代谢组学小常识

代谢组学小常识
代谢组学小常识

代谢组学小常识

概念:

?代谢组:指一个细胞、组织或器官中所有代谢物的集合, 包含一系列不同类型的小分子(通常分子量<1000), 比如肽、碳水化合物、脂类、核酸等。

?代谢组学:通过考察生物体系(细胞、组织或生物体)受刺激或扰动后,其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学。

实验流程:(以液质联用为基础的代谢组学为例)

?样本前处理:在保证小分子代谢物完整的前提下,处理的步骤越简单越好,以保证操作容易重复,也为大批量样本的处理节约时间。

?数据采集:依据实验目的有所不同。

o非目标代谢组学:选用高分辨质谱仪(TOF,Orbitrap等),有助于检测到尽可能多的化合物,另外高分辨的质核比数据也有助于数据库检索以及化合物的鉴定。

o目标代谢组学:通常使用三重四极其杆质谱,提高检测的灵敏度以及定量的准确性。

?数据预处理:峰提取,排列,归一化。

o多数质谱商家都提供了配套的预处理软件,例如安捷伦公司的MassHunter,热电的Sieve,沃特世的MarkerLynx以及Progenisis QI。

o同时也有一些基于网络的可以免费获取的软件。建议使用配套的软件,因为不需要额外的数据转换,不需要上传数据,节省时间。

?数据分析:多元统计分析包括主成份分析(PCA),偏最小二乘判别分析(PLS-DA),正交偏最小二乘判别分析(OPLS-DA),聚类分析(HCA)等。各个厂商也提供了相应的统计分析软件,比如安捷伦的MPP,热电的Sieve,沃特世的Ezinfor。目前常用的第三方软件是Simca-p,同时也有一些网络的开源软件可以使用。

?化合物鉴定:数据库检索,标准品对比,二级质谱对比。

代谢组学文章中常见的统计图(一)

主成分分析(PCA)

PCA得分图(score plot),用来看样本天然的分组情况,在分析时不加任何分组信息。图中每一个点代表一个样本,样本在空间中所处的位置由其中所含有的代谢物的差异决定。

PCA载荷图(loading plot),用来寻找差异变量。同种的每一个点代表样本中还有的一个代谢物物,距离原点越远的代谢物被认为对样本的分类贡献越大。

偏最小二乘判别分析(PLS-DA)

得分图和载荷图的解释同PCA。区别在于,PLS-DA在分析时提前赋予每个样本分组信息,简单说,就是在分

析时扩大组间差异,减少组内差异,多用来寻找标记物。

正交偏最小二乘判别分析(OPLS-DA)

在OPLS-DA分析中,寻找标记物通常使用S-plot。如图中所示,得分图中,两组样本分布在y轴两侧,通过S-plot可以获得标记物在两组中相对含量的变化。也就是说,处在S-plot右上角的化合物(距离原点越远,对分类贡献越大)在处在得分图y轴右侧的样本中含量较高,反之亦然。

代谢组学文章中常见的统计图(二)

?图中每一行代表一个化合物,每一列代表一个样本。

?上边对样本进行聚类分析,左边对化合物进行聚类分析。

?绿色代表该化合物在样本中含量较低,红色代表含量较高(也有用其他颜色表示的)。

?通过此图,可以直观地看出化合物在样本间的变化趋势;同时也可以找出具有相同变化趋势的代谢物。?在对化合物进行鉴定之后或选择出生物标记物之后,可将化合物名称(或对应的HMDB 或者KEGG编号)输入MetaboAnalyst软件(免费)进行此分析,来观察体内哪些代谢途径受到了影响。

?在图中,p值越小(-logo(p)越大),pathway impact越大,证明该条代谢通路被严重扰动。

?此分析可用来寻找化合物之间的内在联系(数值上的联系),如图中红色表示负相关,黄色表示正相关。

?可用来筛选与某一类或者某一个自己感兴趣的化合物产生正相关或者负相关的代谢物。?用来评价算选出的标记物的诊断能力。

?AUC曲线下面积越大,诊断能力越好。

非目标代谢组学(untargeted metabolomics)中常用的方法学考察的方法

QC样本的制备:

?混合相同体积的所有待检测样本,然后按照与待测样本相同的前处理方法来处理QC样本,之后进样进行LC-MS分析。

?样本检测时,通常在检测最开始运行几次QC样本,之后根据样本量的大小在每检测几个样本之后检测一次QC样本。

方法学考察:

方法一:

最早使用的一种方法,从QC样本的总离子流图中选择具有代表性的离子峰(覆盖不同的保留时间,不同的强度),在对QC样本进行重复检测之后,计算这些离子的保留时间以及峰面积的相对标准偏差(RSD),用以考察分析方法的稳定性以及重复性。

方法二:

所有样品检测完之后,收集所有的QC样本的原始数据进行数据预处理,包括(峰提取,排列,归一化等),经过数据过滤(80%规则)之后,计算剩下的峰的峰面积的RSD值。

通常如果在一个样本中有超过70%的化合物的RSD值小于等于30%,则证明该方法有良好的稳定性以及重复性,所得到的数据可靠(也有不同的评价标准,比如要求LC-MS数据小于20%,GC-MS数据小于30%等)。

图中柱形图表示化合物在不同RSD范围内的百分比分布,折线图表示在不同RSD范围的累计百分比。

方法三:

原始数据经过数据预处理之后,将所有样本(包括QC样本)进行PCA分析,在得分图中观察QC 样本的聚集程度。

由于QC样本是等量混合了所有的被检测样本,理论上QC样本包含了所有样本中的代谢物,因此QC样本理论上会分布在原点周围。

图中QC样本紧密聚集,证明方法稳定,重复性良好。

方法四:

采用混合标准品作为QC,该QC通常包含不同物理化学性质的体内和体外代谢物(使所选择的化合物具有代表性)。

检测结束后,计算这些化合物的保留时间以及峰面积的RSD用以对分离分析方法进行评价。

代谢组学研究中需要了解的质谱知识(一)

主要介绍以液质联用为分析工具的代谢组学研究中的常见问题:

1)在分析样本时,要选用什么质谱?

2)质谱仪中通常按照质量分析器以及联用方式的不同对质谱进行分类,常见的包括包括:单四级杆,三重四级杆,飞行时间(TOF),Q-TOF,离子阱,线性离子阱(LTQ),静电场轨道阱(Orbitrap),LTQ-Orbitrap等。这么多质谱,我们应该如何选择?

