mole % Methane ÷ Peak

Area Methane

= 80 ÷ 96,000 = 0.000833

Using the above calibration factor to analyze a sample with 40% Methane would yield the following result:

Mole% Methane = Peak Area

Methane * KF Methane

= 64,000 * 0.000833 = 53.333 Mole %

Methane

Since the difference between the actual value (40%) and the reported value from calibration to 80% Methane (53.333%) exceeds the reproducibility limits established in Section 10 it would be necessary to have separate calibration standards for samples containing 80% Methane and samples containing 40% Methane.

The linearity check is used to determine the number of calibration standards that are needed to analyze all the expected sample compositions.

When more than one calibration is required, this can be achieved by having a separate calibration method for each expected sample composition, a multi-level calibration for all components or a multi-level calibration for the components that are not linear.

Whether a GC detector is linear for a component or not linear for a component is determined by whether it can be analyzed within the reproducibility limits outlined in Section 10.

Linearity curves can be established by running multiple calibration standards of various compositions. In this case, the actual Mole% is plotted against the peak area.

Linearity curves can also be established by running the same calibration standard under various partial pressures. In this case, the Mole% value is determined by the following formula (see Appendix A, A-1.1.2):

APENDIX B – Linearity Discussion

Partial Pressure Mole % Equivalent = Mole % x Inj P / Max P

Where:

Max P = the normal sample loop pressure that samples are injected in

absolute pressure

Inj P = the sample loop pressure that the sample was injected in absolute

pressure

Notes:

The above calculation does not take compressibility into account. To be accurate, the compressibility factor should be included in the calculation.

Max P and Inj P must be expressed in the same absolute pressure units.

Refer to GPA 2198 for more detailed instruction in calibrating with non-linearity in mind

C-1Run Analysis for Nitrogen, Methane, Carbon Dioxide, and Ethane

The porous polymer column must completely separate methane, carbon dioxide and ethane to baseline as shown in the example chromatogram. The linearity of this system must be determined to be linear to be an acceptable alternative to the calibration curve technique described in Appendix B. This system can be used as part of a multi-column GC, as in the case of some portable GC’s.

C-2.Determination of Carbon Monoxide

This component is encountered in association with oxygen, nitrogen, carbon dioxide and the conventional hydrocarbons in the effluent streams from combustion processes such as insitu combustion, manufactured gas and many varied types of stack gases. No extra equipment is necessary to determine carbon monoxide since it elutes shortly after methane on the molecular sieve run. If a calibration gas is available containing carbon monoxide, obtain a response factor as for methane on the molecular sieve column. However, should a gas blend not be available, a calibration curve should be developed using pure carbon monoxide to determine the extent of the nonlinearity, if present.

C-3 Determination of Hydrogen and Helium

When hydrogen is to be separated from helium, a 20’ molecular sieve 5A column using nitrogen or argon as a carrier gas may be used. Low temperature, 40°C (104°F) or less is necessary to effect this separation.

When hydrogen is present, it will elute on the standard molecular sieve run, using helium as a carrier gas, just before oxygen. The hydrogen response is downscale (negative) rather than upscale (positive). Signal polarity must be reversed for the hydrogen peak to be recorded upscale. The sensitivity and precision of measurement will be poor under these conditions due to similar thermal conductivity values for hydrogen and helium. If a calibration gas blend is available containing hydrogen and helium, it should be used to obtain response factors however, if this is not the case, the pure components, hydrogen and helium, may be used to develop response factors in the manner set forth in Appendix A, A-1.

C-4.Determination of Hydrogen Sulfide

As indicated earlier in this text, to be absolutely sure of the hydrogen sulfide content of a gas, determinations should be made at the sample source. However, in the case where a field measurement has not been made and although corrosion of the sample bottle may have resulted in some loss of hydrogen sulfide, a measurement of the in-place component may be made by gas chromatography. It is necessary to charge a sample of pure hydrogen sulfide to the column prior to charging the unknown gas. As soon as the pure hydrogen sulfide has cleared the column, the unknown gas should be charged. (All calibrations should be done the same way, that is, each partial pressure charge of pure hydrogen sulfide must be preceded by a full sample loop of pure hydrogen sulfide.) A column that has proved satisfactory for this type of analysis is the Silicone 200/500 column. It is most convenient since this is the recommended column for determining the hydrocarbons in a natural gas analysis. Hydrogen sulfide elutes between ethane and propane with good resolution.

CAUTION - Extreme care must be taken when working with hydrogen sulfide due to the very toxic nature of the gas. The best ventilation possible must be maintained in the laboratory.The Maximum Allowable Concentration that a person may be exposed to without approved respiratory protection equipment is 10 ppm for an eight hour working period.When the exposure lasts through the working day, concentrations as low as 15 ppm may cause severe irritation to the eyes and respiratory tract. Exposure of 800 to 1,000 ppm may be fatal in a few minutes. The nose must not be depended upon to detect the presence of hydrogen sulfide, as 2-15 minutes of exposure will cause the loss of smell.

APENDIX C – Supplementary Procedures

2017年天然气行业分析报告

2017年天然气行业分析报告 2017年7月出版

文本目录 1、2017-2020 天然气需求加速,CAGR14% (4) 1.1、2003-2013:房地产驱动的燃气黄金十年;2016-2020:能源改革深化+环保启动第二轮成长 (4) 1.2、天然气需求增速确定,且大概率超预期 (6) 1.2.1、驱动因子 1:煤改气实现城镇燃气的跨越式发展 (7) 1.2.2、驱动因子 (8) 1.2.3、燃机电厂经济性逐步恢复,燃机电厂集中供热、调峰电站为主要增长点 (9) 1.2.4、分布式能源盈利高,十三五迎黄金发展期 (9) 1.2.5、驱动因子 3:工业燃料中天然气消费占比将稳步提升 (11) 2、天然气供给多元化格局完善 (13) 2.1、进口气将成为十三五主要新增气源 (13) 2.1.1、国产气 (13) 2.2、更多低价气来自进口 LNG (16) 3、油气改革深化,燃气成本将稳中有降 (18) 3.1、油气改革深化,天然气价改快速推进中 (18) 3.1.1、天然气管输环节将向下游让利 (18) 3.1.2、第三方准入有望带来更多低价进口 LNG (20) 3.2、我们预计燃气成本 2017-2020 年将稳中有降 (22) 3.3、价差会略有回落,主要源自客户结构的变化 (25) 4、工业用气比例高、有成本优势的新奥能源;受益于煤改气的中国燃气 (26) 5、风险提示 (28)

