地球化学知识点整理

地球化学知识点整理
地球化学知识点整理

地球化学

绪论

1、地球化学的定义:

地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】

(1)质:地球系统中元素的组成

(2)量:元素的共生组合和赋存形式

(3)动:元素的迁移和循环

(4)史:地球的历史和演化

3、地球化学研究思路:【简答】

在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。即“见微而知著”。

第一章地球和太阳系的化学组成

第一节地球的结构和组成

1、地球的圈层结构、主要界面名称:

(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。这种不均一性在地球的一定深度表现为突变性质。由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。界面分别为:莫霍面和古登堡面。

(2)上地壳和下地壳分界面为康拉德面。上地壳又叫做硅铝层,下地壳又叫做硅镁层。大陆地壳由上、下地壳,而大洋地壳只有下地壳。【填空】

2、固体地球各圈层的化学成分特点:(分布顺序)

地壳:O、Si、Al、Fe、Ca

地幔:O、Mg、Si、Fe、Ca

地核:Fe-Ni

地球:Fe、O、Mg、Si、Ni

第二节元素和核素的地壳丰度

1、基本概念:【名词解释】

(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续

(2)丰度:研究体系中被研究元素的相对含量

(3)克拉克值:地壳中元素的平均含量

(4)质量克拉克值:以质量计算表示的克拉克值

(5)原子克拉克值:以原子数之比表示的元素相对含量。它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。

(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值

2、克拉克值的变化规律:

(1)递减:元素的克拉克值大体上随原子序数的增大而减小。但Li、B、Be以及惰性气体的含量并不符合上述规律,其丰度值很低。

(2)偶数规则(奥多-哈金斯法则):周期表中原子序数为偶数的元素总分布量大于奇数元素的总分布量,相邻元素之间偶数序数的元素分布量大于奇数元素分布量。

(3)四倍规则(了解):

元素的质量数A除以4,可分为四类:4q+3、4q+2、4q+1、4q

3、“元素克拉克值”研究意义:【简答】

(1)是地球化学研究重要的基础数据

(2)确定地壳中各种地球化学作用过程的总背景

(3)是衡量元素集中、分散及其程度的标尺

(4)是影响元素地球化学行为的重要因素

4、区域元素丰度的研究的意义:【简答】

(1)它是决定区域地壳(岩石圈)体系的物源、物理化学特征的重要基础数据(2)为研究各类地质、地球化学作用、分析区域构造演化历史及区域成矿规律提供重要的基础资料

(3)为研究区域生态环境,为工业、农业、畜牧业、医疗保健等事业提供重要信息

第四节水圈、大气圈和生物圈的成分1、了解大气圈的主要成分:

主要为N

2、O

2

、Ar和CO

2

,痕量气体有H

2

、Xe、Kr、CO、CH

4

和O

3

2、了解自然水的主要阳离子和阴离子成分:【填空】

3、以及海水与淡水(大陆水)的区别

(1)主要离子有相似之处,但它们含量的比例是相反的(2)在大多数河流水的成分中HCO

3

-和Ca2+都占优势

(3)海水中:Na+>Mg2+>Ca2+;Cl->SO

42->HCO

3

-

(4)大陆水中:Mg2+

42-

3

-

4、淡水最大的储集库是:冰川

5、海水盐度大概是34‰-36‰之间,变化幅度仅为2‰。

第六节元素的地球化学分类

1、掌握元素的地球化学分类(戈氏分类法)以及各类元素的主要分布趋势:【填空】

(1)亲石元素:主要分布于岩石圈

(2)亲铜元素:主要分布于地幔

(3)亲铁元素:主要分布于地核

(4)亲气元素:主要集中于大气圈

此外,戈氏还划分出“亲生物元素”

第七节太阳系化学

1、了解太阳系主要成员

太阳系由恒星(太阳)和行星组成。行星又分为类地行星和类木行星。类地行星有水星、金星、地球和火星。类木行星有木星、土星、天王星和海王星。类地行星的大小比类木行星要小,但密度大。

2、了解太阳系化学组成的基本特点

(1)在所有元素中,H、He占绝对优势,H占90%,He占8%

(2)递减规则:太阳系元素的丰度随着原子序数的增大而减少。在原子序数大于45的重元素范围内,丰度曲线近于水平。

(3)奇偶规则:原子序数为偶数的元素,其丰度明显高于原子序数为奇数的相邻元素。同时具有偶数质量数(Z)或偶数中子数(N)的同位素的丰度也总是高于奇数质量数或中子数的同位素。

(4)与He相邻近的元素,Li、Be、B具有很低的丰度,为亏损元素

(5)O和Fe具有高丰度值,为过剩元素

3、了解陨石的分类及组成特点

铁陨石:铁镍金属大于95%

铁-石陨石:铁镍金属30-95%

石陨石:分为球粒陨石(铁镍金属小于30%)和无球粒陨石(铁镍金属小于等于1%)

第二章微量元素地球化学

第一节微量元素的概念和基本性质

1、微量元素的定义:

人们常常相对于地壳中的主量元素而言,人为的把地球化学体系中,其克拉克值低于0.1%的元素,通称为微量元素。

微量元素在自然界不同体系中是相对的概念,常因所处的体系而异,如K在地壳整体中是主量元素,但它在陨石中却被视为微量元素。

(1)微量元素的概念到目前为止尚缺少一个严格的定义

(2)自然界“微量”元素的概念是相对的

(3)低浓度(活度)是公认的特征,因此往往不能形成自己的独立矿物(相)2、常量元素和微量元素的特征对比【填空】

特征微量元素常量元素

含量<0.1% >0.1%

赋存状态无独立矿物独立矿物

分布特点亨利定律化学计量

由于微量元素在地质体中浓度(或活度)低,一般不能形成独立的矿物相,而是以多种分散态存在于寄主矿物中,主要呈类似同象态。

3、何为能斯特定律:

能斯特定律描述了微量元素在平衡共存两相间的分配关系。

当一种矿物(α相)与一种溶液(β相)共存时,微量元素i(溶质)将在两相间进行分配,当分配达到平衡时,其两相浓度比为一常数。

4、简单分配系数:又叫做分配系数或能斯特分配系数。在恒温恒压条件下,微量元素i在平衡两相的浓度值比为一常数,该常数记作K

D

5、岩石分配系数:又叫做总体分配系数,描述了岩浆在形成(部分熔融作用)或结晶过程中,微量元素在固体相与熔体相间的分配特征。矿物的简单分配系数和岩石中矿物的百分含量乘积的代数和,记作D,D=∑W i*K D,i

6、复合分配系数:又叫做交换分配系数或亨德森-克拉塞克分配系数,D tr/cr=(C tr s/C cr s)/(C tr l/C cr l),s、l分别表示固体和熔体相;tr代表微量元素,cr代表被微量元素替代的常量元素,c是浓度

第二节分配系数的测定及其影响因素

1、影响分配系数的因素有哪些?【填空】

体系成分、温度、压力、氧逸度

2、微量元素的分类:【名词解释】

(1)相容元素:岩石分配系数D>1

(2)不相容元素:D<1

(3)亲岩浆元素:(如HREE 、Zr 和Hf 等)D 相对于1来说可忽略不计 (4)超亲岩浆元素:(如Ta 、Th 、La 和Ce 等)D 相对于0.2-0.5可忽略不计 第三节 岩浆作用中微量元素的定量模型 1、结晶作用模型【论述】 (1)分离结晶作用

研究一个包含不同组分的物质的量为n 的有限岩浆库,其中包括有y 摩尔的微量元素i, 则体系中微量元素i 的摩尔分数Xi =y /n 。

当一个含元素i 的矿物结晶时,由于i 在晶体中扩散缓慢或晶体下沉而使得晶体的每个相继的层未能与残余熔体保持平衡,则在一个短时间t 之后: n to n-dn y to y-dy

此刻晶体和熔体中i 的摩尔份数分别为:

dn n dy

y X dn dy X l i s i --==

, 由能斯特分配定律:

)1( l i D s i X K dn dy

X ?==

因此有下列近似:

n y

dn n dy y X l i ≈--=

l

i X n y ?≈∴

上式对n 进行微分:

)2( l i l i X dn dX n dn dy

+?=

将(1)式代入(2)式,得:

l

i l i l

i

D X dn dX n X K +?=?