在靶向代谢组学中,通常使用三重四级杆质谱。因为靶向代谢组学是针对某一些特定的化合物进行定量检测,而LC-QqQ/MS 在MRM扫描模式下对化合物进行定量分析(如药代动力学研究)已非常普遍,所以使用此方法以达到更高的灵敏度,更准确的定量。

在非靶向代谢组学研究中,需要选择高分辨质谱进行数据采集,因为高分辨质谱可以帮助我们检测到尽可能多的化合物,提供所检测化合物的精确分子量,同位素分布等信息,有助于化合物的鉴定。

何为高分辨?首先了解以下分辨率,分辨率就是指质谱仪区分两个质量相近的离子的能力。这个区分能力也有不同的定义,如10%峰谷分离,50%峰谷分离等。

理论知识就不多解释了,举个例子说明便知。

以H为例,低分辨质谱测得的H的分子量为1,而高分辨质谱测得的H分子量为1.007825(当然,能测到多精确,取决于分辨率有多高)。

有什么用呢?

有用!以C2H4,CO,N2为例,这三者在低分辨质谱中测得的分子量均为28,也就是说低分辨的质谱没有办法根据分子量将三者分离;但是高分辨质谱测得三者的分子量分别为28.0313,27.9949,28.0061,可以将三者分开。

所以在非靶向代谢组学中,由于生物样本中化合物的组成非常复杂,所以要用高分辨的质谱仪对其进行检测,以达到尽可能多的检测到化合物的目的。

常用的高分辨质质量分析器:TOF和Or比trap,以及他们与其他质量分析器的联用形式如Q-TOF,Q-Orbitrap,LTQ-Orbitrap等。

注:

可以简单的认为,分辨率越高,区分离子的能力越强,即能够区分离子在很细微的分子量上的差异。但请不要将分辨率和质量精度混淆,两者不一样。

有一个简单的类比,低分辨质谱对比高分辨质谱就类似于普通天平对比十万分之一天平,精密天平可以区分物质质量的细微差异,但是天平称出的质量准确与否,取决于天平在使用之前是否校正。

代谢组学研究中需要了解的质谱知识(二)

上一篇介绍了以下质谱的分辨率,高分辨率质谱有区分分子量细微差异的能力,但是测得的分子量准确与否,则要看质谱的质量精度了。分辨率和质量精度不一样,高分辨质谱也会有质量偏差很大的情况,那今天就来谈一谈质量精度。

什么是质量精度?质量精度指的是质谱测得值和理论值之间的误差。常以mDa或者ppm表示。

举个例子:

C6H12O6理论精确分子量为180.0634,

如果测得分子量为180.0631,

则误差为

180.0631-180.0634=-0.0003Da=-0.3mDa

或者

(180.0631-180.0634)/180.0634=1.67e-6即1.67ppm

~~~~~~~~~~~~~~~~~~

在液质联用中,化合物通常是以加合离子的形式出现,如[M+H]+,[M+Na]+等,以上只是举例说明。

那么,如何保持较高的质量精度呢?

所有的高分辨质谱在使用之前都需要对质谱仪进行校正,这个校正其实就是校正质谱的质量轴。就像我们使用十万分之一天平时用一个200克的砝码对天平进行校正一样,质谱的校正也是使用一系列已知分子量的物质(覆盖了从低到高的质量范围)对其进行校正。可以接受的偏差通常为2ppm,校正的频率依实际情况而定,Q-TOF质谱大多数一周校正一次,Orbitrap质谱校正的频率稍少一些。各大仪器厂商常用的校正液如下:

此外,几乎所有的Q-TOF质谱除了在检测之前进行质量轴校正外,在质谱运行过程中还需要对质谱进行实时校正。

在非目标代谢组学中,代谢物的鉴定通常依赖精确分子量,同位素分布等信息,仪器的数据处理软件通常可以根据采集到的质谱图对其元素组成进行推测,方便化合物的鉴定,推测的前提就是质量精度要高,在进行推测时通常需要输入一个可以接受的误差范围(如±5ppm),所以在质谱使用之前一定要对其进行校正,或者一定保证质谱的质量轴是准确的。

在代谢组学文章投稿时,都需要列出已鉴定化合物的检测分子量的误差,这个通常需要自己计算,计算方法如上述例子。这里介绍一个计算精确分子量的网站:

此外,高分辨质谱的数据处理软件如MassHunter,MassLynx,Xcalibur等,都有类似的功能。但是记得读取正确的数值,Monoisotopic mass才是精确分子量。

代谢组学的研究方法和研究流程

代谢组学的研究方法和研究流程分子微生物学112300003林兵 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用,与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来,与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用,它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律.这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障. 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的,他认为代谢组学是将人体作为一个完整的系统,机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年,德国马普所的Fiehn等提出了代谢组学的概念,但是与N ichols on提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程,也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代谢产物的定性定量分析。同时Fiehn还将代谢组学按照研究目的的不同分为4类: 代谢物靶标分析,代谢轮廓(谱)分析, 代谢组学,代谢指纹分析。现在代谢组学在国内外的研究都在迅速地发展, 科学家们对代谢组学这一概念也进行了完善, 作出了科学的定义: 代谢组学是对一个生物系统的细胞在给定时间和条件下所有小分子代谢物质的定性定量分析,从而定量描述生物内源性代谢物质的整体及其对内因和外因变化应答规律的科学。 与基因组学、转录组学、蛋白质组学相同, 代谢组学的主要研究思想是全局观点。与传统的代谢研究相比, 代谢组学融合了物理学、生物学及分析化学等多学科知识, 利用现代化的先进的仪器联用分析技术对机体在特定的条件下整个代谢产物谱的变化进行检测,并通过特殊的多元统计分析方法研究整体的生物学功能状况。由于代谢组学的研究对象是人体或动物体的所有代谢产物, 而这些代谢产物的产生都是由机体的内源性物质发生反应生成的,因此,代谢产物的变化也就揭示了内源性物质或是基因水平的变化,这使研究对象从微观的基因变为宏观的代谢物,宏观代谢表型的研究使得科学研究的对象范围缩小而且更加直观,易于理解, 这点也是代谢组学研究的优势之一. 代谢组学的优势主要包括:对机体损伤小,所得到的信息量大,相对于基因组学和蛋白质组学检测更加容易。由于代谢组学发展的时间较短, 并且由于代谢组学的分析对象是无偏向性的样品中所有的小分子物质,因此对分析手段的要求比较高, 在数据处理和模式识别上也不成熟,存在一些不足之处。同时生物体代谢物组变化快, 稳定性较难控制,当机体的生理和药理效应超敏时,受试物即使没有相关毒性,也可能引起明显的代谢变化,导致假阳性结果。 代谢组学应用领域大致可以分为以下7个方面:

浅谈代谢组学常用数据库类型

代谢组是指某一生物或细胞、组织在一特定生理时期内所有的低分子量代谢产物的集合,主要是指分子量小1000 Da的内源性小分子。根据不同的理化属性可以将代谢组学所包含的物质主要分为氨基酸类(amino acid)、肽类(peptide)、碳水化合物类(carbohydrate)、能量类(energy)、脂类(lipid)、核苷酸(nucleotide)、维生素和辅助因子(cofactors andvitamins)及外源化合物(xenobiotics),面对种类如此繁多复杂的物质,代谢物鉴定成为代谢组学研究的重点,也是目前主要的技术瓶颈。代谢物的鉴定高度依赖于代谢物标准品库,今天小编就主要介绍下代谢组学常用数据库。 1、HMDB HMDB即人类代谢组数据库于2007年发布,目前是世界上较大、较全面的特定生物体代谢组学数据库。该数据库包含或链接三种数据:化学数据、临床数据和分子生物学/生物化学数据。数据库中含有114162个代谢物条目,包括水溶性和脂溶性代谢物,以及被视为丰富(> 1 uM)或相对稀有(<1 nM)的代谢物,涉及25770个代谢途径、18192个代谢反应。

2、METLIN METLIN起源于表征已知代谢物的数据库,目前已扩展为用于鉴定已知和未知代谢物及其他化学实体的技术平台。该数据库超过一百万个分子,包括脂质、氨基酸、碳水化合物、毒素、小肽和天然产物等。METLIN的高分辨率串联质谱(MS/MS)数据库来自于标准品及其标记的稳定同位素类似物生成的数据,在鉴定代谢物过程中起着关键作用。并且METLIN可通过MS/MS数据和片段相似度搜索功能识别未知代谢物。 3、MassBank MassBank,一个高质量质谱数据库,旨在公开分享从代谢物的化学标准品得到的质谱图以方便用户进行代谢物的鉴定。MassBank包含了

代谢组学的研究现状及其在方剂量效关系中的应用