图表目录 图表 1:燃气行业发展历程 (5) 图表 2:2003-2013 年主要燃气运营商气量 CAGR45~100% (5) 图表 3:2013 年以前:房地产业的黄金十年 (5) 图表 4:2016 年以后:能源改革深化带来燃气需求的二次飞跃 (6) 图表 5:天然气较可比能源比价关系 (12) 图表 6:天然气供给地图 (14) 图表 7:2016 年天然气供给结构图 (14) 图表 8:主要用气国家天然气进口价格 (16) 图表 9:进口 LNG 价格(含长协、现货)自 2015 年明显回落 (16) 图表 10:燃气行业产业链及主要价格节点 (19) 图表 11:天然气气价历史与燃气消费增速:2013 年气价连续上涨后气量增速明显回落 19 图表 12:LNG 现货价大幅下跌后,接收站利用率仍维持低位 (20) 图表 13:LNG 新签现货价仅为陆上管道气价格的 75% (21) 图表 14:福建天然气供需市场:海上气为主,新增陆上气 (23) 图表 15:浙江天然气供需市场:陆上气为主,新增海上气 (23) 图表 16:LPGvsNG 价格优势:内陆 NG,沿海 LPG (24) 图表 17:2017-2019E 价差略有回落,但主要源自居民销气占比提升 (25) 图表 18:主要燃气运营商 2016 年管道天然气业务调整后 ROA (26) 图表 19:主要港股燃气公司 ROE-PE 图 (27) 图表 20:主要燃气公司居民气量增速预期 (27) 图表 21:主要燃气公司工商业气量增速预期 (28) 图表 22:行业股价及气价图 (28) 表格 1:天然气需求模型 (6) 表格 2:供暖地区潜在天然气供暖需求 (8) 表格 3:天然气发电项目边际利润情景分析 (9) 表格 4:典型天然气分布式能源项目盈利测算表(客户为工业企业) (10) 表格 5:燃煤锅炉 vs 燃气锅炉:考虑到环保、次品成本,燃煤锅炉经济性消失 (12) 表格 6:天然气供给模型 (15) 表格 7:国内 LNG 接收站分布与产能 (17) 表格 8:2016 年天然气改革政策出台加快 (20) 表格9:新奥能源舟山LNG 接收站(新奥集团投资承建,新奥能源签署LNG 长约)盈利测算 (21) 表格 10:LNG 长期合约 (24) 表格 11:燃气运营商选股 scorecard (26)

鱼骨图分析法(完整篇)

编号:SY-AQ-01646 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 鱼骨图分析法(完整篇) Fishbone diagram analysis

鱼骨图分析法(完整篇) 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 鱼骨分析法是咨询人员进行因果分析时经常采用的一种方法,其特点是简捷实用,比较直观。现以上面提到的某炼油厂情况作为实例,采用鱼骨分析法对其市场营销题进行解析。 鱼骨分析法简介 鱼骨图是由日本管理大师石川馨先生所发展出来的,故又名石川图。鱼骨图是一种发现问题“根本原因”的方法,它也可以称之为“因果图”。鱼骨图原本用于质量管理。 问题的特性总是受到一些因素的影响,我们通过头脑风暴找出这些因素,并将它们与特性值一起,按相互关联性整理而成的层次分明、条理清楚,并标出重要因素的图形就叫特性要因图。因其形状如鱼骨,所以又叫鱼骨图(以下称鱼骨图),它是一种透过现象看本质的分析方法。 头脑风暴法(BrainStorming——BS):一种通过集思广益、

发挥团体智慧,从各种不同角度找出问题所有原因或构成要素的会议方法。BS有四大原则:严禁批评、自由奔放、多多益善、搭便车。 鱼骨图的三种类型 A、整理问题型鱼骨图(各要素与特性值间不存在原因关系,而是结构构成关系) B、原因型鱼骨图(鱼头在右,特性值通常以“为什么……”来写) C、对策型鱼骨图(鱼头在左,特性值通常以“如何提高/改善……”来写) 鱼骨图制作 制作鱼骨图分两个步骤:分析问题原因/结构、绘制鱼骨图。 1、分析问题原因/结构。 A、针对问题点,选择层别方法(如人机料法环等)。 B、按头脑风暴分别对各层别类别找出所有可能原因(因素)。 C、将找出的各要素进行归类、整理,明确其从属关系。 D、分析选取重要因素。

天然气检测分析报告

Analysis Measurement: 29.05.2013 14:24 Serial Number: 70024 Product Code: 07010820108021 Firmware: GCM7000.0.0.86a Software: GCMManagerPro 1.0.96.0 number component starting time [s]measured retention time [s]retention temperature [°C] stoping time [s] 1N2 6.717.47507.94 2CH47.948.185014.75 3CO223.7626.7263.429.58 6C2H634.435.9482.141.57 8C3H863.5165.4141.468.97 9i-C4H1083.9586.22164.988.69 10n-C4H1088.6991.0616594.22 4i-C5H1226.2528.6767.431.29 5n-C5H1231.2931.8573.834.75 7n-C6H1446.8347.24104.849.24 area [digits]area [%]calibrated amount normalized value scaling height [digits] 6602640 1.62030.990.9905%161209 30410876874.627484.9384.9725%1606476 8309124 2.039 1.47 1.4707%47202 5587348413.71129.029.0245%253031 26176860 6.4237 2.99 2.9915%139239 18521640.45450.20.2001%8718 20298560.49810.20.2001%8780 9831880.24130.050.05%5844 8305090.20380.050.05%6202 5633410.13820.050.05%6527

天然气常见知识

天然气基本性质 主要成分:甲烷%、已烷+丙烷%、其它% 理化性质:无色、无味、无毒、易燃 状态:常温为气态,超低温加压为液态 平均密度:Nm3 相对密度: LNG密度: Kg/Nm3 沸点:-162℃ 自燃点:540℃ 爆炸极限:5%~15% 天然气低热值: Nm3 灭火剂:干粉、雾状水、泡沫、二氧化碳 主要物料危险性分析 1)易燃性,天然气属甲类火灾危险性物质,易燃。 2)化学性爆炸,天然气易爆,爆炸极限为5%-15%。与空气或氧气混合,能形成爆炸性混合物,在爆炸极限范围内遇着火源就会发生爆炸。3)物理性爆炸,储罐、管线超过承受的压力;安全附件(安全阀)不能按规定启跳;设备设施存在缺陷或受到外力作用等情况都有可能使天然气产生物理性爆炸。 4)低温:液化天然气体蒸发时会从环境中吸取大量热量,使环境温度急剧降低,如果发生泄漏可能使接触的人冻伤。 5)窒息:在大气中,天然气通常会冲淡氧气的浓度,如果发生大量

