平衡球车削工艺的改进

平衡球车削工艺的改进
平衡球车削工艺的改进

数控车削加工工艺分析之我见的论文

数控车削加工工艺分析之我见的论文【摘要】数控车床的使用的目的旨在加工出合格的零件,但是合格的零件的加工必须要依靠制定合理的加工工艺。本文针对当前数控车床使用者的工艺分析的不合理来进行对比,讲述合理的工艺分析的顺序问题。 【关键词】数控车床车削加工工艺工艺分析车削 一、问题的提出 数控车削加工主要包括工艺分析、程序编制、装刀、装工件、对刀、粗加工、半精加工、精加工。而数控车削的工艺分析是数控车削加工顺利完成的保障。 数控车削加工工艺是采用数控车床加工零件时所运用的方法和技术手段的总和。其主要内容包括以下几个方面: (一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工具、夹具的选择和调整设计;(四) 切削用量选择;(五)工序、工步的设计;(六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。 笔者观察了很多数控车的技术工人,阅读了不少关于数控车削加工工艺的文章,发现大部分的使用者采用选择并确定零件的数控车削加工内容、零件图分析、夹具和刀具的选择、切削用量选择、划分工序及拟定加工顺序、加工轨迹的计算和优化、编制数控加工工艺技术文件的顺序来进行工艺分析。 但是笔者分析了上述的顺序之后,发现有点不妥。因为整个零件的工序、工步的设计是工艺分析这一环节中最重要的一部分内容。工序、工步的设计直接关系到能否加工出符合零件形位公差要求的零件。https://www.360docs.net/doc/8118733904.html,工序、工步的设计不合理将直接导致零件的形位公差达不到要求。换言之就是工序、工步的设计不合理直接导致产生次品。

二、分析问题 目前,数控车床的使用者的操作水平非常高,并且能够独立解决很多操作上的难题,但是他们的理论水平不是很高,这是造成工艺分析顺序不合理的主要原因。 造成工艺分析顺序不合理的另一个原因是企业的工量具设备不足。 三、解决问题 其实分析了工艺分析顺序不合理的现象和原因之后,解决问题就非常容易了。需要做的工作只要将对零件的分析顺序稍做调整就可 以。 笔者认为合理的工艺分析步骤应该是: (一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工序、工步的设计;(四)工具、夹具的选择和调整设计;(五)切削用量选择; (六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。 本文主要对二、三、四、五三个步骤进行详细的阐述。 (一)零件图分析 零件图分析是制定数控车削工艺的首要任务。主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。此外还应分析零件结构和加工要求的合理性,选择工艺基准。 1.选择基准 零件图上的尺寸标注方法应适应数控车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。 2.节点坐标计算

典型零件的机加工工艺分析

第4章典型零件的机械加工工艺分析 本章要点 本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下:1.介绍机械加工工艺规程制订的原则与步骤。 2.以轴类、箱体类、拨动杆零件为例,分析零件机械加工工艺规程制订的全过程。 本章要求:通过典型零件机械加工工艺规程制订的分析,能够掌握机械加工工艺规程制订的原则和方法,能制订给定零件的机械加工工艺规程。 §机械加工工艺规程的制订原则与步骤 §机械加工工艺规程的制订原则 机械加工工艺规程的制订原则是优质、高产、低成本,即在保证产品质量前提下,能尽量提高劳动生产率和降低成本。在制订工艺规程时应注意以下问题: 1.技术上的先进性 在制订机械加工工艺规程时,应在充分利用本企业现有生产条件的基础上,尽可能采用国内、外先进工艺技术和经验,并保证良好的劳动条件。 2.经济上的合理性 在规定的生产纲领和生产批量下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,一般要求工艺成本最低。充分利用现有生产条件,少花钱、多办事。 3.有良好的劳动条件 在制订工艺方案上要注意采取机械化或自动化的措施,尽量减轻工人的劳动强度,保障生产安全、创造良好、文明的劳动条件。 由于工艺规程是直接指导生产和操作的重要技术文件,所以工艺规程还应正确、完整、统一和清晰。所用术语、符号、计量单位、编号都要符合相应标准。必须可靠地保证零件图上技术要求的实现。在制订机械加工工艺规程时,如果发现零件图某一技术要求规定得不适当,只能向有关部门提出建议,不得擅自修改零件图或不按零件图去做。 §制订机械加工工艺规程的内容和步骤 1.计算零件年生产纲领,确定生产类型。 2.对零件进行工艺分析 在对零件的加工工艺规程进行制订之前,应首先对零件进行工艺分析。其主要内容包括: (1)分析零件的作用及零件图上的技术要求。