代谢组学的研究现状及其在方剂量效关系中的应用 邓海山,段金廒*,尚尔鑫,唐于平 (南京中医药大学江苏省方剂研究重点实验室,江苏南京210046) 摘要:代谢组学能够准确、灵敏地反映生物体系的整体功能状态,同时克服了传统中医依赖医生个人经验进行诊疗的不确定性。方剂剂量的变化对其疗效乃至功用的改变都将在代谢组图谱的不同变化趋势中得到体现,从而能够对方剂的量效关系及其物质基础给出全新的解释,获得深入系统的认识。本文综述了代谢组学在中医药现代研究中的应用进展,并针对目前方剂量效关系研究中,方剂的疗效评价只能定性不能定量,导致量效关系不明的困境,提出以代谢组学技术作为方剂的整体疗效评价方法,通过追踪代谢组在病理发展过程中以及药物干预下的变化,开展方剂量效关系研究的新思路。 关键词:代谢组学;量效关系;整体疗效评价;代谢网络;中药 中图分类号:R285文献标识码:A文章编号:167420440(2009)0320198206 R esearch advances of m etabono m ics and app lica ti on i n the study of dose2effect r el a ti onsh ip of prescr i p tion s DENG H ai2shan,D UAN Jin2ao,S HANG Er2xi n,TANG Yu2ping (J i a ngs u K e y La bora tory for TCM F ormula e Research,Na nji ng Universit y o f Chinese M e d ici ne,Na nji ng210046,Ch i na) Abstr act:M etabono m es reflects t h e syste matic status of the organis m accurate l y,sensiti v ely and i m per2 sona ll y.To eva l u ate the therapeu tic eff ects bymeans ofmetabono m icsw ill overco m e the deficiency of un2 certa i n ty w ith the trad iti o na ld iagnostic methods i n cluding inspection,auscultation and olfaction,i n qu iry, and palpati o n.The i m pact of the variation of prescripti o ns dosage on effic i e ncy w ill be shown clearly through the change tendencies of metabono me spectra.Consequently,a ne w i n si g ht is obta i n ed f or the dose2eff ect re lati o nship and its materia l basis.The a mbiguous dose2eff ect relati o nship of trand itional Chi2 nese med icine(TC M)prescr i p tions has l o ng been controversia.l It is one of the most i m portant reasons that the therapeutic eff ect of th is kind ofm edic i n es cannot be evaluated quantitative ly.Based on the re2 vie w of t h e applicati o n of metabono m ics i n moder n st u dy of TC M,we suggest to carry out the st u dy on dose2eff ect re lationsh i p of prescri p ti o ns,in wh ich the techn i q ues ofmetabono m ics are e mp l o yed to co m2 prehensi v e l y evaluate the t h erapeutic eff ect of prescriptions,and the variation of metabono m es in the course of disease devecop m ent and treat m ent is traced. K ey words:metabono m ics;dose2eff ect relationsh i p;co mprehensive eval u ation of therapeuti c e f fec;t metabolic net w or k;trad ition Chinese med icine 收稿日期:2009202225 基金项目:江苏省自然科学重大基础研究资助项目(No.06KJ A36022,07K J A36024);江苏省方剂研究重点实验室/青年学者培养计划0资助项目(No.LTC MF20071203) 作者简介:邓海山,男,博士,讲师,研究方向:中药现代仪器分析与中药信息学,Te:l025*********,E2m a i:l hs_deng@n j u tc https://www.360docs.net/doc/8117660721.html, *通讯作者:段金廒,男,教授,博士生导师,Te:l025*********,E2m ai:l d ja@n j utc https://www.360docs.net/doc/8117660721.html,

代谢组学在医药领域的应用与进展

代谢组学在医药领域的应用与进展 一、学习指导 1.学习代谢组学的概念及内涵,掌握代谢组学的研究对象与分析方法。 2.熟悉代谢组学数据分析技术手段 3.了解代谢组学优势特点 4.了解代谢组学在医药领域的应用 5.了解代谢组学发展趋势 二、正文 基因组功能解析是后基因组时代生命科学研究的热点之一,由于基因功能的复杂性和生物系统的完整性,必然要从“整体”层面上来理解构成生物体系的各个模块功能。随着新的测量技术、高通量的分析方法、先进的信息科学和系统科学新理论的发展,加上生物学研究的深入和生物信息的大量积累,使得在系统水平上研究由分子生物学发现的组件所构成的生命体系成为可能[1]。系统生物学家们认为,将生命科学上升为“综合”科学的时机已经成熟,生命科学再次回到整合性研究的新高度,逐步由分子生物学时代进入到系统生物学时代[2]。系统生物学不同以往的实验生物学仅关注个别基因和蛋白质,它要研究所有基因、蛋白质,代谢物等组分间的所有相互关系,通过整合各组成成分的信息,以数学方法建立模型描述系统结构[3,4]。 (一)代谢组学的概念及内涵 代谢组学是继基因组学、转录组学和蛋白质组学之后,系统生物学的重要组成部分,也是目前组学领域研究的热点之一。代谢组学术语在国际上有两个英文名,即metabolomics 和metabonomics。Metabolomics是由德国的植物学家Fiehn等通过对植物代谢物研究提出来的,认为代谢组学(metabolomics)是定性和定量分析单个细胞或单一类型细胞的代谢调控和代谢流中所有低分子量代谢产物,从而监测机体或活细胞中化学变化的一门科学[5]。英国Nicholson研究小组从毒理学角度分析大鼠尿液成份时提出了代谢组学(Metabonomics)的概念,认为代谢组学是通过考察生物体系受扰动或刺激后(如某个特定基因变异或环境变化后),其代谢产物的变化或代谢产物随时间的变化来研究生物体系的代谢途径的一种技术[6]。国内的代谢组学研究小组基本用metabonomics一词来表示“代谢组学”。严格地说,代谢组学所研究的对象应该包括生物系统中所有的代谢产物。但由于实际分析手段的局限性,只对各种代谢路径底物和产物的小分子物质(MW<1Kd)进行测定和分析。 (二)代谢组学优势特点 代谢组学作为系统生物学的一个重要组成部分,代谢组可以更好地反映体系表型生物机体是一个动态的、多因素综合调控的复杂体系,在从基因到性状的生物信息传递链中,机体需通过不断调节自身复杂的代谢网络来维持系统内部以及与外界环境的正常动态平衡[7]。

代谢组学小常识