泄漏,可能造成人员窒息。 生产过程的危险危害因素分析 泄漏 燃气泄漏主要可能有几个方面: 1、管道或者是设备设施腐蚀穿孔,引起燃气泄漏; 2、管线及设备的易损件老化失效等引起密封连接处漏气; 3、误操作、设备本身损坏或者自动控制系统失效而发生泄漏; 4、管道受应力开裂或者焊缝处发生泄漏; 5、管道被第三方施工破坏导致燃气泄漏。 目前,地下中压燃气管网已串联成网,管道局部泄漏不会造成大范围用户停气,且公司已配置了不停输设备和应急气化撬等应急设备和机具,停气风险相对较低,但城市管网的停气对于企业的声誉和社会影响相对较大。高/次高压管网是配气的主动脉,其停气可能会影响到一个乃至多个行政区域的正常供气,风险相对较高。 场站内的燃气泄漏,如导致场站直接停用的,则会影响到下游用户的正常用气;特别是求雨岭门站停气会直接影响到电厂等工业用户的用气,风险很高。 爆炸、爆燃 公司潜在的爆炸类型有化学性爆炸、物理性爆炸、冷爆炸、电气爆炸、爆燃、闪燃等多种类型,爆炸同时可能引发火灾等次生灾害。 1、化学性爆炸: 燃气泄漏并达到爆炸极限后,获得点火能量,既能迅速发生放热反应,

城市燃气行业分析报告

第一部分 城市燃气业进入业态变迁期 城市化推动城市燃气行业稳步发展 城市燃气是城市居民、工商户的生活能源之一,用于炊事、制冷等。它包括管道气和瓶装气。管道气主要是管道煤气、管道天然气。瓶装气基本是液化石油气(LPG )。 作为公用事业,城市燃气行业发展的动力来自城市化。一方面,城市的“集聚效应”使集中供气成为可能;另一方面,城市生活要求使用燃气清洁高效的生活能源。从统计数据来看,反映燃气行业发展的重要指标――年度供气量与城市人口数量在增长方向和速度上都基本一致。 基于以下理由,我们相信城市燃气行业未来保持稳定的增长态势。 ? 中国城市化始终保持较快增长速度,城市人口的 增加扩大了燃气潜在用户数量。 ? 作为公用事业发展最有力的推动者,政府在“十 五”专项规划中提出目前城市气化率由84%提 高到95%。 ? 越来越多的城市对能源的环保要求越来越高,使 得煤、汽油等重污染能源的使用受到越来越严格 地限制。 ? 家庭小型化趋势有利于人均用气量的增长。经验 表明,户均人口越少,人均年用气量越高。目前 城市化是推动燃气行业 发展的动力 基于对城市化发展的良 好预期,城市燃气未来稳 定增长

城市中已经出现了户均人口不断下降的趋势,预 示人均用气量不断上升。 城市居民的收入水平不断上升,环保意识不断提 高,也有利于城市燃气行业的发展。 各业态增速不一 无论从用户还是用量上看,目前液化石油气是城市燃 气的主体。2001年,城市燃气用户中瓶装液化石油气用 户大约占64%,管道气用户占36%。以热值计算,总体 目前液化石油气占燃气主体 液化石油气以石油为主要原料,以钢瓶为主要消费、 运输载体。由于运输方便,液化石油气在燃气发展初期较 快增长。中国已经成为世界上第三大液化石油气消费国。 近年来,液化石油气的供气量和用户数一直平稳增

LNG分析报告

关于LNG的分析报告 技术科 液化天然气(LNG)是指天然气原料经过预处理,脱除其中的杂质后,再经过低温冷冻工艺在-162℃下所形成的低温液体混合物。不同LNG工厂生产的产品组成不同,这主要取决于气源气组成和生产工艺。一般来说,LNG的主要组分为甲烷,还有少量的乙烷,丙烷,丁烷和N2等惰性组分。在-162℃与0.1MPa下为无色无味液体,密度约为430kg/m3,燃点为650℃,热值一般为37.62MJ/ m3,在-162℃时的汽化潜热约为510KJ/kg,爆炸极限为5%~15%,压缩系数为0.740~0.820。 LNG不同于一般的低温液体,它还具有以下特性: 1)LNG的蒸发。LNG储存在绝热储槽中,任何热量渗透到罐中,都会导致一定量的LNG 汽化为气体,这种气体称为蒸发气。蒸发气的组成主要取决于液体的组成,它一般含氮气20%(约为LNG中N2含量的20倍),甲烷80%及微量乙烷。 2)LNG的溢出与扩散。LNG倾倒至地面上时,最初会猛烈沸腾蒸发,其蒸发率将迅速衰减至一个固定值。蒸发气沿地面形成一个层流,从环境中吸收热量逐渐上升和扩散,同时将周围的环境空气冷却至露点以下,形成一个可见的云团,这可作为蒸发气移动方向的指南,也可作为蒸发气-空气混合物可燃性的指示。 3)LNG的燃烧和爆炸。LNG具有天然气的易燃易爆特性,在-162℃的低温条件下,其燃烧范围为6%~13%(体积百分比);LNG着火温度即燃点随组分的变化而变化,其燃点随重烃含量的增加而降低,纯甲烷着火温度为650℃。 目前,LNG技术已经成为一门新兴工业正在迅猛发展。其主要优点表现在以下几个方面: 1)安全可靠。LNG的燃点比汽油高230℃,比柴油更高;爆炸极限比汽油高2.5~4.7倍; 相对密度为0.47左右,汽油为0.7左右,它比空气轻,即使稍有泄漏,也将迅速挥发扩散,不至于自燃爆炸或形成遇火爆炸的极限浓度。因此,LNG安全可靠。 2)清洁环保。LNG作为汽车燃料,比汽油、柴油的综合排放量降低约85%左右,而且无铅、苯等致癌物质,基本不含硫化物,环保性能非常优越。 3)经济高效。LNG液化后体积大约缩小为气态天然气的1/600,其储存成本仅为气态天然气的1/70~1/6,投资省,占地少,储存效率高。此外,LNG携带的冷量可以部分回收利用。 4)灵活方便。LNG通过专门的槽车或船可以将大量天然气运输到管道难以到达的用户,比地下输气管道投资省,而且安全可靠,风险性小。 LNG有利于生态环境保护,尤其在工业中心和人口稠密地区,LNG更具优越性。其主要应用表现在以下方面: 1)解决边远地区能源供应。通过地面或水上运输工具取代地下远距离管道输送,可以节省投资。 2)天然气调峰。由于季节,日用气量波动,LNG工厂检修或输气管道故障等原因,造成定期或不定期的供气不平衡,建设LNG储罐可有效的起到调峰作用。 3)LNG冷量回收利用。LNG常温下携带有大约836J/kg的冷量,可以用以液化和分离空气,生产液氮,液氧或干冰,冷冻物品等。 4)生产副产品。在LNG生产过程中的不同阶段,可分离出C2,C3,C4,C5等烃类以及H2S、H2等工业原料及燃料。