车床零件加工工艺

车床零件加工工艺 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

轴类零件的数控加工工艺分析与编制 班级 姓名 学号 综合成绩 项目一轴类零件的数控加工工艺分析与编制 零件图 项目一轴类零件的数控加工工艺分析与编制 零件图 任务一、零件图纸的工艺分析 该零件由圆柱、槽、螺纹等表面形成 设计基准径向以轴线为基准,轴向以工件右端面为基准。 未注倒角C1 表面粗糙度为, 工件材料为45钢 任务二、工艺路线的拟定 1、表面加工的方法 粗车---精车 粗车精车 精度等级 IT7,IT8 表面粗糙度 , 2、毛坯尺寸 15mm*145mm 3、工序划分 任务三、机床的选择 零件毛坯尺寸:35mm*145mm

零件最高精度:IT7,IT8 刀具类型:外圆车刀、螺纹刀 机床:CK6141 机床参数 主电机功率:4000(kw) 刀具数量:4 最大加工长度:1000(mm) 最大加工直径:58(mm) 最大回转直径:224(mm) 精度级:IT6~IT8 卡盘:三爪卡盘 任务四、装夹方案及夹具的选择 通过对刀的方式找基准 径向基准为轴线 轴向基准为工件两端面 夹具为三爪卡盘 任务五、刀具的选择 工件材料:45钢 刀具材料:硬质合金(刀片) P类:精JC215V(黛杰) 粗JC450V 适用加工结构钢、工具钢、耐热钢、铸钢可锻造钢,是钢材连续切削加工首选刀具材料任务六、刀片规格 外圆车刀 CNMG080404 切槽刀 N123H2-03 50-0004-GF 螺纹刀 任务五、刀具的选择 工件材料:45钢 刀具材料:硬质合金(刀片) P类:精JC215V(黛杰) 粗JC450V 适用加工结构钢、工具钢、耐热钢、铸钢可锻造钢,是钢材连续切削加工首选刀具材料任务六、刀片规格 外圆车刀 CNMG080404 切槽刀 N123H2-03 50-0004-GF 螺纹刀 任务七、切削用量的选择

49厂典型零件工艺分析

发动机厂典型零件的结构及其工艺分析 1 汽车发动机缸体加工工艺分析 1.1 汽车发动机缸体结构特点及其主要技术要求 发动机是汽车最主要的组成部分,它的性能好坏直接决定汽车的行驶性能,故有汽车心脏之称。而发动机缸体是发动机的基础零件,通过它把发动机的曲柄连杆机构(包括活塞、连杆、曲轴、飞轮等零件)和配气机构(包括缸盖、凸轮轴、进气门、排气门、进气歧管、排气歧管、气门弹簧,气门导管、挺杆、挺柱、摇臂、摇臂支座、正时齿轮)以及供油、润滑、冷却等机构联接成一个整体。它的加工质量会直接影响发动机的性能。 1.1.1缸体的结构特点 由于缸体的功用决定了其形状复杂、壁薄、呈箱形。其上部有若干个经机械加的穴座,供安装气缸套用。其下部与曲轴箱体上部做成一体,所以空腔较多,但受力严重,所以它应有较高的刚性,同时也要减少铸件壁厚,从而减轻其重量,而气缸体内部除有复杂的水套外,还有许多油道。 1.1.2缸体的技术要求 由于缸体是发动机的基础件,它的许多平面均作为其它零件的装配基准,这些零件之间的相对位置基本上是由缸体来保证的。缸体上的很多螺栓孔、油孔、出砂孔、气孔以及各种安装孔都能直接影响发动机的装配质量和使用性能,所以对缸体的技术要求相当严格。现将我国目前生产的几种缸体的技术要求归纳如下: 1)主轴承孔的尺寸精度一般为IT5~IT7,表面粗糙度为Ral6—0.8μm,圆柱度为0.007~0.02mm,各孔对两端的同轴度公差值为¢0.025~0.04mm。 2)气缸孔尺寸精度为IT5~IT7,表面粗糙度为Ral.6~0.8μm,有止口时其深度公差为0.03~0.05mm,其各缸孔轴线对主轴承孔轴线的垂直度为0.05mm。 3)各凸轮轴轴承孔的尺寸精度为IT6~IT7,表面粗糙度为Ra3.2~0.8μm,各孔的同轴度公差值为0.03~0.04mm。