代谢组学小常识 概念: 代谢组:指一个细胞、组织或器官中所有代谢物的集合, 包含一系列不同类型的小分子(通常分子量<1000), 比如肽、碳水化合物、脂类、核酸等。 代谢组学:通过考察生物体系(细胞、组织或生物体)受刺激或扰动后,其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学。 实验流程:(以液质联用为基础的代谢组学为例) 样本前处理:在保证小分子代谢物完整的前提下,处理的步骤越简单越好,以保证操作容易重复,也为大批量样本的处理节约时间。 数据采集:依据实验目的有所不同。 o非目标代谢组学:选用高分辨质谱仪(TOF,Orbitrap等),有助于检测到尽可能多的化合物,另外高分辨的质核比数据也有助于数据库检索以及化合物的鉴定。 o目标代谢组学:通常使用三重四极其杆质谱,提高检测的灵敏度以及定量的准确性。 数据预处理:峰提取,排列,归一化。 o多数质谱商家都提供了配套的预处理软件,例如安捷伦公司的MassHunter,热电的Sieve,沃特世的MarkerLynx以及Progenisis QI。 o同时也有一些基于网络的可以免费获取的软件。建议使用配套的软件,因为不需要额外的数据转换,不需要上传数据,节省时间。 数据分析:多元统计分析包括主成份分析(PCA),偏最小二乘判别分析(PLS-DA),正交偏最小二乘判别分析(OPLS-DA),聚类分析(HCA)等。各个厂商也提供了相应的统计分析软件,比如安捷伦的MPP,热电的Sieve,沃特世的Ezinfor。目前常用的第三方软件是Simca-p,同时也有一些网络的开源软件可以使用。 化合物鉴定:数据库检索,标准品对比,二级质谱对比。 代谢组学文章中常见的统计图(一) 主成分分析(PCA) PCA得分图(score plot),用来看样本天然的分组情况,在分析时不加任何分组信息。图中每一个点代表一个样本,样本在空间中所处的位置由其中所含有的代谢物的差异决定。 PCA载荷图(loading plot),用来寻找差异变量。同种的每一个点代表样本中还有的一个代谢物物,距离原点越远的代谢物被认为对样本的分类贡献越大。 偏最小二乘判别分析(PLS-DA) 得分图和载荷图的解释同PCA。区别在于,PLS-DA在分析时提前赋予每个样本分组信息,简

代谢组学研究进展综述

代谢组学技术及其在中医研究中的探讨 姓名:郭欣欣学号:22009283 导师:刘慧荣 代谢组学(metabonomics) 是20世纪90年代中期发展起来的一门新兴学科,是关于生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后) 其代谢产物(内源代谢物质) 种类、数量及其变化规律的科学。它研究的是生物整体、系统或器官的内源性代谢物质的代谢途径及其所受内在或外在因素的影响。常用的方法是检测和量化一个生物整体代谢随时间变化的规律;建立内在和外在因素影响下,代谢整体的变化轨迹,反映某种病理(生理) 过程中所发生的一系列生物事件。 1 代谢组学研究技术平台 代谢组学研究的技术平台包括以下几个部分:前期的样品制备,中期的代谢产物检测、分析与鉴定以及后期的数据分析与模型建立。 前期代谢组学研究常用的检测技术,一般不需要对标本行特别的分离、纯化等。但离体条件下,细胞或组织内的代谢状态可迅速改变,代谢物的质与量亦随之变化,为正确反映在体的真实信息,须立即阻断内在酶的活性。最为常用的是冰冻/液氮降温法及冷冻、干燥的保存技术,尽管如此,细胞间仍始终有一低水平的代谢活动,需尽量避免氧化等活化因素。 中期代谢产物的检测、分析与鉴定是代谢组学技术的核心部分,最常用的是NMR及质谱(MS)两种。 核磁共振技术是利用高磁场中原子核对射频辐射的吸收光谱鉴定化合物结构的分析技术,生命科学领域中常用的是氢谱( 1H NMR ) 、碳谱(13C NMR)及磷谱(31P NMR)三种。可用于体液或组织提取液和活体分析两大类。 NMR技术在代谢组学中的应用越来越广泛,它具有如下优点: ①无损伤性,不破坏样品的结构和性质; ②可在一定的温度和缓冲范围内进行生理条件或接近生理条件的实验; ③与外界特定干预相结合,研究动态系统中机体化学交换、运动等代谢产物的变化规律; ④实验方法灵活多样。但仪器价格及维护费用昂贵限制了该技术的进一步普及。 质谱技术是将离子化的原子、分子或是分子碎片按质量或是质荷比(m/e)大小顺序排列成图谱,并在此基础上,进行各种无机物、有机物的定性或定量分析。新的离子化技术则使质谱技术的灵敏度和准确度均有很大程度的提高。NMR技术与MS技术相比,各有其优缺点,需要在研究中灵活选用。总体而言,NMR技术应用的更为广泛。此外,根据代谢组学的研究需要,还常用于其他的一些分析技术,如气相色谱(GC) ,高效液相色谱仪(HPLC) ,高效毛细管电泳(HPCE)等。它们往往与NMR或MS技术联用,进一步增加其灵敏性。但不容忽视的是,随着分析手段更新,敏感性及分辨率提高,“假阳性”的概率也就越大,可能是仪器技术方法固有的,亦或是数据分析过程中产生的。 后期代谢组学研究的后期需借助于生物信息学平台。它往往借助于一定的软件,联合多种数据分析技术,将多维、分散的数据进行总结、分类及判别分析,发现数据间的定性、定量关系,解读数据中蕴藏的生物学意义,阐述其与机体代谢的关系。如果说分析技术在我们面前打开了“一扇门”,正确的数据分析方法和模型建立便是“找到宝藏”的钥匙。 主成分分析法( PCA) 是最常用的分析方法。其将分散于一组变量上的信息集中于几个综合指标(PC)上,如糖代谢、脂质代谢、氨基酸代谢等,利用主成分描述机体代谢的变化情况,发挥了降维分析的作用,避免淹没于大量数据中。其他的模式识别技术,如聚类分析、辨别式功能分析、最小二乘法投影法等在代谢组学研究中亦有其重要的地位。 现实情况下,代谢组学的数据更为复杂,特别是NMR对病理生理过程的研究,将代谢物的表达谱与时间相联系,分析时更加困难,需要借助复杂的模型或是专家系统进行分析(在应用

我国在微生物代谢领域的研究现状及展望

我国在微生物代谢领域的研究现状及展望 发表时间:2012-06-18T14:33:59.827Z 来源:《赤子》2012年第8期供稿作者:李夏 [导读] 微生物代谢是指微生物吸收营养物质维持生命和增殖并降解基质的一系列化学反应过程,包括有机物的降解和微生物的增殖。 李夏(四川化工职业技术学院,四川泸州 646005) 摘要:微生物代谢是指微生物吸收营养物质维持生命和增殖并降解基质的一系列化学反应过程,包括有机物的降解和微生物的增殖。在分解代谢中,有机物在微生物作用下,发生氧化、放热和酶降解过程,使结构复杂的大分子降解;合成代谢中,微生物利用营养物及分解代谢中释放的能量,发生还原吸热及酶的合成过程,使微生物生长增殖。文章主要介绍我国在微生物代谢领域的研究现状及对未来的展望,为我们呈现了一个广阔的微生物代谢世界。 关键词:微生物代谢;分解代谢;合成代谢;研究现 前言 微生物在生长过程中机体内的复杂代谢过程是互相协调和高度有序的,并对外界环境的改变能够迅速做出反应。其原则是经济合理地利用和合成所需要的各种物质和能量,使细胞处于平衡生长状态。在实际生产中,往往需要高浓度的积累某一种代谢产物,而这个浓度又常常超过细胞正常生长和代谢所需的范围。因此要达到超量积累这种产物,提高生产效率,必须打破微生物原有的代谢调控系统,在适当的条件下,让微生物建立新的代谢方式,高浓度的积累人们所期望的产物[1]。 1 我国微生物代谢的研究现状 1.1 利用微生物代谢生产酶 工业上,曾由植物、动物和微生物生产酶。微生物的酶可以用发酵技术大量生产,是其最大的优点。而且与植物或动物相比,改进微生物的生产能力也方便得多。微生物的酶主要应用于食品及其有关工业中。酶的生产是受到微生物本身严格控制。为改进酶的生产能力可以改变这些控制,如在培养基中加入诱导物和采用菌株的诱变和筛选技术,以消除反馈阻遏作用。 1.2 利用微生物代谢产生的代谢产物生产目的物 在微生物对数生长期中,所产生的产物,主要是供给细胞生长的物质,入氨基酸、核苷酸、蛋白质、核酸、脂类和碳水化合物等。