天然气组分检测

第一部分使用便携式气相色谱仪检测 本细则根据中华人民共和国国家标准《天然气的组成分析-气相色谱法》(GB/T13610—2003)和仪器使用说明书编制。 1 原理 具有代表性的气样和已知组成的标准混合气(以下简称标气),在同样的操作条件下,用气相色谱法进行分离。将二者相应的各组分进行比较,用标气的组成数据计算气样相应的组成。计算时采用峰高、峰面积或二者均采用。 2 试剂与材料 2.1 氦气、氩气,纯度≥99.995% 2.2 标准气体 分析需要的标气从经国家认证的生产单位购买,对于氧和氮,稀释的干空气是一种适用的标准物。 2.3 减压取气阀 3 仪器设备和工作环境 3.1 主机,CP-4900四通道便携式气相色谱仪。 3.1.1 Molsieve 5分析模块,10米 3.1.2 Molsieve 5分析模块,20米 3.1.3 PLOT U分析模块,10米 3.1.4 CP-sil5CB分析模块,8米 3.1.5 热导检测器 3.1.6 车载电源 3.1.7 便携箱 3.1.8 专用笔记本电脑 3.2 工作环境 3.2.1 电源:12V直流电源。 3.2.2 允许操作温度:5-40℃。 3.2.3 使用过程中避免与腐蚀性化学品/气体接触,避免灰尘/颗粒物的积聚,远离热源和水源。 4 样品 4.1 样品为油气田井口或输气管道的天然气。

4.2 样品准备 样品在进入色谱仪前需进行减压处理和干燥过滤处理。 4.3 样品测试 在钢瓶气出口安装减压取气阀,用直径3mm的管线连接到仪器,控制进样压力到MPa。 5 操作步骤 5.1 打开气源,设定输出压力为80 psi。 5.2 打开GC电源等待仪器通过自检。 5.3 开启计算机,点选桌面上“Galaxie”快捷方式进行联机。点选“System”在Status overview按下左方overview 选择“General”观察目前机台各项参数联机状态。 5.4调取分析方法或修改设定控制参数。 5.4.1 在“File”中打开一个已知的方法并上传给仪器。 5.4.2 点选method内容之“control”选项修改运行参数。包括:Autosampler、Injector、Flow、Column、Detector等。 5.5 建立校正曲线 5.5.1 观察各个组件状况Ready后进行标准样品分析。每一组标准样品要求至少进行三次以上的分析测试,分析结果进行谱图优化处理后保存。 5.5.2 从方法树中选择“Calibration”,确定相关选相。如:“Type”检测线种类、“Sample type”样品类型、“Standard unit”标准品单位、“Calibration curve File”检量线档名、“Response”欲利用何种参数进行积分及“Level number”几个浓度点等。 5.5.3 选择标准曲线所对应的信号响应类型,比如Area (峰面积),Height (峰高),等等;输入各个组份的浓度值。将该方法另存在“File”中Save Method as,然后选择“File”中Close Chromatogram关闭该色谱图。 5.5.4 用上述所储存的方法产生一个校正曲线, 建立一个再处理清单:选择“File”中New Reprocessing List记住选择正确的行数或者正确的顺序文件移植再处理清单(reprocessing list)输入一个新的“New Batch Name”名称。 5.6 选择设置报告模版格式 5.6.1 一般所使用格式为“default_standard”,也可以在分析方法中选择所需使用report style格式。 5.6.2 特定报告格式的编辑,点选右方“Edit”会出现Report Editor程序。在欲编辑的

2019年天然气行业分析报告

2019年天然气行业分 析报告 2019年9月

目录 一、行业监管体制及主要政策法规 (4) 1、行业主管部门与监管体制 (4) 2、主要法律法规 (5) 3、主要产业政策 (6) 二、行业发展概况 (10) 1、我国天然气行业发展情况 (10) 2、天然气行业在我国的发展前景 (11) 3、我国天然气行业民间资本的发展 (12) 三、我国天然气行业主要企业 (13) 1、中国石油天然气股份有限公司 (13) 2、中国石油化工股份有限公司 (13) 3、广汇能源股份有限公司 (14) 4、山东新潮能源股份有限公司 (14) 5、洲际油气股份有限公司 (14) 5、山西蓝焰控股股份有限公司 (15) 6、新疆鑫泰天然气股份有限公司 (15) 四、影响行业发展的因素 (15) 1、有利因素 (15) (1)天然气资源潜力大 (15) (2)天然气消费增长空间大 (15) (3)产业政策支持 (16)

2、不利因素 (17) (1)行业技术与配套设施水平与发达国家存在差距 (17) (2)天然气资源对外依存度高 (17) (3)与煤、油等替代能源相比,天然气产品不具价格优势 (18) 五、进入行业的壁垒 (18) 1、行政许可壁垒 (18) 2、技术壁垒 (19) 3、资金壁垒 (19) 六、行业技术水平与技术特点 (20) 1、碳酸盐岩气藏开发技术 (20) 2、低渗透气藏开发技术 (20) 3、致密砂岩气藏开发技术 (21) 4、含硫气藏开发技术 (22) 5、异常高压气藏开发技术 (22) 七、行业上下游行之间的关联性 (22)