)3( 1)1(1dn n dX K X l

i D l

i =-

如果KD 为常数,对3式积分得:

)ln(11

ln 00i l i D X X K n n -=

1

00

-??

? ??=D K i l i n n X X

n/n 0为残余熔体占原始熔体的分数,F 表示; 则1-F 为岩浆的结晶度。

()1

-=D K i l i F X X

称之为雷利分馏定律Rayleigh fraction law

()

1

0-?=D K i l i F X X

l i X 残余熔体中微量元素i 的摩尔分数 0

i X 初始熔体中微量元素i 的摩尔分数

由于:

l

i D s i l i

s

i D X K X X X K ?=?=

1

0)( -??=∴D K i D s i F X K X

10)(-=D i

l

i F C C (2)平衡结晶作用

2、部分熔融作用模型

(1)分批熔融(平衡熔融)(2)分离熔融

(3)收集熔融

第四节稀土元素地球化学

1、稀土元素组成

(1)57La 镧lán Ce铈shìPr镨pǔNd钕nǚPm钷pǒSm钐shān Eu 铕yǒu Gd钆gáTb铽tèDy镝dīHo钬huǒEr 铒ěr Tm铥diūYb镱yì71Lu镥lǔ39Y 钇yǐ

即:镧系元素和钇,第三幅族元素

2、分组方案【填空】

(1)两分法

∑Ce族稀土元素,又叫轻稀土元素(LREE),包括La-Eu

∑Y族稀土元素,又叫重稀土元素(HREE),包括Gd-Y

Gd以后4f电子自旋方向改变。

3、三分法

轻稀土元素,包括La-Nd

中稀土元素,包括Sm-Ho

重稀土元素,包括Er-Y

4、稀土元素的基本性质

其共性:

(1)原子结构相似(主要呈3+价)

(2)离子半径相近(镧系收缩)

(3)自然界中密切共生,常可替换Ca

5、镧系收缩【名词解释】

从La到Lu的例子半径随着原子序数增加而递减,这种反常的现象就是所谓的镧系收缩。镧系收缩使各稀土元素之间的晶体化学性质非常相似,这是它们在自然界共存的主要原因。

6、增田-科利尔图解

(1)是最常用的一种表示REE组成模式的图解,REE含量标准化参照物质为球粒陨石。

(2)作法:以原子序数为横坐标、以各稀土元素的分析结果与所对应的元素的球粒陨石值比值的对数值为纵坐标绘制的折线图解。

(3)这种图示的优点是:它消除了元素丰度偶-奇规律造成的REE丰度随原子序数增长的锯齿状变化,因为一般公认球粒陨石中轻和重稀土元素间不存在分馏,这种图示能使样品中REE间的任何分离都能清楚地显示出来。

(等比例,不等比例纵坐标;一般取10为底)

7、几种比值

(1)轻稀土比值[ΣLREE/ΣHREE 或ΣCe/ΣY ],轻稀土元素含量和与重稀土元素含量之比。该参数能较好地反应稀土元素的分异程度,可指示部分熔融残留体和早期岩浆结晶的矿物特征

(2)(La/Yb)

N 、(La/Lu)

N

和(Ce/Yb)

N

这些均为个别轻和重稀土元素的球粒陨石

标准化值的比值。均能较好地反映稀土元素球粒陨石标准化图解中的曲线斜率,从而反映LREE和HREE的分异程度

(3)(La/Sm))

N 和(Gd/Lu))

N

稀土元素的球粒陨石标准化值的比值。能为LREE和

HREE内部彼此比较提供信息

8、δEu 和δCe

由于Eu和Ce为变价元素,当体系氧化还原条件发生变化时,如果部分Eu变为

Eu2+或部分Ce变为Ce4+时,Eu2+和Ce4+可能与其他3+的稀土元素发生分离。这会造成在图中出现“峰”或“谷”。“峰”为正异常,“谷”为负异常。用其异常值:

δEu= 2×(Eu岩/Eu球)/ [(Sm岩/Sm球)+(Gd岩/Gd球)]

δCe=2×(Ce岩/Ce球)/ [(La岩/La球)+(Pr岩/Pr球)]

9、微量元素的地球化学应用

(1)地球历史中灾变事件的微量元素地球化学证据

(2)地幔化学不均一性的微量元素证据

(3)微量元素分配系数与微量元素温度计(重点)

(4)成岩过程的鉴别

(5)其他:用于蚀变火山岩的原岩分类(补充)、变质岩原岩恢复、沉积环境判别、岩石和矿床成因研究、构造环境判别

10、类质同象和固溶体

(1)某些物质结晶时,晶体中的部分构造位置随机地被介质中的其他质点(原子、离子、分子)所占据,结果只引起晶格常数的微小变化,警惕的结构类型、化学键类型等保持不变,这一现象称为“类质同象”

(2)进入晶格中的微量元素称为“类质同象混入物”

(3)含有类质同象混入物的晶体又被称为固溶体

11、类质同象置换条件

(1)离子(或原子)自身性质:化学键、电负性、半径、电价、配位多面体的

对称性等

(2)体系的物理化学条件:温度、压力、组分特征、氧化还原条件等

(3)固溶体的热力学性质

(4)化学键-键性相对接近是类质同象置换的首要条件

(5)原子(离子)结合时的几何关系:半径、配位数

(6)化合物的电中性原则:等价置换、补偿置换

第三章同位素地球化学

一、基本概念【名词解释】

1、核素:由不同数量的质子P和中子N组成各种元素的原子核,称为核素

2、同位素:同种元素的核素可以有不同数量的中子数,称为同位素

3、放射性同位素:能产生核衰变的同位素

4、稳定同位素:性质比较稳定,不产生核衰变的同位素

5、同量异位素:质子数不同,而质量数相同的一组核素

6、轻稳定同位素:原子序数小于20的稳定同位素

7、重稳定同位素:原子序数大于20的为重稳定同位素

8、放射性成因同位素:由其他元素经过放射性衰变而产生的同位素

9、同位素衰变:放射性同位素经过自然衰变, 转变为其它元素的同位素的过程

10、同位素分馏:在同一系统中某些元素的同位素以不同的比值分配到两种物质或相态中的现象,是同位素效应的表现

11、自然界引起同位素丰度变化的基本原因是什么?

(1)同位素衰变

(2)同位素效应与同位素分馏

(3)核合成、聚合反应

(4)其他:人工核反应堆、核爆炸

12、同位素丰度变化的地质应用有哪些方面?

(1)同位素地质定年

(2)地球化学示踪

(3)地质温度计

(4)其他:同位素奇数还可以用于矿产勘查、环境监测、地质灾害预报等

二、同位素年代学基本原理 1、主要同位素衰变形式: (1)α

衰变,E X 4

24-2-A

Z ++?→?He Y A Z ,新核的同位素原子序数比母核少2,质量数少4

(2)β

+

衰变,E X 1

-A

Z

+++?→?+γβY A Z ,核中的质子转变为中子,正电子和中微子,产生的核是同量异位素,并且比母核少一个质子。 (3)β

-衰变,E X 1A

Z

+++?→?-

+γβY A Z ,核内减少一个中子,增加1个质子,新核素的

质量数不变,核电荷数加1,变成周期表右侧相等的新元素 (4)K

层电子捕获,E e X 1--A

Z

+?→?+Y A Z ,质量数不变,质子数减1

2、单衰变:放射性同位素经过一次衰变,形成稳定子体同位素的过程

3、系列衰变:一些重同位素,需要经过一系列衰变,才能最终形成稳定同位素,这样的衰变过程称作系列衰变

4、放射性衰变定律:在一个封闭的系统内,单位时间内放射性母核衰变为子核的原子数与母核原子数成正比

(1) N dt dN

?-=λ

N =N 0e -λt 或 N 0=Ne λt (2) D*= N 0–N=N e λt –N=N(e λt -1) 整理后得:

(5) )N *

D ln(1λ1 t +=

D= D+N(e λt -1) (6)

(7) )N Di -D ln(1λ1t +=

三、K-Ar 法

1、了解40K 的衰变(两支)

E 40

20β4019

+++?→?--

γβCa K E Ar 4018ec 4019++?→?γK

40

Ar*+40Ca*=40K(e λt - 1)