车床零件加工工艺

轴类零件的数控加工工艺分析与编制 班级 姓名 学号 综合成绩 项目一轴类零件的数控加工工艺分析与编制 零件图

项目一轴类零件的数控加工工艺分析与编制零件图 任务一、零件图纸的工艺分析 该零件由圆柱、槽、螺纹等表面形成 设计基准径向以轴线为基准,轴向以工件右端面为基准。 未注倒角C1 表面粗糙度为Ra3.2,Ra1.6 工件材料为45钢 任务二、工艺路线的拟定 1、表面加工的方法 粗车---精车 粗车1.5 精车0.5 精度等级 IT7,IT8 表面粗糙度 3.2,1.6 2、毛坯尺寸 ?15mm*145mm 3、工序划分

任务三、机床的选择 零件毛坯尺寸:?35mm*145mm 零件最高精度:IT7,IT8 刀具类型:外圆车刀、螺纹刀 机床:CK6141 机床参数 主电机功率:4000(kw) 刀具数量:4 最大加工长度:1000(mm) 最大加工直径:58(mm) 最大回转直径:224(mm) 精度级:IT6~IT8 卡盘:三爪卡盘 任务四、装夹方案及夹具的选择 通过对刀的方式找基准 径向基准为轴线 轴向基准为工件两端面 夹具为三爪卡盘 任务五、刀具的选择 工件材料:45钢 刀具材料:硬质合金(刀片) P类:精JC215V(黛杰) 粗JC450V 适用加工结构钢、工具钢、耐热钢、铸钢可锻造钢,是钢材连续切削加工首选刀具材料 任务六、刀片规格 外圆车刀 CNMG080404 切槽刀 N123H2-03 50-0004-GF 螺纹刀 R166.0G-16MM01-150 任务五、刀具的选择 工件材料:45钢 刀具材料:硬质合金(刀片) P类:精JC215V(黛杰) 粗JC450V

典型零件选材及工艺分析

典型零件选材及工艺分析 一,齿轮类 机床、汽车、拖拉机中,速度的调节和功率的传递主要靠齿轮机床、汽车和拖拉机中是一种十分重要、使用量很大的零件。 齿轮工作时的一般受力情况如下: (1)齿部承受很大的交变弯曲应力; (2)换当、启动或啮合不均匀时承受击力; (3)齿面相互滚动、滑动、并承受接触压应力。 所以,齿轮的损坏形式主要是齿的折断和齿面的剥落及过度磨损。据此,要求齿材料具有以下主要性能: (1)高的弯曲疲劳强度和接触疲劳强度; (2)齿面有高的硬度和耐磨性; (3)齿轮心部有足够高的强度和韧性。 此外,还要求有较好的热处理工艺性,如变形小,并要求变形有一定的规律等。下面以机床和汽车、拖拉机两类齿轮为例进行分析。 (一)机床齿轮 机床中的齿轮担负着传递动力、改变运动速度和运动方向的任务。一般机床中的齿轮精度大部分是7级精度(GB179-83规定,精度分12级,用1、2、3、……12表示,数字愈大者,精度愈低)。只是在他度传动机构中要求较高的精度。