这些产物称为初级代谢产物。利用发酵生产的许多初级代谢产物,具有重大的经济意义,我国现已可以根据微生物代谢调控的理论,通过改变发酵工艺条件如pH、温度、通气量、培养基组成和微生物遗传特性等,达到改变菌体代谢平衡,过量生产所需要产物的目的。 1.3 利用微生物代谢理论发展产生了代谢工程 代谢工程是指利用基因工程技术,定向的对细胞代谢途径进行修饰、改造,以改变微生物的代谢特征,并于微生物基因调控、代谢调控及生化工程相结合,构建新的代谢途径,生产新的代谢产物的工程技术领域。 1.4 改变微生物代谢途径生产目的物 改变代谢途径是指改变分支代谢的流向,阻断其他代谢产物的合成,以达到提高目的产物的目的。改变代谢途径有各种方法,如加速限速反应,改变分支代谢途径流向、构建代谢旁路、改变能量代谢途径等不同方法[1]。 1.5 利用微生物代谢进行发酵 数千年来由于科学技术进步缓慢,各种微生物工业也未能充分发展。直到20世纪中期才建立了一系列新的微生物工业。近几年来,由于微生物代谢工程的应用,发酵工业开始进入新的发展时期。发酵产品增长快、质量明显提高,在国民经济中起重要作用。 1.6 微生物代谢在环境方面的应用 微生物降解是环境中去除污染物的主要途径。深人了解污染物在微生物内的代谢途径,将有助于人们优化生物降解的条件,从而实现快速的生物修复。这些代谢中间体大都通过萃取、分析方法进行逐个研究,并借助专家经验拟合出代谢途径,其动力学过程亦很少触及。代谢组学方法的采用有可能改变这一现状[2]。 1.7 利用微生物代谢进行赖氨酸的生产 在许多微生物中,可用天冬氨酸作原料,通过分支代谢途径合成出赖氨酸、苏氨酸和甲硫氨酸。赖氨酸在人类和动物营养上是一种十分重要的必须氨基酸,因此,在食品、医药和畜牧业上需求量很大。但在代谢过程中,一方面由于赖氨酸对天冬氨酸激酶有反馈抑制作用,另一方面,由于天冬氨酸除用于合成赖氨酸外,还要作为合成甲硫氨酸和苏氨酸的原料,因此,在正常细胞内,就难以累积较高浓度的赖氨酸。 为了解除正常的代谢调节以获得赖氨酸的高产菌株,工业上选育了谷氨酸棒杆菌的高丝氨酸缺陷型菌株作为赖氨酸的发酵菌种。由于它不能合成高丝氨酸脱氢酶,故不能合成高丝氨酸,也不能产生苏氨酸和甲硫氨酸,在补给适量高丝氨酸的条件下,可在含较高糖浓度和铵盐的培养基上,产生大量的赖氨酸[3]。 1.8 微生物代谢与分子生物学方法的结合 随着遗传学、分子生物学等方法的不断发展,人们越来越多地将这些方法运用到微生物的研究工作中。一些野生菌的合成能力或分泌能力有限,目前可通过人工诱变或构建高效的基因工程菌株等方法对其进行改造以扩大应用范围此外,现在许多细菌合成拮抗物质的基因已被克隆测序,为使植物获得微生物所具有的特殊功能,一种可能的方法是通过基因工程将目的基因导入植物体内,使植物直接表达活性物质[4]。 2 展望 2.1 微生物代谢在医药行业的展望 微生物在代谢过程中可分泌蛋白酶、纤维素酶、半纤维素酶、果胶酶、淀粉酶等几十种胞外酶进入培养基,这些酶有的可以将药物成分分解转化,形成新的化合物,有的可水解植物细胞壁的纤维素、半纤维素、果胶质等,使细胞破裂,利于有效成分溶出。特别是采用一些酶作用于药用植物材料,使细胞壁及细胞间质中的纤维素、半纤维素等物质降解,使细胞破裂,细胞间隙增加,减小细胞壁、细胞间物质传递屏障、对有效成分从胞内向胞外扩散的阻力减少,可促进有效成分的吸收提高。 2.2 微生物代谢在生理生化、微生物遗传育种方面的展望 随着分子生物学理论与技术的飞速发展,尤其是基因组和后基因组时代的到来,传统上的生理学与遗传学的交叉融合越来越多,许多

代谢组学小常识

代谢组学小常识 概念: ?代谢组:指一个细胞、组织或器官中所有代谢物的集合, 包含一系列不同类型的小分子(通常分子量<1000), 比如肽、碳水化合物、脂类、核酸等。 ?代谢组学:通过考察生物体系(细胞、组织或生物体)受刺激或扰动后,其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学。 实验流程:(以液质联用为基础的代谢组学为例) ?样本前处理:在保证小分子代谢物完整的前提下,处理的步骤越简单越好,以保证操作容易重复,也为大批量样本的处理节约时间。 ?数据采集:依据实验目的有所不同。 o非目标代谢组学:选用高分辨质谱仪(TOF,Orbitrap等),有助于检测到尽可能多的化合物,另外高分辨的质核比数据也有助于数据库检索以及化合物的鉴定。 o目标代谢组学:通常使用三重四极其杆质谱,提高检测的灵敏度以及定量的准确性。 ?数据预处理:峰提取,排列,归一化。 o多数质谱商家都提供了配套的预处理软件,例如安捷伦公司的MassHunter,热电的Sieve,沃特世的MarkerLynx以及Progenisis QI。 o同时也有一些基于网络的可以免费获取的软件。建议使用配套的软件,因为不需要额外的数据转换,不需要上传数据,节省时间。 ?数据分析:多元统计分析包括主成份分析(PCA),偏最小二乘判别分析(PLS-DA),正交偏最小二乘判别分析(OPLS-DA),聚类分析(HCA)等。各个厂商也提供了相应的统计分析软件,比如安捷伦的MPP,热电的Sieve,沃特世的Ezinfor。目前常用的第三方软件是Simca-p,同时也有一些网络的开源软件可以使用。 ?化合物鉴定:数据库检索,标准品对比,二级质谱对比。

代谢组学的发展与药物研究开发

专 论代谢组学的发展与药物研究开发X 刘昌孝 (天津药物研究院,天津药代动力学与药效动力学省部共建国家重点实验室,天津 300193) 摘 要 代谢组学是近年来新发展起来的一门组学,其主要研究体系有生物体液、生物组织及单个细胞的代谢组,利 用一些现代的分析技术,如N M R、L C-M S、G C-M S等,取得整个研究体系的多维数据后,利用模式识别和专家系统技术寻 找其中的系统生物学信息。本文从代谢组学的发展,代谢组学的研究范围和研究方法,以及在药物的作用机制和安全性评 价,疾病模型,特别是中药研究的应用等方面予以阐述。 关键词 代谢组学,药物研究开发,作用机制,安全性评价,中药现代研究,疾病诊断 中图分类号:R969 文献标识码:A 文章编号:1006-5687(2005)02-0001-06 Development of metabonomics and drug research and development Liu Chang xiao T ianjin K ey L abor ato ry of P harmaco kinetics and phar macodynamics,T ianjin I nstitute of Phar maceutical R esea rch,T ian-jin,300193 Abstract M etabo no mics is a new"-omics"science developed in r ecent year s.Its major r esearch objects co ver bio-fluid, bio-tissue and metabolome of sing le cell.M odern a nalyt ical techno lo gies such as N M R,L C-M S and G C-M S are used to obtain multi-dim ensio nal data fo r the w hole resear ch sy st em,then pat tern r eco gnit ion and ex pert sy stems are emplo yed to ext ract systemat ic bioinfo rmat ion.In this r eview,the development of met abo nomics,r esearch field,resear ch metho ds and applicatio ns fo r mechanism o f drug action,dr ug to xicity screening,clinical safety and disease diag no sis,specifically in tr aditio na l Chinese medicines ar e intr oduced. Key words M etabonomics,dr ug r esearch and development,m echanism o f dr ug action,dr ug to xicity,tr aditio nal Chinese medicine,disease diagnosis 1 代谢组学研究的形成和发展 基因组(g enome)是指某一生物的所有DNA;基因组学是一门研究生物的整个基因组的科学。