-1)K(e λλ*λt 40

ec 40

?=

Ar

1)*

λλln(λ14040ec +?=K Ar t

2、了解K-Ar 法测年的缺点

(1)由于Ar 是惰性气体,当样品遭受热扰动时,Ar 易溢出,从而使得测定的年龄偏低

(2)样品中容易混入大气或其它成因的40Ar ,使得测定年龄偏大。 3、了解40Ar-39Ar 定年技术的原理(中子活化法)

p

Ar n 39183919

+?→?+K

4、了解40Ar-39Ar 相对于K-Ar 法的优缺点

(1)常规K-Ar 法测定,要把一个样品分成两份,钾、氩含量在两个分样中

分别测定,而40Ar-39Ar 方法不需要分样,这样避免了化学成分不均一性引起的误差

(2)40Ar-39Ar 法只需测定40Ar/39Ar 的值,测定精度主要取决于质谱分析,因此常规K-Ar 年龄误差一般是2%-5%,或更大,而40Ar-39Ar 法小于1%

(3)40Ar-39Ar 法只需几十mg 样品,用样量比稀释法少一个数量级,不需要称量

(4)40Ar-39Ar 法更重要的优点是,采用阶段升温,分阶段提取赋存状态不同的氩,分别进行年龄测定,这样,可以研究样品受热历史,测出氩的丢失,辨别收到热干扰的样品,排除某些数据偶然现象

四、Rb-Sr 同位素年代学原理(衰变方式,计时原理、模式年龄、等时线年龄、使用条件)

1) 87Rb 是放射性同位素,经过一次β- 衰变转变成87Sr 衰变方程为:87Rb -→87Sr+β-+E 2) 根据同位素衰变定律

D*=N(e λt -1) , D= D i +N(e λt -1) 可得其增长方程为:

87

Sr*=87Rb(e λt –1) 及 87Sr=87Sr i + 87Rb(e λt –1)

3) 考虑同位素比值测定的优势,上式两边同除86Sr 得:

(87

Sr/86

Sr) S =(87

Sr/86

Sr)i +( 87

Rb/86

Sr) S (e λt

–1) (1) 变换得:

式中,(87Sr/86Sr)S 、(87Rb/86Sr)S 为样品测定值,(87Sr/86Sr) i 为样品初始锶同位素比值,λ为衰变常数,t 为年龄。当给定初始比值时,可以计算出年龄t, 这个年龄称为模式年龄。

???

? ??+=1Sr)Rb/( Sr)Sr/-(Sr)Sr/(ln 1t S 8687i

8687S 8687λ

式可写成Y=a+bX 形式的直线方程,其中Y=(87Sr/86Sr)S 、X=(87Rb/86Sr)S 、a=(87Sr/86Sr)i 、b=(e λt –1)。也就是说在(87Sr/86Sr)S 、 (87Rb/86Sr)S 图解中,各样品点将构成一条直线,称之为等时线,直线的斜率b 就是(e λt –1)。求得直线的斜率即可计算出年龄t 值:

()

b 1ln 1

t +=λ

这个年龄即是等时线年龄。

5) 根据等时线的构成条件,要利用等时线法测年,其样品必需满足如下几个基本条件: ① 样品的同时性 ② 样品的同源性

③ 样品的封闭性,即在岩石或矿物形成后没有Rb 、Sr 的带入与带出。

五、Sm-Nd 同位素年代学原理(衰变方式,计时原理、模式年龄、等时线年龄、使用条件)

1) 147Sm 是放射性同位素,经过一次α衰变转变成143Nd 衰变方程为: 147Sm -→ 143Nd + α +E 2) 根据同位素衰变定律 D= Di+N(e λt -1) 可得:

143

Nd = 143Nd i + 147Sm(e λt –1)

3) 考虑同位素比值测定的优势,上式两边同除144Nd 得: (143Nd/144Nd) S =(143Nd/144Nd)i +(147Sm/144Nd) S (e λt –1) (1) 变换得:

t=1/λln{1+[(143Nd/144Nd) S -(143Nd/144Nd)i ]/(147Sm/144Nd) S }

式中, (143Nd/144Nd) S 、(147Sm/144Nd) S 为样品测定值, (143Nd/144Nd)i 为样品初始同位素比值,λ为衰变常数,t 为年龄。当给定初始比值时,可以计算出年龄t ,这个年龄称为模式年龄。

(1)式可写成Y=a+bX 形式的直线方程,其中Y=(143Nd/144Nd)s 、X=(147Sm/144Nd) S 、a =(143Nd/144Nd)i 、b=(e λt –1)。也就是说在(143Nd/144Nd)s 、 =(147Sm/144Nd) S 图解中,各样品点将构成一条直线,称之为等时线,直线的斜率b 就是(e λt –1)。求得直线的斜率即可计算出年龄t 值: t=1/λln[1 + b] 这个年龄即是等时线年龄。 六、U-Th-Pb 测年

1)掌握各衰变体系的母体与子体同位素

-

++→βαPb U 472078223592

-++→β

αPb U 782068223892

-

++→β

αPb Th 468208223290

2)了解U-Pb 等时线

)1(238204

238

204206

204206

-+????

?

?=???? ?

?

t

I

P e Pb

U Pb Pb Pb Pb λ

3)了解U-Pb 一致曲线

)

1ln(1)1ln(1

235*

207

238*206

235238

+=+U Pb U Pb λλ 4)了解不一致线及交点年龄及其地质意义(U-Pb )

(1)对于一组铅丢失程度不同的样品,他们的和比值应在一条直线上,称为不一致线。

(2)该直线与谐和曲线由两个交点,上交点t 为矿物形成的年龄,下交点t1为发生铅丢失时间年龄或变质年龄。 5)207Pb */206Pb *年龄

()()11

t

238t

23588

.1371*206

*207

--=e

e Pb Pb λλ

如果测得一已知不含普通铅都能,或虽然有普通铅弹可准确扣除,则可直接用此式计算出样品的年龄,称为207Pb/206Pb 年龄

6)Pb-Pb 等时线年龄

七、稳定同位素

1、轻稳定同位素的特点是:

①原子量小,同位素间的相对质量差异较大;

②轻稳定同位素组成变化的主要原因是同位素分馏作用。 2、稳定同位素组成的表示方法

样品相对于标准样品R 的偏离程度的千分率: δ‰=(R 样-R 标)/R 标×1000 =(R 样/R 标-1) ×1000

例如对34S/32S 相对于标准样品的富集程度,即以 δ34S ‰ 来表示:

10001S)S/(S)S/() S(δ3234323434

?????

??-=标样

3、稳定同位素国际标准

(1)氢同位素:分析结果均以标准平均大洋水(Standard Mean Ocean Water,即SMOW)

(2)碳同位素:标准物质为美国南卡罗来纳州白垩纪皮狄组层位中的拟箭石化石(Peedee Belemnite,即PDB)

(3)氧同位素:大部分氧同位素分析结果均以SMOW 标准报导

在碳酸盐样品氧同位素分析中则经常采用PDB 标准,其18O/16O = 2067.1×10-6,它与SMOW 标准之间的转换关系如下: δ18O SMOW = 1.03091δ18O PDB + 30.91 δ18O PDB = 0.97002δ18O SMOW - 21.98

(4)硫同位素:标准物质选用Canyon Diablo 铁陨石中的陨硫铁(Troilite),简称CDT

八、同位素分馏概念

1、同位素分馏(isotope Fractionation):在同一系统中某些元素的同位素以不同的比值分配到两种物质或相态中的现象,是同位素效应的表现。 分馏系数:同位素分馏作用的大小,一般用分馏系数α来表示:

α= R

A /R

B

R A 、R

B

分别为某同位素在A相、B相中的同位素的比值

2、同位素分馏系数(α)与δ值的关系:

1000lnα

A-B ≈△δ

A-B

数学上可以证明:当α接近1时有: lnα≈α–1

因此有:

1000lnα

A-B ≈1000(α

A-B

–1)

对于含有同一元素的一系列化合物,分馏值具有加和性,即:

△δ

A-C = △δ

A-B

+ △δ

B-C

3、主要的分馏过程

(1)同位素热力学分馏(化学平衡和相平衡过程中的同位素分馏)

同位素交换反应

蒸发-凝聚过(因蒸气压的不同)

(2)同位素动力学分馏(因扩散速度和反应速度不同引起的同位素分馏)扩散过程(物理分馏)

氧化-还原过程

光合作用过程(生物化学反应)

4、分馏系数与温度的关系—同位素地质温度计

同位素分馏方程:

分馏系数(α)与温度有关,研究表明,在同位素交换平衡反应中,同位素分馏系数α是绝对温度T的函数:

103lnα=A×106/T2+B≌ΔA-B

已知同位素的分馏方程:

1000lnα

m-水=A

1

×106/T2-B

1

1000lnα

n-水=A

2

×106/T2 - B

2

。写出m-n的氧同位素分馏方程。

九、S同位素

1、表达式:

1000

1

S)

S/

(

S)

S/

(

S

δ

32

34

32

34

34?