机床齿轮的工作条件比起矿山机械、动力机械中的齿轮来说还属于运转平稳、负荷不大、条件较好的一类。实践证明,一般机床齿轮选用中碳钢制造,并经高频感应热处理,所得到的硬度、耐磨性、强度及韧性能满足要求,而县市频淬火具有变形小、生产率高等优点。 下面以C616机床中齿轮为例加以分析。 1、高频淬火齿轮的工工艺线 2、热处理工序的作用正火处理对锻造齿轮毛坯是必需的热处理工序,它可以使同批坯料具有相同的硬度,便于切削加工,并使组织均匀,消除锻造应力。对于一般齿轮,正火处理也可作为高频淬火前的最后热处理工序。 调质处理可以使齿轮具有较高的综合机械性能,提高齿轮心部的强度和韧性,使齿轮能承受较大的弯曲应力和冲击力。调质后的齿轮由于组织为回火索氏体,在淬火时变形更小。 高频淬火及低温回火是赋予齿轮表面性能的关键工序,通过高频淬火提高了齿轮表 面硬度和耐磨性,并使齿轮表面有压应力存在而增强了抗疲劳破坏的能力。为了消除淬火应力,高频淬火后应进行低温回火(或自行回火),这对防止研磨裂纹的产生和提高抗冲击能力极为有利。 3、齿轮高频淬火后的变形情况齿轮高频淬火后,其变形一般表现为内孔缩小,外径不变或减小。齿轮外径与内径之比小于1.5时,内径略胀大;当齿轮有键槽时,内径向键槽方向胀大,形成椭圆形,齿间椭圆形,齿间亦稍有变形,齿形变化较小,一般表现为中间凹0.002~0.0005㎜。这些微小的变形对生产影响不大,因为一般机床用的7级精度齿轮,淬火回火后,均要经过滚光和推孔才成为成品。

典型零件的车削加工.

典型零件的车削加工 系部: 机电工程系 学生姓名:徐凯 专业班级:2013级数控设备应用与维护 学号: 1303030131 轴类零件的加工与编程 机电工程系数控技术应用与维护 摘要 随着科学技术的不断发展,社会生产力得到了空前的发展,新的制造技术越来越多地被应用于生产实践中,对推动社会进步起着巨大的推动作用。数控加工是一种最具代表性的技术。制造技术和装备技术是最基本的生产资料,数控技术是先进制造技术和装备最重要的技术。数控技术是利用数字信息来控制

机床运动和加工过程的技术。这是一种新的技术,它代表了传统的制造业和新的制造业。这就是所谓的数字设备,它涵盖了许多领域。(1)信息处理、加工、传输技术;(2)伺服驱动技术;(3)传感器技术;(4)软件技术。数控技术与数控设备是制造业现代化的重要基础。这一基础是牢固而直接影响国家经济发展和综合国力的一个基础。它与一个国家的战略地位有关。因此,世界工业发达国家都采取了重大措施,发展自己的数控技术及其产业。先进制造技术的发展,是数控技术的核心,已成为促进经济发展、提高综合国力和国家地位的重要途径。在我国,数控技术和设备的发展也受到了高度重视,近年来取得了长足的进步。特别是在通用计算机数控领域,基于计算机平台的国产数控系统,一直处于世界前列。 本设计结合零件图分析和参数选择加工设备、刀具、夹具、切削速度、进给速度、进给量、深度的选择,制定数控加工过程的组成部分,根据所选指令系统编制机床零件加工程序。 关键词:数控车床、零件分析、刀具表、NC、数控编程 目录 第1章数控技术的介绍 (4) 1.1数控技术的基本概念 (4) 1.2数控技术的发展趋势 (4) 第2章典型零件图的分析 (4) 图1.典型车削零件图 (5) 第3章数控机床与系统的选择 (5) 3.1数控机床的选择 (5)

(工艺技术)高级车削加工工艺与技能训练理

《高级车削加工工艺与技能训练》理论课教案

教学过程 及时间 主要教学内容及步骤备注 应保证两体一致,否则难以组合及达到组合后的形状要求。 1)外圆锥度检测相对较为方便、准确,可选择偏心体作为基准零件预先加工,然后加工偏心板上的圆锥孔,与偏心体相配。 2)为保证两零件对应孔位置的准确性,可利用内、外锥度配合,将两零件组合后进行加工。为保证定位准确,可在圆柱孔的位置上 制出工艺孔以安装定位销。 3)由于各孔偏心位置不同,偏心距的偏差较小,应注意准确划线并仔细校正。 4)为增加两零件连接的可靠性,可使用M12螺栓通过Φ14 mm 内孔将两零件锁紧。 图1 偏心组件 图2 偏心板(件1)零件图绘图(或模型) 绘图(或模型)