一、行业监管体制及主要政策法规 1、行业主管部门与监管体制 我国天然气行业从勘探到试采、生产、销售等各个环节均受到政府机关多方面的监管。行业主管部门主要有自然资源部、国家发改委、国家安全生产监督管理局等。 自然资源部承担保护与合理利用土地资源、矿产资源、海洋资源等自然资源的责任。承担规范国土资源管理秩序的责任。承担优化配置国土资源的责任。负责规范国土资源权属管理。负责矿产资源开发的管理。负责管理地质勘查行业和矿产资源储量。承担地质环境保护的责任。依法征收资源收益,规范、监督资金使用,拟订土地、矿产资源参与经济调控的政策措施。 国家发改委负责拟订并组织实施国民经济和社会发展战略、中长期规划和年度计划,统筹协调经济社会发展;负责天然气行业的行业管理和协调,统筹加快推进天然气资源勘探开发,促进天然气高效利用,调控供需总量基本平衡,推动资源、运输、市场有序协调发展;负责石油天然气(含煤层气)对外合作项目(含风险勘探和合作开发区块和总体开发方案)备案工作;负责天然气价格政策制定。 国家安全生产监督管理局负责组织起草安全生产综合性法律法规草案,拟订安全生产政策和规划,指导协调全国安全生产工作;承担工矿商贸行业安全生产监督管理责任,按照分级、属地原则,依法监督检查工矿商贸生产经营单位贯彻执行安全生产法律法规情况及

鱼骨图分析法(又名因果图)

鱼骨图Cause & Effect/Fishbone Diagram 第1章概念与来源 鱼骨图又名特性因素图是由日本管理大师石川馨先生所发展出来的,故又名石川图。鱼骨图是一种发现问题“根本原因”的方法,它也可以称之为“因果图”。鱼骨图原本用于质量管理。 问题的特性总是受到一些因素的影响,我们通过头脑风暴找出这些因素,并将它们与特性值一起,按相互关联性整理而成的层次分明、条理清楚,并标出重要因素的图形就叫特性要因图。因其形状如鱼骨,所以又叫鱼骨图(以下称鱼骨图),它是一种透过现象看本质的分析方法,又叫因果分析图。同时,鱼骨图也用在生产中,来形象地表示生产车间的流程。下图为鱼骨图基本结构: 一般可转化为三种类型: A、整理问题型鱼骨图(各要素与特性值间不存在原因关系,而是结构构成关系,对问题进行结构化整理) B、原因型鱼骨图(鱼头在右,特性值通常以“为什么……”来写) C、对策型鱼骨图(鱼头在左,特性值通常以“如何提高/改善……”来写) 第2章应用场景 鱼骨图常用于查找问题的根因时使用,如对于现场客户的需求进行分析整理时可使用该工具分析用户的本质需求。 第3章使用步骤 制作鱼骨图分两个步骤:分析问题原因/结构、绘制鱼骨图。 分析问题原因/结构

A、针对问题点,选择层别方法(如人机料法环测量等)。 B、按头脑风暴分别对各层别类别找出所有可能原因(因素)。 C、将找出的各要素进行归类、整理,明确其从属关系。 D、分析选取重要因素。 E、检查各要素的描述方法,确保语法简明、意思明确。 分析要点: a、确定大要因(大骨)时,现场作业一般从“人机料法环”着手,管理类问题一般从“人事时地物”层别,应视具体情况决定; b、大要因必须用中性词描述(不说明好坏),中、小要因必须使用价值判断(如…不良); c、脑力激荡时,应尽可能多而全地找出所有可能原因,而不仅限于自己能完全掌控或正在执行的内容。对人的原因,宜从行动而非思想态度面着手分析; d、中要因跟特性值、小要因跟中要因间有直接的原因-问题关系,小要因应分析至可以直接下对策; e、如果某种原因可同时归属于两种或两种以上因素,请以关联性最强者为准(必要时考虑三现主义:即现时到现场看现物,通过相对条件的比较,找出相关性最强的要因归类。) f、选取重要原因时,不要超过7项,且应标识在最未端原因; 绘制鱼骨图 鱼骨图做图过程一般由以下几步组成: 1.由问题的负责人召集与问题有关的人员组成一个工作组(work group),该组成员必须对问题有一定深度的了解。 2.问题的负责人将拟找出原因的问题写在黑板或白纸右边的一个三角形的框内,并在其尾部引出一条水平直线,该线称为鱼脊。 3.工作组成员在鱼脊上画出与鱼脊成45°角的直线,并在其上标出引起问题的主要原因,这些成45°角的直线称为大骨。 4.对引起问题的原因进一步细化,画出中骨、小骨……,尽可能列出所有原因 5.对鱼骨图进行优化整理。 6.根据鱼骨图进行讨论。完整的鱼骨图如图2所示,由于鱼骨图不以数值来表示,并处理问题,而是通过整理问题与它的原因的层次来标明关系,因此,能很好的描述定性问题。鱼骨图的实施要求工作组负责人(即进行企业诊断的专家)有丰富的指导经验,整个过程负责人尽可能为工作组成员创造友好、平等、宽松的讨论环境,使每个成员的意见都能完全表达,同时保证鱼骨图正确做出,即防止工作组成员将原因、现象、对策互相混淆,并保证鱼骨图层次清晰。负责人不对问题发表任何看法,也不能对工作组成员进行任何诱导。 鱼骨图使用步骤 (1)查找要解决的问题; (2)把问题写在鱼骨的头上; (3)召集同事共同讨论问题出现的可能原因,尽可能多地找出问题; (4)把相同的问题分组,在鱼骨上标出; (5)根据不同问题征求大家的意见,总结出正确的原因;