?

?

?

?

?

?

-

=

2、国际标准:CDT

3、同位素分馏(交换反应过程中的价态效应)

价态规则:当一个含硫矿物从流体相沉淀出来时,在平衡条件下共生矿物同硫同位素组成出现一定的差异,其δ34S值的大小与硫的价态有关。随着化合

物中硫的价态从低到高的变化,的δ34S值依次增加:S2-

22-

2

4

2-

4、掌握地幔硫、陨石硫、生物硫的同位素组成特征

地幔硫:δ34S值接近于0,并且变化范围较小

陨石硫:

生物硫:还原形成的硫化氢或硫化物中的富集明显,32S超过原始硫酸盐,δ34S 为负值;硫化氢或硫化物中的32S富集随还原程度而变化,δ34S表现为具有大的波动范围。

5、掌握矿物硫同位素组成与体系硫同位素组成的关系(会读相图)

6、掌握硫同位素温度计的使用

十、H-O同位素

1、表达式

1000

1

)

/

(

)

/

(

???

?

?

?

?

-

=

标准

样品

H

D

H

D

D

δ1000

1

)

/

(

)

/

(

16

18

16

18

18?

?

?

?

?

?

?

-

=

标准

样品

O

O

O

O

O

δ

2、国际标准:SMOW,(在碳酸盐样品中氧同位素分析中用PDB)

3、影响大气降水同位素组成的因素

(1)大陆效应:也称作海岸线效应,从海岸到大陆内部,大气降水的δD、δ18O降低。

(2)纬度效应:也称为温度效应,随维度升高(年平均气温降低)大气降水的δD、δ18O降低

(3)高度效应;随地形高度增加,大气降水的δD、δ18O降低

(4)季节效应:夏季大气降水的δD、δ18O比冬季高

这些效应都是由于蒸发-凝聚作用过程中同位素分馏作用的结果

4、Craig大气降水线

5、水岩交换过程中水的H-O同位素组成的变化特征(地热水)

6、掌握氧同位素温度计的使用

十一、C同位素

1、表达式

1000

1

)

/

(

)

/

(

12

13

12

13

13?

?

?

?

?

?

?

-

=

标准

样品

C

C

C

C

C

δ

2、国际标准:PDB

3、光合作用过程中的碳同位素变化规律

有机物富集12C,而大气中富集13C,因此,植物乃至整个生物及有机成因的煤、石油、天然气及沥青等都相对富12C

4、交换反应过程中的碳同位素价态规则

随着价态的增高,13C趋向富集

5、碳同位素在石油地质中的应用

确定原油的形成环境。一般认为,石油是由海相或陆相盆地沉积物中的动植物残体逐渐演化形成的,而海相和陆相有机质的碳同位素组成是不同的,海相石油一般具有较高的13C值,而陆相石油13C值相对较低。

十二、稳定同位素地球化学

应特别关注作业题中的相关计算,如

地质温度计的应用

由已知的两个同位素分馏方程(温度计公式)推导出第三个同位素分馏方程

第四章环境地球化学

1、环境地球化学的定义:作为地球化学学科的重要分支和环境科学的重要组成部分,主要研究岩石、水、土壤、生物及大气圈和化学物质的分布、迁移、转化和循环规律及其与生物和人体健康的关系。

高二化学重点知识点归纳总结

高二化学重点知识点归纳总结 高二化学重点知识点归纳总结 一、化学反应的热效应 1、化学反应的反应热 (1)反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。 (2)反应热与吸热反应、放热反应的关系。 Q>0时,反应为吸热反应;Q<0时,反应为放热反应。 (3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1)式中C表示体系的热容,T1、T2分别表示反应前和 反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。 (2)反应焓变ΔH与反应热Q的关系。

对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应的.关系: ΔH>0,反应吸收能量,为吸热反应。 ΔH<0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+ O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态 (g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或kJ·mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。 3、反应焓变的计算 (1)盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2)利用盖斯定律进行反应焓变的计算。 常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。 (3)根据标准摩尔生成焓,ΔfHmθ计算反应焓变ΔH。

《环境化学》(第二版)(戴树桂)知识点总结和部分课后习题答案

环境化学 第一章绪论 1环境环境是指与某一中心事物有关相适应的周围客观事物的总和中心事物是指被研究的对象对人类社会而言环境就是影响人类生存和发展的物质能量社会自然因素的总和1972年联合国在瑞典斯德哥尔摩召开了人类环境会议通过了《人类环境宣言》 2构成环境的四个自然圈层包括土壤岩石圈大气圈和水圈 3为保护人类生存环境联合国将每年的4月22定位世界地球日 6月5日定位世界环境日 4环境保护的主要对象是由于人类生产生活活动所引起的次生环境问题主要包括环境污染和生态破环两个方面 5环境问题全球环境或区域环境中出现不利于人类生存和发展的各种现象称为环境问题原生环境问题自然力引发也称第一类环境问题火山喷发地震洪灾等次生环境问题人类生产生活引起生态破坏和环境污染反过来危及人类生存和发展的现象也称第二类环境问题目前的环境问题一般都是次生环境问题生态破坏人类活动直接作用于自然生态系统造成生态系统的生产能力显著减少和结构显著该变如草原退化物种灭绝水土流失等当今世界上最引人注目的几个环境问题温室效应臭氧空洞酸雨等是由大气污染所引起的 6环境污染由于人为因素使环境的构成状态发生变化环境素质下降从而扰乱和破坏了生态系统和人们的正常生活和生产条件造成环境污染的因素有物理化学和生物的三个方面其中化学物质引起的约占8090环境污染物定义进入环境

后使环境的正常组成和性质发生直接或间接有害于人类的变化的物质称为环境污染物污染物的性质和环境化学行为取决于它们的化学结构和在环境中的存在状态五十年代日本出现的痛痛病是由镉Cd 污染水体后引起的五十年代日本出现的水俣病是由 Hg 污染水体后引起的 重要污染物 1 元素CrHgAsPbCl 2 无机物CONOxSO2KCN 3 有机化合物和烃类烷烃饱和芳香烃苯环不饱和非芳香烃不饱和不带苯环多环芳烃 4 金属有机和准金属有机化合物四乙基铅三丁基锡 5 含氧有机化合物环氧乙烷醚醇醛酮酚有机酸等 6 有机氮化合物胺腈硝基苯三硝基苯TNT 7 有机卤化物氯仿四氯化碳PCBs氯代二恶英氯代苯酚 8 有机硫化合物硫醇类甲硫醇硫酸二甲酯 9 有机磷化合物有机磷农药磷酸二甲酯磷酸三乙酯 按受污染物影响的环境要素可分为大气污染物水体污染物土壤污染物等按污染物的形态可分为气体污染物液体污染物和固体废物按污染物的性质可分为化学污染物物理污染物和生物污染物优先控制污染物概念基于有毒化学物的毒性自然降解的可能性及在水体中出现的概率等因素从多种有机物中筛选出的优先控制物 7认识过程 20世纪60年代人们只把环境问题作为污染来看待没有认识到生态破坏的问题 20世纪70年代 1972年联合国瑞典斯德哥尔摩人类环境会议

高二化学知识点归纳大全

高二化学知识点归纳大全 相信大家在高一的时候已经选好文科和理科,而理科的化学是理科生最烦恼的。以下是我整理高二化学知识点归纳,希望可以帮助大家把知识点归纳好。 1、化学反应的反应热 (1)反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。 (2)反应热与吸热反应、放热反应的关系。 Q>0时,反应为吸热反应;Q<0时,反应为放热反应。 (3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1)式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。 (2)反应焓变ΔH与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热