转录物组(transcriptome)是指某一生物或细胞所有基因表达的RN A;转录物组学是一门对某一生物或细胞所有基因表达的RNA(如mRNA)进行全面分析的科学。蛋白质组(pro teom e)是指某一生物或细胞在各种不同环境条件下表达的所有蛋白质;蛋白质组学是一门对某一生物或细胞在各种不同环境条件下表达的所有蛋白质进行定性和定量分析的科学。转录组学和蛋白质组学是分别在基因的转录和转录后的蛋白质翻译与修饰两个水平上,研究基因的功能。代谢组学相对于其它组学而言还是一门较新的组学,不过已经显示了其在药物发现过程中的巨大潜力,它可以在药物发现过程的前期就能识别药物的毒性,避免了药物发现过程中的损耗。代谢组学研究有希望成为新药发现与研发过程的一个必需部分[1]。代谢组学作为一门新发展的技术,它是通过考察生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后)其代谢产物的变化或其随时间的变化,来研究生物体系的代谢途径的一种技术[2]。最初人们提出了代谢物组(m etabo lome)的概念,严格地说,代谢物组应该是指某一生物或细胞所有的代谢产物(m etabolite)。在实际工作中,由于分析手段的局限性,更多的人倾向于把代谢物组局限于某一生物或细胞中所有的低分子量代谢产物。与基因组学、转录组学和蛋白质组学相对应,即代谢物组学是一门对某一生物或细胞所有低分子量代谢产物进行定性和定量分析,以监测活细胞中化学变化的科学。 在人们逐步的研究过程中,提出了一些相关概念,如代谢物靶目标分析(m etabo lite target analysis),代谢轮廓(谱)分析(m etabolic profiling analy sis),代谢组学(metabo no mics)或代谢物组学(m etabo lomics), 1 X收稿日期:2005-04-01 作者简介:刘昌孝,男(1942-),中国工程院院士,研究员,教授,博士生导师,主要从事药理学和药物代谢动力学的研究。现任天津药代动力学与药效动力学部省共建国家实验室主任,国家医药管理局天津药代动力学与临床药理学研究室主任等职。承担国家重大研究项目25项,领导完成100余个新药的药代动力学研究,获得27项科技成果奖,在国内外发表论文200多篇,中英文版专著12部。

代谢组学技术及其应用的研究进展

0.前言 代谢组学是一种研究体内代谢产物的系统生物学方法,它能为疾病状态、药理毒理、基因功能的研究提供大量信息[1],1999年Nicholson[2]将其定义为能定量测定生命系统对病理生理刺激或基因改变所产生的动态多参数代谢反应的一种方法(Metabonomicsisdefinedas‘thequan-titativemeasurementofthedynamicmultiparametricmetabolicresponseoflivingsystemstopathophysiologicalstimuliorgeneticmodification’)。它是继基因组学、蛋白质组学、转录组学后新近发展起来的一门新的组学,并与基因组学、蛋白质组学、转录组学等共同构成系统生物学。代谢组学考查的是生物机体内所有的代谢产物[3],但主要关注的是分子量在1000以内的小分子物质,基因组学和蛋白质组学分别从基因和蛋白质层面探寻生命活动,代谢组学则从代谢物层面上探寻生命活动,基因组学和蛋白质组学告诉你什么可能会发生,而代谢组学则告诉你什么确实发生了[4]。代谢产物能在一个生物体的细胞、细胞器、组织、器官、体液等各个层面上产生[5],从某种意义上说机体内每一项生命活动都要受到代谢产物的调节和影响,因此,代谢组学研究可以了解和探索各项生命活动的整体代谢状况从而帮助人们更好地理解生命活动。目前代谢组学在药学、毒理学、疾病诊断、基因功能等生命科学的各个领域都有广泛应用,并已显示出其强大的优势,它在向各个学科渗透的同时,其自身技术和方法也在不断进步,随着系统生物学的发展,代谢组学正向真正的系统、综合、全面的目标迈进。 1.代谢组学的研究方法 代谢组学研究的基本方法是应用气相色谱质谱联用(GC-MS),液相色谱质谱联用(LC-MS),核磁共振波谱(NMR)等先进的仪器分析技术来检测各种生物样品(包括血液、尿液、脑脊液、肝脏、病变组织等)中代谢物组的信息并结合模式识别和专家系统等分析计算方法对所得代谢组学数据进行处理,最后综合解析这些数据以探讨各种生命活动在代谢物层面上的规律和特征并用于评价药物疗效、检测药物毒性、诊断疾病、分析疾病状态等。代谢组学的技术平台主要包括样品制备、代谢产物检测和分析鉴定以及数据分析与模型建立。 2.代谢组学的应用 2.1代谢组学为药学和毒理学研究中的应用 目前,代谢组学在药物安全性评价、新药开发、毒性标志物的筛选等方面应用广泛。Nicholls[6]运用代谢组学技术对药物引起磷脂质病的机理进行了研究,结果发现大鼠给药后不同时段尿液代谢组图谱发生变化。研究认为代谢组学技术能为药物引起磷脂质病微小生化改变的检测提供强有力的工具。Slim[7]利用代谢组学方法研究了地塞米松对磷酸二酯酶抑制剂诱导的大鼠脉管炎的治疗作用,发现大鼠尿液代谢组图谱与组织病理变化基本一致,研究认为尿液代谢组图谱的变化可反映主要的病理变化,代谢组学技术可非侵害地检测血管变化。 在动物实验和临床试验中利用高通量的技术手段筛选和检测潜在的毒性物质是新药安全性评价的重要环节[8],因为大多数药物通过广泛的生物转化作用可成为毒性明显不同的代谢物[9],当毒物与细胞或组织相互作用时会引起机体关键代谢过程中内源性物质的比例和浓度发生变化,所以只有对这些代谢物的变化信息进行全面的分析研究才能更好地评价药物的安全性,大量研究表明代谢组学技术能快速获得这些信息[10],它可检测生物体在给药后整体的代谢反应过程,能综合考察药物的药效和毒性,能全面分析代谢产物的变化特点和规律,从而系统地评价药物的价值和开发前景。在毒理学研究中,代谢组学技术在研究毒物作用机制、预测药物毒性、鉴定对临床有用的生物标志物等方面发挥着重要作用[11]。Warne[12]利用代谢组学技术研究3-三氟甲基-苯胺的毒 理反应,成功鉴定出了与毒性反应有关的潜在生物标志物。Azmi等[13]利用代谢组学技术研究了1-萘异硫氰酸酯(1-Naphthylisothiocyanate,ANIT)的肝毒性作用,研究认为代谢组学技术能够在器官、亚器官等不同水平上认识不同的毒理学机制。 鉴于代谢组学技术在药学和毒理学研究中的巨大贡献,英国帝国理工学院已与六家医药公司联合成立了名为毒理代谢组学(theConsor-tiumforMetabonomicToxicology,COMET)的研究组织,该组织旨在从方法学上建立一套毒理代谢组学研究体系和通用的标准评价方法,采用1HNMR技术分析尿液和血液代谢组信息以用于候选药物临床前的毒性检测[14]。