2014年天然气供给分析报告

2014年天然气供给分 析报告 2014年4月

目录 一、国内气源:价格刺激非常规气产量增长 (4) 1、上游勘探开发仍处于初期阶段 (4) 2、国内天然气供给或将逐步替代进口 (5) 3、常规及致密气:四川发现令人振奋新疆新模式有望创新 (6) (1)中石油勘探成果表明常规储量仍有上升空间 (6) (2)四川或将替代鄂尔多斯成为天然气最大产地 (7) (3)新疆油气田:塔里木发展稳健新疆油田合作发展模式值得关注 (8) (4)中石化产量增速较快 (9) 4、海上产量:预期增速将加快 (10) (1)2011-2013年产量增速缓慢 (10) 5、页岩气:近期取得实质性突破 (11) (1)上调2015年产量,微调2020年产量 (11) (2)四川正成为页岩气核心产区 (12) (3)中石化正成为四川页岩气开发领军企业 (12) (4)中石油项目稳步推进 (13) (5)延长石油 (14) (6)外资合作项目 (14) (7)钻井成本仍居高钻井效率可提升 (15) 6、煤层气:行业发展迟缓 (15) (1)2013年煤层气产量增速放缓 (15) 7、煤制气:大唐项目或延期 (18) (1)预期2020年产量可达440亿方/年 (18) (2)新疆煤制气项目盈利能力或更强 (20) (3)诸多环境风险 (20) 二、进口气:管道占优LNG后来居上 (21) 1、进口管道气:俄天然气或成为―十三五‖主要供应源 (21) (1)2020年管道气进口量下调9% (21) (2)土库曼斯坦:连接世界第二大气藏气源 (22)

(3)俄罗斯:俄罗斯石油公司或参与协商进程或加快 (23) (4)缅甸进口管道气–连接西南边境 (24) 2、LNG进口:新合同签订速度放缓 (25) (1)价格缺乏竞争优势 (25) (2)2011年以来仅签订一份进口大单 (26) (3)接收站建设推迟 (27) 3、未来重心为北美LNG (28) (1)中国石油公司在北美天然气资产逐步增加 (28) (2)美国LNG出口批准加速:2016年有望开始供应全球 (29) (3)预测美国长期天然气价格为5美元/百万英热单位 (31)

家用燃气灶结构和性能分析

一、家用燃气灶的种类与型号 1.种类 根据燃气灶使用气源可分为液化石油气灶、天然气灶和人工煤气灶等;按灶面材质可分为不锈钢灶、搪瓷灶、烤漆灶和钢化玻璃灶等;按燃烧器数目可分为单眼灶、双眼灶、三眼灶和多眼灶等;按燃烧器引入一次空气位置可分为上进风灶和下进风灶;按燃烧方式可分为大气式燃气灶和完全预混式燃气灶;按安装方式可分为嵌入式灶和台式灶。 每台燃气灶的侧面或正面应有燃气灶标识(又称铭牌),包括技术指标、警示性说明、操作标志等容。下面举例解释(见表1)。燃气灶技术参数标识包括了灶具的品牌:旺气牌;安装方式:嵌入式;燃烧器类别:旋火型;灶具能源:燃气;型号:JZ20Y2-2(其中J2是家用燃气灶的汉语拼音缩写,20Y指当地液化气的气源成分,后面2是指燃烧器的数目两个,杠后2是指灶具的改型序号);燃气压力:2800Pa(指使用气源的额定压力值);气源:液化石油气(指灶具适用气源种类);执行标准:GB16410-1996(家用燃气灶的国家标准代号);热流量(指单个燃烧器额定每小时燃烧消耗的燃气热量);左:3.5kW(指左燃烧器的热流量值);还标出了出厂日期、编号、厂名。在灶具的明显位置印制警示性说明,在操作旋钮上方印制

调整操作方向的标志。这些是国家标准对产品铭牌的要求。 二、家用燃气灶的结构分析 家用燃气灶是通过燃气的化学能向热能的转化来烹调菜肴、加工食品,以满足家庭需要的燃气用具。燃气灶由供气部分、燃烧部分和辅助部分组成。 图1 台式燃气灶结构图 1.供气部分 供气部分包括燃气管路(含燃气主管及支管),阀门等。这部分的作用是根据燃烧器的设计流量,供应足够的燃气量;阀门是控制燃气灶的开关,要求阀门开关灵活,管路及阀门应保证严密不漏气。 阀门是灶具中的主要部件,以台式灶为例,阀门由旋塞和阀体两部分组成,旋塞的锥体上设有2组通气孔,第1组气孔是供给点火装置的气源,第2组气孔是供给燃烧器的气源。两组气孔分别对应阀体通向点火装置和燃烧器的供气管路。当旋钮按下到底后,旋塞向左旋转90度,此时第1组气孔与阀体通向点火装置的气孔连通,给点火装置供气,第2组气孔中主气孔与阀体通向燃烧器的气孔连通供气,点火装置动作点火,点燃燃烧器,此时处于最

上海市天然气管网天然气特性分析

上海市天然气供气特性分析 二00四年六月

前言 1.上海市天然气的发展: 上海市是国际化特大型城市,是我国最早使用城市燃气的城市,城镇居民已实现全气化。随着城市的发展,目前已形成人工煤气250万户、天然气100万户、液化石油气240万户的城市燃气供应系统。由于人工煤气的生产过程效率低、污染严重、成本高,需要大量的煤、油的运输,鉴于上海环境保护、地理位置、运输条件和能源结构的调整,上海市将逐步淘汰煤制气和油制气,用天然气逐步替代人工煤气。东海天然气的供气和西气东输工程的投产,为上海目前和今后城市燃气提供了充足稳定的气源,使上海这一有一百多年人工煤气生产和使用历史的特大型城市获得了燃气事业再一次大发展的机遇。根据上海市的有关规划,上海将在7-10年内在市区基本完成天然气转换,预计天然气供应量2005年将达到22亿立方米、2010年达到80亿立方米,分别占上海市一次能源的6%和11%。对于上海这一国际化大都市而言,保证稳定地供气和安全使用天然气、降低燃气安全事故,是头等大事。 2.天然气来源的不同和性质上的差异: 国家统计局公布的数据显示,2001年,中国的天然气产量为303.4亿立方米。而据预测,到2005、2010和2020年,中国的天然气需求量将分别达到645、1120和2520亿立方米;同期,中国的天然气产量将分别达到625、968和1420亿立方米。我国的天然气生产,主要集中在中西部地区的四川、塔里木、柴达木、鄂尔多斯和沿海大陆架区域以及油田伴生气。除了本国生产外,中国需要通过从俄罗斯、中亚等地进口天然气以及进口液化天然气等办法来弥补供需缺口。不同的油气田的天然气由于原始生物的种类、地质生成的条件的不同,其成分会略有差异,比如四川气田的天然气含有较多的氮气、油田伴生气会有一部分轻烃类成分等,它们的热值、密度等特性都有所不同。 3.天然气的成分和特性对民用燃烧器具的影响,燃具的燃气适配性问题:每一种燃气燃烧器具都必须正常地燃烧,因此都是根据的一定的燃气的特性进行设计的。燃气的密度、理论空气量、燃烧速度等等特性不同,在燃气器具上形成的一次空气量、火焰状况也是有差异的。我国的城市燃气分类国家标准GB13611将天然气分为10T、12T、13T。燃气器具的生产也是按照燃气分类的基准气或者按照销售地区的气源特性进行设计、测试,以适应当地气源的特性,保证正常燃烧。由于上海市的特殊的地理位置和天然气发展规划,将在同一区域存在着不同来源的天然气,其成分和特性有一定差异,这必将对在上海使用的天然气器具的燃气适配性产生一定程度的影响。