能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应的关系: ΔH>0,反应吸收能量,为吸热反应。 ΔH<0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+ O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或kJ·mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。 3、反应焓变的计算 (1)盖斯定律 对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。 (2)利用盖斯定律进行反应焓变的计算。 常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。

高二化学考试必考知识点归纳整理5篇

高二化学考试必考知识点归纳整理5篇 高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依赖初中时期老师“填鸭式”的授课,“看管式”的自习,“命令式”的作业,要逐步培养自己主动获取知识、巩固知识的能力,制定学习计划,养成自主学习的好习惯。下面就是我给大家带来的高二化学知识点总结,希望能帮助到大家! 高二化学知识点总结1 一、苯C6H6 1、物理性质:无色有特殊气味的液体,密度比水小,有毒,不溶于水,易溶于有机溶剂,本身也是良好的有机溶剂。 2、苯的结构:C6H6(正六边形平面结构)苯分子里6个C原子之间的键完全相同,碳碳键键能大于碳碳单键键能小于碳碳单键键能的2倍,键长介于碳碳单键键长和双键键长之间键角120°。 3、化学性质 (1)氧化反应2C6H6+15O2=12CO2+6H2O(火焰明亮,冒浓烟)不能使酸性高锰酸钾褪色。 (2)取代反应 ①铁粉的作用:与溴反应生成溴化铁做催化剂;溴苯无色密度比水大 ②苯与硝酸(用HONO2表示)发生取代反应,生成无色、不溶于水、密度大于水、有毒的油状液体——硝基苯。+HONO2+H2O反应用水浴加热,控制温度在50—60℃,浓硫酸做催化剂和脱水剂。 (3)加成反应

用镍做催化剂,苯与氢发生加成反应,生成环己烷+3H2 二、乙醇CH3CH2OH 1、物理性质:无色有特殊香味的液体,密度比水小,与水以任意比互溶如何检验乙醇中是否含有水:加无水硫酸铜;如何得到无水乙醇:加生石灰,蒸馏 2、结构:CH3CH2OH(含有官能团:羟基) 3、化学性质 (1)乙醇与金属钠的反应:2CH3CH2OH+2Na=2CH3CH2ONa+H2↑(取代反应) (2)乙醇的氧化反应 ①乙醇的燃烧:CH3CH2OH+3O2=2CO2+3H2O ②乙醇的催化氧化反应2CH3CH2OH+O2=2CH3CHO+2H2O ③乙醇被强氧化剂氧化反应 CH3CH2OH 三、乙酸(俗名:醋酸)CH3COOH 1、物理性质:常温下为无色有强烈刺激性气味的液体,易结成冰一样的晶体,所以纯净的乙酸又叫冰醋酸,与水、酒精以任意比互溶 2、结构:CH3COOH(含羧基,可以看作由羰基和羟基组成) 3、乙酸的重要化学性质 (1)乙酸的酸性: 弱酸性,但酸性比碳酸强,具有酸的通性 ①乙酸能使紫色石蕊试液变红 ②乙酸能与碳酸盐反应,生成二氧化碳气体利用乙酸的酸性,可以用乙酸来除去水垢(主要成分是CaCO3):2CH3COOH+CaCO3=(CH3COO)2Ca+H2O+CO2↑乙酸还

生态系统知识点的总结1

第5章生态系统及其稳定性 【考纲知识梳理】 一、生态系统的概念及范围 1、概念:生物群落与它的无机环境相互作用而形成的统一整体,叫生态系统。 2、范围:有大有小,其中生物圈是地球上最大的生态系统,它是地球上的全部生物及其无机环境的总和。 二、生态系统的组成成分 成分构成作用(主要生理过程)营养方 式 地位 非生物成分非生物的物 质和能量 光、热、水、土,气为生物提供物质和能量 生物成分生产者 绿色植物、光合细 菌、化能合成细菌 将无机物转变成有机 (光合作用化能合成用) 自养型 生态系统的 基石 消费者 动物、寄生微生物、 根瘤菌 消费有机物(呼吸作用) 异养型 生态系统最 活跃的成分分解者腐生微生物、蛔虫分解动植物遗体(呼吸作用) 生态系统的 关键成分 三、生态系统的营养结构 1、食物链:生态系统中各生物之间由于食物关系而形成的一种联系。 2、食物网:在一个生态系统中,许多食物链彼此相互交错连接形成的复杂的营养结构。 3、食物链和食物网是生态系统的营养结构,是生态系统物质循环和能量流 动的渠道。 二、食物链和食物网的分析 1、每条食物链的起点总是生产者,如课本中的阳光不能纳入食物链,食物链终点是不能被其他生物所捕食的动物,即最高营养级,食物链中间不能做任何停顿,否则不能算作完整的食物链。 2、食物网中同一环节上所有生物的总和称为一个营养级,如书中第二营养级的生物有食草昆虫、鼠。 3、同一种生物在不同食物链中可以占有不同的营养级。 4、在食物网中,两种生物之间的种间关系有可能出现不同的类型,如书中青蛙和蜘蛛的关系既是捕食又是竞争关系。 5、食物网中,某种生物因某种原因而大量减少时,对另外一种生物的影响,沿不同食物链分析的结果不同时应以中间环节少为依据。 6、食物网的复杂程度主要取决于有食物联系的生物种类,而非取决于生物的数量。 第2节生态系统的能量流动 【考纲知识梳理】 一、能量流动的概念和过程 1、概念:生态系统中能量的输入、传递、转化和散失的过程。 2、能量流动的过程: (1)输入 ①源头:太阳能。 ②总值:生产者所固定的太阳能。 (2)传递 ①途径:食物链和食物网。

高二化学知识点总结(精)

化学有机基础知识点总结精品 1.有机物的溶解性 (1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 (2)易溶于水的有:低级的[一般指N(C)≤4]醇、(醚)、醛、(酮)、羧酸及盐、氨基酸及盐、单糖、二糖。(它们都能与水形成氢键)。 (3)具有特殊溶解性的: ①乙醇是一种很好的溶剂,既能溶解许多无机物,又能溶解许多有机物,所以常用乙醇 来溶解植物色素或其中的药用成分,也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。例如,在油脂的皂化反应中,加入乙醇既能溶解NaOH,又能溶解油脂,让它们在均相(同一溶剂的溶液)中充分接触,加快反应速率,提高反应限度。 ②苯酚:室温下,在水中的溶解度是9.3g(属可溶),易溶于乙醇等有机溶剂,当温度 高于65℃时,能与水混溶,冷却后分层,上层为苯酚的水溶液,下层为水的苯酚溶液,振荡后形成乳浊液。苯酚易溶于碱溶液和纯碱溶液,这是因为生成了易溶性的钠盐。 ③乙酸乙酯在饱和碳酸钠溶液中更加难溶,同时饱和碳酸钠溶液还能通过反应吸收挥发 出的乙酸,溶解吸收挥发出的乙醇,便于闻到乙酸乙酯的香味。 。蛋白质在浓轻金属盐(包括铵盐)溶液中溶解④有的淀粉、蛋白质可溶于水形成胶体 .. 度减小,会析出(即盐析,皂化反应中也有此操作)。但在稀轻金属盐(包括铵盐)溶液中,蛋白质的溶解度反而增大。 ⑤线型和部分支链型高聚物可溶于某些有机溶剂,而体型则难溶于有机溶剂。 ⑥氢氧化铜悬浊液可溶于多羟基化合物的溶液中,如甘油、葡萄糖溶液等,形成绛蓝色

溶液。 2.有机物的密度 (1)小于水的密度,且与水(溶液)分层的有:各类烃、一氯代烃、酯(包括油脂) (2)大于水的密度,且与水(溶液)分层的有:多氯代烃、溴代烃(溴苯等)、碘代烃、 硝基苯 3.有机物的状态[常温常压(1个大气压、20℃左右)] (1)气态: ① 烃类:一般N(C)≤4的各类烃 注意:新戊烷[C(CH 3)4]亦为气态 ② 衍生物类: 一氯甲烷(.....CH ..3.Cl ..,沸点为....-.24.2....℃).. 氟里昂(....CCl ...2.F .2.,沸点为....-.29.8....℃).. 氯乙烯(....CH ..2.==CHCl ......,沸点为....-.13.9....℃).. 甲醛(...HCHO ....,沸点为....-.21..℃).. 氯乙烷(....CH ..3.CH ..2.Cl ..,沸点为....12.3....℃).. 一溴甲烷(CH 3Br ,沸点为3.6℃) 四氟乙烯(CF 2==CF 2,沸点为-76.3℃) 甲醚(CH 3OCH 3,沸点为-23℃) 甲乙醚(CH 3OC 2H 5,沸点为10.8℃) 环氧乙烷( , 沸点为 13.5℃) (2)液态:一般N(C)在5~16的烃及绝大多数低级衍生物。如, 己烷CH 3(CH 2)4CH 3 环己烷 甲醇CH 3OH 甲酸HCOOH 溴乙烷C 2H 5Br 乙醛CH 3CHO 溴苯C 6H 5Br 硝基苯C 6H 5NO 2 ★特殊: 不饱和程度高的高级脂肪酸甘油酯,如植物油脂等在常温下也为液态