教学过程 及时间 主要教学内容及步骤备注 (2)编制加工工艺35分 钟 技术要求 1. 圆锥半角a/2±3ˊ,锥度1:5与件1配作。 2. 未注倒角1×45o,锐边倒角0.3×45o。 图3 偏心体(件2)零件图 (2)作业要点 1)卡盘夹持件2车两端面,保持总长40 mm,车削外圆Φ80 士0. 020 mm,表面粗糙度R a1.6μm。 2)确定外圆锥中心线位置并划线。(可在数显铣床上钻中心孔 的方法) 3)卡盘夹持件2,按划线校正后车削外圆锥度1:5,保证圆锥半 角a/2±3ˊ,并车削内孔Φ140.018 +mm达要求。 4)卡盘夹持件1,车两端面保持总长25 mm,并车削外圆Φ90 mm.。 5)铣四方80.5 mm ×80.5 mm,四边(铣削或磨削)保证80 士0. 02 mm(两处)及位置精度。 6)确定圆锥孔中心线位置并划线。(可在数显铣床上钻中心孔 的方法) 7)卡盘夹持件1,按划线校正后车削圆锥孔1:5,与工件2相 配,保证涂色接触率大于75%,以及组合尺寸2士0. 030 mm,42 士0. 030 mm。 8)利用圆锥配合,将两件组合,校正并保证外形错位在士0. 10 mm范围内,用螺栓锁紧。按要求划线并在Φ200.021 +mm的孔位上 绘图 (或 模 型) 板书 C= 2tan 2 a C= 2tan 2 a

数控车床加工工艺分析

数控车床加工工艺分析 摘要:随着数控加工的日益成熟越来越多的零件产品都用数控机床来加工,因此如何改进数控加工的工艺问题就越来越重要。在数控机床上由于机床空间及机床的其他局限了数控加工的灵活性,这样就要求我们要懂得如何改进加工工艺,提高数控机床的应用范围和加工性能。从而达到提高生产效率和产品质量。 关键词:数控加工加工工艺薄壁套管、护轴 前言:数控加工作为一种高效率高精度的生产方式,尤其是形状复杂精度要求很高的模具制造行业,以及成批大量生产的零件。因此数控加工在航空业、电子行业还有其他各行业都广泛应用。然而在数控加工从零件图纸到做出合格的零件需要有一个比较严谨的工艺过程,必须合理安排加工工艺才能快速准确的加工出合格的零件来,否则不但浪费大量的时间,而且还增加劳动者的劳动强度,甚至还会加工出废品来。下面我将结合某一生产实例对数控加工的工艺进行分析。以便帮助大家进一步了解数控加工,对实际加工起到帮助作用。 一般数控机床的加工工艺和普通机床的加工工艺是大同小异的,只是数控机床能够通过程序自动完成普通机床的加工动作,减轻了劳动者的劳动强度,同时能比较精准的加工出合格的零件。由于数控加工整个加工过程都是自动完成的,因此要求我们在加工零件之前就必须把整个加工过程有一个比较合理的安排,其中不能出任何的差错,

否则就会产生严重的后果。 1、1 零件图样分析 因为薄壁加工比较困难,尤其是内孔的加工,由于在切削过程中,薄壁受切削力的作用,容易产生变形。从而导致出现椭圆或中间小,两头大的“腰形”现象。另外薄壁套管由于加工时散热性差,极易产生热变形,使尺寸和形位误差。达不到图纸要求,需解决的重要问题,是如何减小切削力对工件变形的影响。薄壁零件的加工是车削中比较棘手的问题,原因是薄壁零件刚性差,强度弱,在加工中极容易变形,使零件的形位误差增大,不易保证零件的加工质量。可利用数控车床高加工精度及高生产效率的特点,并充分地考虑工艺问题对零件加工质量的影响,为此对工件的装夹、刀具几何参数、程序的编制等方面进行试验,有效地克服薄壁零件加工过程中出现的变形,保证了加工精度,为今后更好的加工薄壁零件提供了好的依据及借鉴。 无论用什么形式加工零件,首先都必须从查看零件图开始。由图看见该薄壁零件加工,容易产生变形,这里不仅装夹不方便,而且所要加工的部位也那难以加工,需要设计一专用薄壁套管、护轴。