近来,Clayton[15]又提出了药物代谢组学的概念(pharmaco-metabonomics,whichwedefineas‘thepredictionoftheoutcome(forex-ample,efficacyortoxicity)ofadrugorxenobioticinterventioninanindividualbasedonamathematicalmodelofpre-interventionmetabolitesignatures’)。 2.2代谢组学在疾病研究和诊断中的应用 近年来,代谢组学技术已广泛应用于心血管疾病、糖尿病、癌症等疾病的诊断和研究。在心血管疾病方面,Brindle[16]利用基于1HNMR的代谢组学技术对冠心病人的血清代谢组进行了分析,结果显示疾病组与正常组代谢组图谱存在明显差异,研究认为代谢组学技术不仅能快速、准确的诊断冠心病还能区分疾病的严重程度。Martin[17]运用代谢组学技术研究了不同饮食对动脉粥样硬化形成的影响,结果发现极低密度脂蛋白(VLDL)、胆固醇(cholesterol)、N-乙酰基糖蛋白(N-acetylgly-coproteins)与动脉粥样硬化的形成呈正相关,白蛋白赖氨酰残基(albu-minlysylresidues)、氧化三甲胺(trimethylamine-N-oxide)与之呈负相关,此外,在预测动脉粥样硬化变性方面代谢组学数据可达89%,而常规方法只有60%,研究认为代谢组学技术不仅能区分不同饮食诱导的动脉粥样硬化的生物反应(尤其是多参数代谢反应),还能发现新的与疾病进程呈正相关或负相关的潜在标志物,从而帮助人们更好地认识疾病发病的危险因素。 在糖尿病方面,Hodavance[18]认为代谢组学技术是研究2型糖尿病和胰岛素抵抗的有力工具,它能够识别那些常规方法无法识别的代谢产物。Yang[19]对比分析2型糖尿病人和正常人血清代谢组图谱发现2型糖尿病人的血清脂肪酸代谢谱与正常人存在差异,研究认为利用代谢组学方法检测血清脂肪酸代谢状况可快速诊断2型糖尿病。Yuan等[20]对2型糖尿病人尿液进行代谢组学分析并发现了马来酸(Maleicacid)、氧基乙酸(Oxylaceticacid)、4-氨基苯甲酸(4-Aminobenzoicacid)等与2型糖尿病有关的潜在生物标志物。 在癌症方面,Whitehead[21]认为代谢组学技术不仅能分析水溶性和脂溶性的癌组织提取物还能发现和鉴定在疾病不同阶段的特征性代谢产物,它是研究和诊断癌症的有力工具。Yang等[22]利用代谢组学技术对比分析了肝癌、肝炎、肝硬化患者及正常对照者的尿液代谢组信息,结果显示各组患者尿液代谢组信息存在明显差异,研究认为代谢组学技术不仅能清楚地区分患者和正常人还能诊断出患者是患肝炎、肝硬化还是肝癌,这对降低误诊率意义重大,研究还指出通过代谢组学技术鉴定出的尿液核苷在癌症诊断方面优于传统的肿瘤标志物甲胎蛋白(alpha-fetoprotein,AFP)。 代谢组学不仅在上述影响人类健康的重大疾病中有广泛的应用,目前还应用于泌尿系统疾病[23]、神经系统疾病[24]、高血压[25]、先天性代谢缺陷[26]等疾病的研究和诊断。这些研究均表明代谢组学是疾病研究和诊断的有力工具,它的应用为疾病研究和诊断开辟了新的领域。 2.3代谢组学在其它领域的应用 代谢组学凭借其独特的优势和应用潜力不仅在药学、毒理学、疾病 代谢组学技术及其应用的研究进展 苏州大学体育学院岳秀飞史晓伟 [摘要]代谢组学是一种研究生物体内所有小分子代谢物的系统生物学方法,它利用气相色谱质谱联用(GC-MS),液相色谱质谱 联用(LC-MS),核磁共振波谱(NMR)等先进的仪器分析技术来检测各种生物样品中代谢物组的信息并结合模式识别等分析计算方 法对所得代谢组学数据进行处理,最后综合解析这些数据以用于评价药物疗效、检测药物毒性、诊断疾病、分析疾病状态。代谢组学 自提出以来发展十分迅速,目前已在药学、毒理学、疾病研究和诊断等领域得到广泛应用。本文主要对代谢组学的概念,研究方法及 其应用进行综述,最后就代谢组学的发展趋势作一讨论。 [关键词]代谢组代谢组学核磁共振气相色谱质谱联用液相色谱质谱联用 95 ——

代谢组学在植物研究领域中的应用

Botanical Research 植物学研究, 2016, 5(1), 26-33 Published Online January 2016 in Hans. https://www.360docs.net/doc/8117660721.html,/journal/br https://www.360docs.net/doc/8117660721.html,/10.12677/br.2016.51005 Application of Metabolomics in Plant Research Guixiao La1, Xi Hao1, Xiangyang Li1, Mingyi Ou2, Tiegang Yang1* 1Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou Henan 2China Tobacco Guizhou Industrial Co. Ltd., Guiyang Guizhou Received: Dec. 10th, 2015; accepted: Dec. 25th, 2015; published: Dec. 30th, 2015 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/8117660721.html,/licenses/by/4.0/ Abstract Metabolomics is an emerging omics technology after genomics and proteomics, which can qualify and quantify all small molecular weight metabolites in an organism or cells in a short time. With the technology development of gas chromatography-mass spectrometer (GC-MS), liquid chroma-tography-mass spectrometer (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS), and the improvement of data process method and presented huge advantages, plant metabolomics has been used in multiple research fields such as functional genomics, metabolism pathway, crop improvement... In this paper, we reviewed the recent progress in plant metabolomics and the put-ative problem in this research field. Moreover, the application prospects of the plant metabolom-ics were also forecasted. Keywords Metabolomics, Plant, Advance, Prospect 代谢组学在植物研究领域中的应用 腊贵晓1,郝西1,理向阳1,欧明毅2,杨铁钢1? 1河南省农业科学院经济作物研究所,河南郑州 2贵州中烟工业有限责任公司,贵州贵阳 *通讯作者。

相关文档
最新文档