高二化学必背知识点整理

高二化学必背知识点整理 【一】 1.纯碱、苏打:Na2CO3 2.小苏打:NaHCO3 3.大苏打:Na2S2O3 4.石膏(生石膏):CaSO4·2H2O 5.熟石膏:2CaSO4·.H2O 6.莹石:CaF2 7.重晶石:BaSO4(无毒) 8.碳铵:NH4HCO3 9.石灰石、大理石:CaCO310.生石灰:CaO11.食盐:NaCl 12.熟石灰、消石灰:Ca(OH)213.芒硝:Na2SO4·7H2O(缓泻剂) 14.烧碱、火碱、苛性钠:NaOH15.绿矾:FaSO4·7H2O16.干冰:CO2 17.明矾:KAl(SO4)2·12H2O18.漂白粉:Ca(ClO)2、CaCl2(混合物) 19.泻盐:MgSO4·7H2O20.胆矾、蓝矾:CuSO4·5H2O21.双氧水:H2O2 23.石英:SiO224.刚玉:Al2O325.水玻璃、泡花碱:Na2SiO3 26.铁红、铁矿:Fe2O327.磁铁矿:Fe3O428.黄铁矿、硫铁矿:FeS2 29.铜绿、孔雀石:Cu2(OH)2CO330.菱铁矿:FeCO331.赤铜矿:Cu2O 32.波尔多液:Ca(OH)2和CuSO433.玻璃的主要成分:Na2SiO3、CaSiO3、SiO2 34.天然气、沼气、坑气(主要成分):CH435.水煤气:CO和H2 36.王水:浓HNO3、浓HCl按体积比1:3混合而成。 37.铝热剂:Al+Fe2O3(或其它氧化物)40.尿素:CO(NH2) 【二】 1.澄清石灰水中通入二氧化碳气体(复分解反应) Ca(OH)2+CO2=CaCO3↓+H2O 现象:石灰水由澄清变浑浊。 相关知识点:这个反应可用来检验二氧化碳气体的存在。 不用它检验,CaCO3+CO2+H2O=Ca(HCO3)2沉淀消失,可用Ba(OH)2溶液。 2.镁带在空气中燃烧(化合反应) 2Mg+O2=2MgO 现象:镁在空气中剧烈燃烧,放热,发出耀眼的白光,生成白色粉末。 相关知识点: (1)这个反应中,镁元素从游离态转变成化合态; (2)物质的颜色由银白色转变成白色。 (3)镁可做照明弹; (4)镁条的着火点高,火柴放热少,不能达到镁的着火点,不能用火柴点燃; (5)镁很活泼,为了保护镁,在镁表面涂上一层黑色保护膜,点燃前要用砂纸打磨干净。 3.水通电分解(分解反应) 2H2O=2H2↑+O2↑ 现象:通电后,电极上出现气泡,气体体积比约为1:2 相关知识点: (1)正极产生氧气,负极产生氢气; (2)氢气和氧气的体积比为2:1,质量比为1:8; (3)电解水时,在水中预先加入少量氢氧化钠溶液或稀硫酸,增强水的导电性; (4)电源为直流电。 4.生石灰和水反应(化合反应) CaO+H2O=Ca(OH)2 现象:白色粉末溶解

高中化学知识点总结材料

高中化学基础知识整理 Ⅰ、基本概念与基础理论: 一、阿伏加德罗定律 1.内容:在同温同压下,同体积的气体含有相同的分子数。即“三同”定“一同”。2.推论 (1)同温同压下,V1/V2=n1/n2 同温同压下,M1/M2=ρ1/ρ2 注意:①阿伏加德罗定律也适用于不反应的混合气体。②使用气态方程PV=nRT有助于理解上述推论。 3、阿伏加德罗常这类题的解法: ①状况条件:考查气体时经常给非标准状况如常温常压下,1.01×105Pa、25℃时等。 ②物质状态:考查气体摩尔体积时,常用在标准状况下非气态的物质来迷惑考生,如H2O、SO3、已烷、辛烷、CHCl3等。 ③物质结构和晶体结构:考查一定物质的量的物质中含有多少微粒(分子、原子、电子、质子、中子等)时常涉及希有气体He、Ne等为单原子组成和胶体粒子,Cl2、N2、O2、H2为双原子分子等。晶体结构:P4、金刚石、石墨、二氧化硅等结构。 二、离子共存 1.由于发生复分解反应,离子不能大量共存。 (1)有气体产生。如CO32-、SO32-、S2-、HCO3-、HSO3-、HS-等易挥发的弱酸的酸根与H+不能大量共存。 (2)有沉淀生成。如Ba2+、Ca2+、Mg2+、Ag+等不能与SO42-、CO32-等大量共存;Mg2+、Fe2+、Ag+、Al3+、Zn2+、Cu2+、Fe3+等不能与OH-大量共存;Fe2+与S2-、Ca2+与PO43-、Ag+与I-不能大量共存。 (3)有弱电解质生成。如OH-、CH3COO-、PO43-、HPO42-、H2PO4-、F-、ClO-、AlO2-、SiO32-、 CN-、C17H35COO-、等与H+不能大量共存;一些酸式弱酸根如HCO3-、HPO42-、HS-、H2PO4-、HSO3-不能与OH-大量共存;NH4+与OH-不能大量共存。 (4)一些容易发生水解的离子,在溶液中的存在是有条件的。如AlO2-、S2-、CO32-、C6H5O-等必须在碱性条件下才能在溶液中存在;如Fe3+、Al3+等必须在酸性条件下才能在溶液中存在。这两类离子不能同时存在在同一溶液中,即离子间能发生“双水解”反应。如3AlO2-+Al3++6H2O=4Al(OH)3↓等。 2.由于发生氧化还原反应,离子不能大量共存。 (1)具有较强还原性的离子不能与具有较强氧化性的离子大量共存。如S2-、HS-、SO32-、I-和Fe3+不能大量共存。 (2)在酸性或碱性的介质中由于发生氧化还原反应而不能大量共存。如MnO4-、Cr2O7-、NO3-、ClO-与S2-、HS-、SO32-、HSO3-、I-、Fe2+等不能大量共存;SO32-和S2-在碱性条件下可以共存,但在酸性条件下则由于发生2S2-+SO32-+6H+=3S↓+3H2O反应不能共在。H+与S2O32-不能大量共存。 3.能水解的阳离子跟能水解的阴离子在水溶液中不能大量共存(双水解)。 例:Al3+和HCO3-、CO32-、HS-、S2-、AlO2-、ClO-等;Fe3+与CO32-、HCO3-、AlO2-、ClO-等不能大量共存。 4.溶液中能发生络合反应的离子不能大量共存。