天然气行业分析报告

天然气行业分析 行业现状 天然气是一种优质、高效的清洁能源和化工原料,主要成分是甲烷,燃烧后的主要生成物为二氧化碳和水,其产生的温室气体只有煤炭的1/2,是石油的2/3,现广泛地应用于国民经济建设的各个方面。 新世纪以来,中国天然气进入快速发展时期,消费快速增长,储产量保持增长高峰,基础设施建设快速推进,市场化建设取得积极进展,多元化供气格局基本形成,中国在世界天然气市场中的角色正在发生重大转变。加强天然气的开发利用,对改善我国能源结构,提高能源利用率,缓解能源运输压力,减污染物排放,改善大气环境,提高人民生活质量具有重要的作用。 未来10~20年,中国仍处于经济社会转型期,面对严峻的资源与环境挑战,天然气需求仍将进一步增大,供应能力大幅提升,中国将在全球市场中发挥日益重要的作用。 一、天然气将成为未来几十年我国发展最快的能源行业 1、近年来我国天然气储产量快速增长 近几年来,我国天然气储量与产量双双快速增长,天然气工业进入快车道。根据国土资源部2014年1月8日最新发布的全国油气资源动态评价成果显示,我国天然气地质资源量62万亿立方米,比2007年的评价结果增加了77%。近年来我国天然气储量都保持了增长高峰,2000-2012年探明地质储量由7600亿增加到1.33万亿立方米,年均增长5.9%。产量呈年均两位数的增长,从2000年的270亿立方米到2012年的1070亿立方米,年均增长12%。2013年天然气依然保持高产,约1170亿立方米,同比增长8.6%。2014年1-4月,全国天然气产量430亿立方米,同比增长7.0%;天然气表观消费量614亿立方米,增长8.1%。 2、产量增长已跟不上需求的急速攀升,对外依存度不断上升 2013年,我国天然气表观消费量达到1676亿立方米,同比增长13.9%,已成为世界第三大天然气消费国。

城市燃气行业分析报告

第一部分 都市燃气业进入业态变迁期 都市化推动都市燃气行业稳步进展 都市燃气是都市居民、工商户的生活能源之一,用于炊事、制冷等。它包括管道气和瓶装气。管道气要紧是管道煤气、管道天然气。瓶装气差不多是液化石油气(LPG )。 作为公用事业,都市燃气行业进展的动力来自都市化。一方面,都市的“集聚效应”使集中供气成为可能;另一方面,都市生活要求使用燃气清洁高效的生活能源。从统计数据来看,反映燃气行业进展的重要指标――年度供气量与都市人口数量在增长方向和速度上都差不多一致。 都市化是推动燃气行业进展的动

基于以下理由,我们相信都市燃气行业以后保持稳定的增长态势。 基于对都市化进展的良好预期,

?中国都市化始终保持较快增长速 度,都市人口的增加扩大了燃气潜在用户数量。 ?作为公用事业进展最有力的推动 者,政府在“十五”专项规划中提出目前都市气化率由84%提高到95%。 ?越来越多的都市对能源的环保要 求越来越高,使得煤、汽油等重污染能源的使用受到越来越严格地限制。 ?家庭小型化趋势有利于人均用气 量的增长。经验表明,户均人口越少,人均年用气量越高。目前都市中差不多出现了户均人口不断下降的趋势,预示人均用气量

不断上升。 都市居民的收入水平不断上升, 环保意识不断提高,也有利于都 市燃气行业的进展。 各业态增速不一 不管从用户依旧用量上看,目前液化 石油气是都市燃气的主体。2001年,都图2:2001年我国都市燃气图2:2001年我国都市燃气 市燃气用户中瓶装液化石油气用户大约 占64%,管道气用户占36%。以热值计算, 总体消费量中液化石油气占58%,煤气 占18%,天然气占24%。

天然气成分及热值分析法:气相色谱外气体分析及拉曼光谱技术

天然气成分及热值分析法:气相色谱、红外气体分析及拉曼光谱技术天然气是烃类和少量非烃类混合气体的总称。由于不同产地的天然气,其组成成分和燃烧特性各有差异,即便是相同体积的天然气,其燃烧所产生的能量也各不相同,当前,天然气能量计量与计价已成为国际上最流行的天然气贸易计量与结算方式。天然成分热值分析法作为天然气能量计量的主要分析方法,可有效避免因气源不同引起的热值偏差,准确计量天然气热值,减少贸易结算纠纷,促进天然气行业的健康发展。 天然气成分热值分析法是基于天然气中每个组分对热值所做出贡献的原理进行测试,目的是通过适当的分析方法来测定不同气体组分的摩尔分数。热值可以通过加权不同摩尔分数的气体成分和其相应组分气体的摩尔热值从而计算获得。通过这一原则可以计算出天然气的摩尔热值。目前,国内外天然气成分热值分析方法普遍使用的技术有气相色谱GC法、非分光红外NDIR法和激光拉曼光谱天然气分析法,下文对其工作原理及特性作了分别介绍。 1、气相色谱仪GC法热值分析 GC由气路系统、进样系统、色谱柱、电气系统、检测系统、记录器或数据处理系统组成。其工作原理为:待测混合气体首先被惰性气体(即载气,一般是N2、H2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就可以形成色谱图,它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。