环境地学知识点整理

环境地学知识点整理 1、 环境地学概念:环境地学属于环境科学的分支学科之一,它以人-地系统为研究对象,研究人-地系统的组成、结构、发展变化规律,并运用地球科学一系列分支学科的理论和方法来调节和控制、改造和利用人—地系统的科学。 2、 环境地学分支学科:环境气象学、环境水文学、环境土壤学、环境海洋学、环境生态学、环境地质学、环境地球化学、环境物理学 3、 太阳系是由恒星太阳、行星及其卫星、小行星、矮行星、彗星、流星体和行星际物质构成的天体系统。太阳是太阳系的中心天体,占太阳系总质量的99.86%,其他天体都在太阳的引力作用下绕其公转。 4、 太阳大气层从内到外可分为光球、色球、日冕3层。 5、 开普勒三大定律:①行星沿椭圆轨道运动,太阳位于椭圆的一个焦点上;②在行星绕太阳运动的过程中,它的向径(行星与太阳的连线)单位时间内扫过的面积相等;③行星公转周期T 的平方与行星轨道长半径a 的立方成正比,即: 6、 地球圈层结构表 7、 地球表层系统是由大气圈、水圈、生物圈、土壤圈、岩石圈和人类智慧圈所组成的复杂开放系统,也是环境科学、环境地学和地理科学重要的研究内容。(补充30页图2-11) 8、 大气要素:①气温:华氏温度(F )与摄氏温度(C )的换算关系为C=5(F-32)/9或F=32+9C/5。大气的温度一般以百叶箱中干球温度为代表。②气压;③湿度:a 、相对湿度(f )是指空气中的实际水汽压与同温度条件下的饱和水汽压的比值(用百分数表示),即f=e/E ,相对湿度直接反映空气距离饱和的程度。B 、露点(T d )在气压一定的情况下,并保持空气中水汽含量不变,使空气

高二化学知识点总结

知识点总结年级:高二化学化学反应原理复习(一) 【知识讲解】 第1章、化学反应与能量转化 化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。 一、化学反应的热效应 1、化学反应的反应热 (1)反应热的概念: 当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。 (2)反应热与吸热反应、放热反应的关系。 Q>0时,反应为吸热反应;Q<0时,反应为放热反应。 (3)反应热的测定 测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下: Q=-C(T2-T1) 式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。 2、化学反应的焓变 (1)反应焓变 物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。 反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。

(2)反应焓变ΔH与反应热Q的关系。 对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。 (3)反应焓变与吸热反应,放热反应的关系: ΔH>0,反应吸收能量,为吸热反应。 ΔH<0,反应释放能量,为放热反应。 (4)反应焓变与热化学方程式: 把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式, 如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1 书写热化学方程式应注意以下几点: ①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。 ②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或kJ·mol-1,且ΔH后注明反应温度。 ③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。 3、反应焓变的计算 (1)盖斯定律

高中化学选修3知识点总结

高中化学选修3知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。 2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。 (2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。 4、核外电子排布规律 (1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 (2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。 (3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。 (4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。 能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。 电子数 (5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。 (1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。 (2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。 (3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。 2、元素周期律

高二化学必考知识点梳理五篇最新

高二化学必考知识点梳理五篇最新 高中学习容量大,不但要掌握目前的知识,还要把高中的知识与初中的知识溶为一体才能学好。在读书、听课、研习、总结这四个环节都比初中的学习有更高的要求。下面就是我给大家带来的高二化学知识点总结,希望能帮助到大家! 高二化学知识点总结1 1——原子半径 (1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小; (2)同一族的元素从上到下,随电子层数增多,原子半径增大。 2——元素化合价 (1)除第1周期外,同周期从左到右,元素正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外); (2)同一主族的元素的正价、负价均相同 (3)所有单质都显零价 3——单质的熔点 (1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减; (2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增 4——元素的金属性与非金属性(及其判断) (1)同一周期的元素电子层数相同。因此随着核电荷数的增加,原子越容易

得电子,从左到右金属性递减,非金属性递增; (2)同一主族元素最外层电子数相同,因此随着电子层数的增加,原子越容易失电子,从上到下金属性递增,非金属性递减。 判断金属性强弱 金属性(还原性)1,单质从水或酸中置换出氢气越容易越强 2,价氧化物的水化物的碱性越强(1—20号,K;总体Cs最 非金属性(氧化性)1,单质越容易与氢气反应形成气态氢化物 2,氢化物越稳定 3,价氧化物的水化物的酸性越强(1—20号,F;最体一样) 5——单质的氧化性、还原性 一般元素的金属性越强,其单质的还原性越强,其氧化物的阳离子氧化性越弱; 元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。 推断元素位置的规律 判断元素在周期表中位置应牢记的规律: (1)元素周期数等于核外电子层数; (2)主族元素的序数等于最外层电子数。 阴阳离子的半径大小辨别规律 由于阴离子是电子最外层得到了电子而阳离子是失去了电子 6——周期与主族 周期:短周期(1—3);长周期(4—6,6周期中存在镧系);不完全周期(7)。 主族:ⅠA—ⅦA为主族元素;ⅠB—ⅦB为副族元素(中间包括Ⅷ);0族(即惰

东华理工大学地球化学复习题

第一篇地球化学知识点整理(狼图腾) 整理方法:课本+笔记+参考资料 注:有些并非很重要! 一、名词解释 1?地球化学:是研究地球(包括部分天体)的化学组成、化学作用和化学演化的学科。 2?元素的丰度值:指各种化学元素在一定自然体系中的相对平均含量。 3?陨石:是降落在地球上的行星物质的碎块。 4?克拉克值:指地壳中元素重量百分数的丰度值。 5?丰度系数:指某一自然体的元素丰度与另一个可作为背景的自然体元素丰度的比值。 6?克里普岩:是岩浆分异或残余熔浆结晶形成的富含挥发组分元素的岩石,其富K、REE 和P。 7?元素的地球化学亲和性:指在地球化学作用过程中,元素形成阳离子的能力和所显示出有选择地与某种阴离子结合的特性。 8?类质同像:指矿物在一定的物理化学条件下结晶时,晶体结构中某种质点(原子、离子、配离子、分子)被其他类似的质点所代替,结果只引起晶格常数的微小改变,晶体的构造类型、化学键类型等均保持不变的现象。 9?微量元素地球化学:是借助各种现代分析测试技术,基于微量元素地球化学的基本理论研究微量元素在地球及其子系统中的分布、化学作用及其演化的学科。 10. 微量元素:指在所研究体系中(地质体、岩石、矿物、流体/熔体等)的含量低到可 以近似地用稀溶液定律描述其地球化学行为的元素。 11. 稀溶液定律(即亨利定律):在极稀薄溶液中,溶质的活度正比于溶质的摩尔浓度。 12. 分配系数:微量元素i在平衡共存的两相之间的质量浓度比值。 13. (1)相容元素:(表述1)在岩浆结晶过程中,那些容易以类质同像的形式进入固体的微量元素。(表述2)岩浆结晶或固相部分熔融过程中偏爱矿物相的微量元素 (2)不相容元素:岩浆结晶或固相部分熔融过程中偏爱熔体或溶液相的微量元素。 14. 元素地球化学迁移:元素从一种赋存状态转变成为另一种赋存状态,并经常伴随元素组合和分布上的变化以及空间位移的作用。 15. 地球化学障:在元素迁移过程中,如果环境的物理化学条件发生了急剧变化,导致 介质中原来稳定迁移的元素其迁移能力下降,元素因形成大量化合物而沉淀,则这些影响元 素沉淀的条件或因素就称为地球化学障。 16. 原始地幔:地核形成以后,地壳形成以前的地幔。 17. 亏损地幔:原始地幔经过部分熔融形成地壳以后残余的地幔。 18. 富集地幔:由于板块俯冲作用将地壳物质再循环返回地幔后所形成的地幔。 19. 五重简并:在一个孤立的过渡金属离子中,五个d轨道的能级相同,电子云呈球形 对称,电子在五个d轨道的分布概率相同,称为"五重简并”。 20. 晶体场分裂:当过渡金属离子处在晶体结构中时,由于晶体场的非球形对称特征,使d轨道的能级产生差异,称为“晶体场分裂”。 21. 晶体场分裂能:将一个孤立的过渡金属离子放在正八面体配位的晶体中时,五个d 轨道都受到配位体负电荷的排斥,轨道总的能级提高;由于正八面体配位场中配位体质点处 于直角坐标的三个垂直轴方向,故dr轨道电子云的瓣指向配位体,使两个dr轨道电子的被 排斥力比d?轨道的被排斥力大,dr轨道的能级要比d?轨道电子的能级高得更多,dr轨道电子的能级与d?轨道电子能级间的能量差,称为“晶体场分裂能”。 22. 晶体场稳定能:d轨道电子能级分裂后的d电子能量之和,相对于未分裂前d电子 能量之和的差值,称为“晶体场稳定能”。 23. 八面体择位能:离子八面体配位的晶体场稳定能减去其四面体配位的晶体场的稳定能。

高中化学知识点整理(高考必备)

重点中学高考资源整理 高中化学 易忽略知识点整理

一、俗名 无机部分: 纯碱、苏打、天然碱、口碱:Na2CO3小苏打:NaHCO3大苏打:Na2S2O3石膏(生石膏): CaSO4.2H2O 熟石膏:2CaSO4·.H2O 莹石:CaF2 重晶石:BaSO4(无毒)碳铵:NH4HCO3 石灰石、大理石:CaCO3生石灰:CaO 食盐:NaCl 熟石灰、消石灰:Ca(OH)2 芒硝:Na2SO4·7H2O (缓泻剂) 烧碱、火碱、苛性钠:NaOH 绿矾:FaSO4·7H2O 干冰:CO2明矾:KAl (SO4)2·12H2O 漂白粉:Ca (ClO)2、CaCl2(混和物)泻盐:MgSO4·7H2O 胆矾、蓝矾:CuSO4·5H2O双氧水:H2O2皓矾:ZnSO4·7H2O 硅石、石英:SiO2 刚玉:Al2O3 水玻璃、泡花碱、矿物胶:Na2SiO3 铁红、铁矿:Fe2O3 磁铁矿:Fe3O4黄铁矿、硫铁矿:FeS2铜绿、孔雀石:Cu2(OH)2CO3 菱铁矿:FeCO3赤铜矿:Cu2O 波尔多液:Ca (OH)2和CuSO4 石硫合剂:Ca (OH)2和S 玻璃的主要成分:Na2SiO3、CaSiO3、SiO2 过磷酸钙(主要成分):Ca (H2PO4)2和CaSO4 重过磷酸钙(主要成分):Ca (H2PO4)2 天然气、沼气、坑气(主要成分):CH4 水煤气:CO和H2 硫酸亚铁铵(淡蓝绿色):Fe (NH4)2(SO4)2 溶于水后呈淡绿色光化学烟雾:NO2在光照下产生的一种有毒气体王水:浓HNO3与浓HCl按体积比1:3混合而成。铝热剂:Al + Fe2O3或其它氧化物。尿素:CO(NH2) 2 有机部分: 氯仿:CHCl3电石:CaC2 电石气:C2H2(乙炔) TNT:三硝基甲苯酒精、乙醇:C2H5OH 氟氯烃:是良好的制冷剂,有毒,但破坏O3层。醋酸:冰醋酸、食醋CH3COOH 裂解气成分(石油裂化):烯烃、烷烃、炔烃、H2S、CO2、CO等。甘油、丙三醇:C3H8O3 焦炉气成分(煤干馏):H2、CH4、乙烯、CO等。石炭酸:苯酚蚁醛:甲醛HCHO 福尔马林:35%—40%的甲醛水溶液蚁酸:甲酸HCOOH 葡萄糖:C6H12O6 果糖:C6H12O6 蔗糖:C12H22O11 麦芽糖:C12H22O11 淀粉:(C6H10O5)n 硬脂酸:C17H35COOH油酸:C17H33COOH 软脂酸:C15H31COOH 草酸:乙二酸HOOC—COOH使蓝墨水褪色,强酸性,受热分解成CO2和水,使KMnO4 酸性溶液褪色。

环境化学(戴树桂第二版)课后部分复习题解答和重要知识点汇总

《环境化学》(戴树桂第二版)课后部分习题解答和重要知识点 第一章绪论 2、根据环境化学的任务、内容和特点以及发展动向,你认为怎样才能学好环境化学这门课? 环境化学是一门研究有害化学物质在环境介质中的存在、化学特征、行为和效应及其控制的化学原理和方法的科学。环境化学以化学物质在环境中出现而引起环境问题为研究对象,以解决环境问题为目标的一门新型科学。其内容主要涉及:有害物质在环境介质中存在的浓度水平和形态,潜在有害物质的来源,他们在个别环境介质中和不同介质间的环境化学行为;有害物质对环境和生态系统以及人体健康产生效用的机制和风险性;有害物质已造成影响的缓解和消除以及防止产生危害的方法和途径。环境化学的特点是要从微观的原子、分子水平上来研究宏观的环境现象与变化的化学机制及其防治途径,其核心是研究化学污染物在环境中的化学转化和效应。目前,国界上较为重视元素(尤其是碳、氮、硫和磷)的生物地球化学循环及其相互偶合的研究;重视化学品安全评价、臭氧层破坏、气候变暖等全球变化问题。当前我国优先考虑的环境问题中与环境化学密切相关的是:以有机物污染为主的水质污染、以大气颗粒物和二氧化硫为主的城市空气污染;工业有毒有害废物和城市垃圾对水题和土壤的污染。 3、环境污染物有哪些类别?主要的化学污染物有哪些? 按环境要素可分为:大气污染物、水体污染物和工业污染物。 按污染物的形态可分为:气态污染物、液态污染物和固体污染物; 按污染物的性质可分为:化学污染物、物理污染物和生物污染物。 主要化学污染物有: 1. 元素:如铅、镉、准金属等。 2.无机物:氧化物、一氧化碳、卤化氢、卤素化合物等 3. 有机化合物及烃类:烷烃、不饱和脂肪烃、芳香烃、PAH等; 4. 金属有机和准金属有机化合物:如,四乙基铅、二苯基铬、二甲基胂酸等; 5. 含氧有机化合物:如环氧乙烷、醚、醛、有机酸、酐、酚等; 6. 含氮有机化合物:胺、睛、硝基苯、三硝基甲苯、亚硝胺等; 7. 有机卤化物:四氯化碳、多氯联苯、氯代二噁瑛; 8. 有机硫化物:硫醇、二甲砜、硫酸二甲酯等; 9. 有机磷化合物:磷酸酯化合物、有机磷农药、有机磷军用毒气等。 第二章:大气环境化学 4. 影响大气中污染物迁移的主要因素是什么? 主要有:(1)空气的机械运动如风和大气湍流的影响; (2)天气和地理地势的影响;(3)污染源本身的特性。 7.大气中有哪些重要自由基?其来源如何? 大气中主要自由基有:HO HQ、R RQ HO的来源:① Q3的光解:Q3 +h r ---------------------- - 0 + 0 2 Q+HQ ---------------- — 2HQ ②HNQ 的光解:HNQ 2 + h r --------------- HQ +NQ ③H 2Q 的光解:H2C2 + h r ----------------------- 2HQ HQ的来源:① 主要来自醛特别是甲醛的光解 H 2CQ + h r ---------------- -- H + HCQ H + Q 2 + M ------------ - HQ + M HCQ + Q2 +M -------------------- -- HQ2 + CQ + M ②亚硝酸酯的光解:CHQNQ +h r —CHQ + NQ CH 3Q + Q 2 ------------------------------- ---- HQ + H 2CQ ③的光解:HQ + h r -------------------- 2HQ HQ + H 2Q --------------- - HQ + H 2Q R 的来源:RH+ Q ---------------- R + HQ RH + HQ -------- R + H2Q CH 的来源:CHCHQ的光解CH3CHQ +h r 一- CH + CHQ CH 3CQCH的光解CH3CQCH+ h r -------------- 3+ CH s CQ

高二化学知识点总结全-高二化学知识点总结

下面是分享的高二化学知识点总结。供大家参考! 高二化学知识点总结篇一 第一章 一、焓变反应热 反应热一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量 焓变(δH)的意义在恒压条件下进行的化学反应的热效应 (1)。符号△H(2)。单位kJ/mol 3、产生原因化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热)△H为“-”或△H<0 吸收热量的化学反应。(吸热>放热)△H为“+”或△H>0

☆常见的放热反应①所有的燃烧反应②酸碱中和反应 ③大多数的化合反应④金属与酸的反应 ⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等 ☆常见的吸热反应①晶体Ba(OH)2·8H2O与NH4Cl②大多数的分解反应 ③以H2、CO、C为还原剂的氧化还原反应④铵盐溶解等 二、热化学方程式 书写化学方程式注意要点 ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式要指明反应时的温度和压强。

④热化学方程式中的化学计量数可以是整数,也可以是分数 ⑤各物质系数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变 三、燃烧热 概念25℃,101kPa时,1mol纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点 ①研究条件101kPa ②反应程度完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量1mol ④研究内容放出的热量。(δH<0,单位kJ/mol) 四、中和热 概念在稀溶液中,酸跟碱发生中和反应而生成1molH2O,这时的反应热叫

相关文档
最新文档