天然气行业研究报告

2008年石油天然气行业研究报告 ■文/杨杰 石油和天然气是现代社会的重要能源和化工原料,在国民经济体系中具有重要地位。我国“多煤、缺油、少气”的资源禀赋导致我国油气探明储量和产量较低,对外依存度不断提高。 目前,我国石油天然气行业受国家管制程度较高,市场化程度有限。我国大力发展可再生能源和替代能源以及能源管理体制的改革、能源价格体系的改革、能源税费政策的改革,将对石油天然气行业的发展产生重大影响。此外,我国油气产量增长前景有限,国际市场价格波动对该行业盈利能力有较大影响。 第一章行业概况 (一)行业界定 本报告所指石油化工行业是包括石油天然气的开采、石油天然气的加工及石油天然气制品的制造。 (二)行业在国民经济中的地位 石油天然气是现代社会的基础能源和化工原料,是我国支柱产业之一,在国民经济体系中占据重要地位。 石油天然气是现代社会最重要的能源。截止2006年底,世界石油和天然气消费分别占一次能源消费总量的35.8%和23.7%,石油天然气在现代经济活动能源消费中占有重要地位。目前石油天然气提供的能源主要用作汽车、飞机、轮船、锅炉以及民用等领域的燃料。总的来看,石油和天然气供应不足已成为制约我国国民经济快速增长的因素之一。 石油提供了绝大多数的有机化工原料。到目前为止,石油是化工行业最好的原料来源,石油天然气行业的下游产品使用范围遍及国民经济中的大多数行业。高分子材料、轻工、纺织、农药化肥等下游行业对石油天然气行业有较强的依赖。(三)行业发展现状 行业利润强劲增长。近八年来,我国石油天然气行业总体利润额一直处于上升阶段,并保持了与国际油价较强的相关性。由于国际油价持续保持在高位,预计行业盈利能力仍将保持在较高的水平。 国内固定资产投资增长较快,外商投资增长显著。2007年1-10月份,包括石油天然气在内的石油化工行业固定资产投资完成5278.1亿元,同比增长36.1%。截止2007年底,在我国投资的石油化工外资企业已达2055家,已经形成了以油品营销、天然气开发、石油化工、石化仓储物流等为重点的产业集群,产业布局不断完善。 我国原油产量增长较慢,进口依赖程度较高。从2002年至2007年,我国原油产量增长了1965.95万吨,增长了11.77%;而原油进口增加了9376万吨,增长了135.08%。2002年-2007年我国原油需求的增量部分有82.67%依赖进口1,截止2007年底,我国原油进口依存度已上升至47%,预计2008年将突破50%。随着我国能源紧缺程度的加重,天然气供需缺口也越来越大,进口依存度有明显上升的趋势。 1未考虑我国原油出口的因素,2007年我国原油出口389万吨,

天然气组分分析仪基础知识

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 天然气组分分析仪基础知识 组分分析仪基础知识调度运行中心陈宇2017年08月 1/ 26

目录一、组分分析仪原理及概况二、组分分析仪日常操作三、组分分析仪巡检要求

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 一、组分分析仪原理及概况:从四个方面来谈这部分内容,全部阐述清楚后,会让大家对组分分析仪有更深刻全面了解。 ①组分分析仪是什么?②为什么需要用组分分析仪?③组分分析仪原理和结构?④我公司主要在用的组分分析仪 3/ 26

①组分分析仪是什么?? 非常的简单,顾名思义组分分析仪就是用来分析(气体)混合物的组分信息的。 众所周知,我们场站现在在用的气是由六大气源(西一气、西二气、川气、东海气、LNG、丽水36-1气)提供的,不同的气源有不同的气质组分,天然气专用的组分分析仪可以测出甲烷、乙烷、丙烷、异丁烷、正丁烷、正戊烷、异戊烷、二氧化碳、硫化氢等气体混合物中每种气体的组分数据。 ? 组分分析仪又称为气相色谱分析仪,由载气带入,通过对被检测混合物中组分有不同保留性能的色谱柱使各组分分离,一次导入检测器,以得到各组分的检测信号。

燃气行业职业病危害分析报告

职业危害分析报告 一、天然气危害因素 1、天燃气本身的危害因素 燃气是具有一定毒性的爆炸性气体,又是在压力下输送的,由于管道及设 备材质和施工方面存在的问题和使用不当,容易造成漏气,有时引起爆炸、着 火和人身中毒的危险。当浓度达25~30%时,人会出现头疼、头晕、呼吸加速,心跳加快、注意力不集中、乏力及肌肉协调运动失常等,当浓度进一步升高时,则出现意识障碍、四肢冰冷,呼吸心跳停止,而致电击样”死亡。 2、环境中的职业危害因素 由于燃气管道安装多是室外作业,夏天平均气温较高,高温首先引起血管 膨胀,血液流动速度加快,毛细血管扩张,导致心脏负荷加重,身体能量加剧 消耗。脑部供血、供养下降。紫外线对人体的皮肤晒伤或可能导致人员中暑。 3、施工安装及运营过程中的职业危害因素 a、燃气管道在安装过程中需要进行喷砂除锈或角磨机除锈,机器使用不当或未穿戴防护工具很容易伤害到使用者; b、防腐作业时,防腐油漆中树脂成分为丙烯酸树脂和聚酰胺树脂,溶剂中含有苯、甲苯、二甲苯、正己烷等,在喷涂过程中油漆及胶黏剂分别可挥发出 丙烯酸、丙烯腈、丙烯酸丁酯、甲基丙烯腈、丙烯酸乙酯、甲基丙烯酸、二甲 基甲酰胺、甲醛等有毒物质,对人体危害很大; c、电焊作业:电焊作业时产生的氧化锰、一氧化碳、氮氧化物、臭氧等有 毒物质,人体吸入后对神经系统、眼和皮肤都会有不同程度的损伤同时,电焊 和气焊的弧光都可产生大量紫外线而引起电光性眼炎,伤害作业人员的眼睛。 d、噪声:在运营过程中,天燃气在天燃气管道内、容器内流动产生的动力性噪声管道安装程中,发电机、角磨机、抽水水泵的机械工作噪声,对人体健 康也有一定的影响。 4、场站工作人员的职业危害因素 输气站场工人除在站场内及站场外沿部分管线进行定时巡检作业外,工作 时间均在值班室进行计算机视屏或指令远程操作,加气站工人身上不允许带明 火或静电进行加气作业,且在气体排污放散时,会产生少量的粉尘,天燃气短 时间高压排空具有一定冲击力,操作不当容易引爆或伤害人员[2]。 二、天燃气行业的职业病的防治措施 1、管理上应做到

相关文档
最新文档