典型零件的加工工艺分析案例

典型零件的加工工艺分析案例 实例. 以图A-54所示的平面槽形凸轮为例分析其数控铣削加工工艺。 图A-54 平面槽型凸轮简图 案例分析: 平面凸轮零件是数控铣削加工中常用的零件之一,基轮廓曲线组成不外乎直线—曲线、圆弧—圆弧、圆弧—非圆曲线及非圆曲线等几种。所用数控机床多为两轴以上联动的数控铣床,加工工艺过程也大同小异。 1. 零件图纸工艺分析 图样分析要紧分析凸轮轮廓形状、尺寸和技术要求、定位基准及毛坯等。 本例零件是一种平面槽行凸轮,其轮廓由圆弧HA、BC、DE、FG和直线AB、HG以及过渡圆弧CD、EF所组成,需要两轴联动的数控机床。材料为铸铁、切削加工性较好。 该零件在数控铣削加工前,工件是一个通过加工、含有两个基准孔直径为φ280mm、厚度为18mm的圆盘。圆盘底面A及φ35G7和φ12H7两孔可用作定位基准,无需另作工艺孔定位。 凸轮槽组成几何元素之前关系清晰,条件充分,编辑时所需基点坐标专门容易求得。 凸轮槽内外轮廓面对A面有垂直度要求,只要提升装夹度,使A面与铣刀轴线垂直,即可保证:φ35G7对A面的垂直度要求由前面的工序保证。 2. 确定装夹方案

一样大型凸轮可用等高垫块垫在工作台上,然后用压板螺栓在凸轮的孔上压紧。外轮廓平面盘形凸轮的垫板要小于凸轮的轮廓尺寸,不与铣刀发生干涉。对小型凸轮,一样用心轴定位,压紧即可。 按照图A-54所示凸轮的结构特点,采纳“一面两孔”定位,设计一“一面两销”专用夹具。用一块320mm×320mm×40mm的垫块,在垫块上分别精镗φ35mm及φ12mm两个定位销孔的中心连接线与机床的x轴平行,垫块的平面要保证与工作台面平行,并用百分表检查。 图A-55为本例凸轮零件的装夹方案示意图。采纳双螺母夹紧,提升装夹刚性,防止铣削时因螺母松动引起的振动。 图A-55凸轮装夹示意图 3. 确定进给路线 进给路线包括平面内进给和深度进给两部分路线。对平面内进给,对外凸轮廓从切线方向切入,对内凹轮廓从过渡圆弧切入。在两轴联动的数控铣床上,对铣削平面槽形凸轮,深度进给有两种方法:一种是xz(或yz)平面来回铣削逐步进刀到即定深度;另一种方法是先打一个工艺孔,然后从工艺孔进刀到即定深度。 本例进刀点选在(150,0),刀具在y+15之间来回运动,逐步加深铣削深度,当达到即定深度后,刀具在xy平面内运动,铣削凸轮轮廓。为保证凸轮的工件表面有较好的表面质量,采纳顺铣方式,即从(150,0)开始,对外凸轮廓,按顺时针方向铣削,对内凸轮廓按逆时针方向铣削,图A -56所示为铣刀在水平面的切入进给路线。 图A-56 平面槽形凸轮的切入进给路线 4. 选择刀具及切削用量 铣刀材料和几何参数要紧按照零件材料切削加工性、工件表面几何形状和尺寸大小不一选择;切削用量则依据零件材料特点、刀具性能及加工

典型零件机械加工工艺设计与实施期末测试答案

典型零件机械加工工艺设计与实施 期末测试参考答案 一、填空题(每空1分,共30分): 1、铸件、锻件、焊接件、冲压件 2、粗基准、精基准 3、基准先行、先主后次、先粗后精、先面后孔 4、通规、止规 5、成形法、展成法 6、直齿、斜齿圆柱齿轮、蜗轮 7、弟y齿、珩齿、磨齿 8 500 9、盘形插齿刀、碗形直齿插齿刀、锥柄插齿刀 10、平行孔系、同轴孔系、交叉孔系。

11 找正法、镗模法、坐标法、

、选择题(每小题5分,共10 分)

工床身时,导轨面的实际切除量要尽可能地小而均匀,故应选导轨面作粗基准加工床身底面,然后再以加工过的床身底面作精基准加工导轨面,此时从导轨面上去除的加工余量可较小而均匀。 3、试述单刃镗刀镗削具有以下特点。 答:单刃镗刀镗削具有以下特点 镗削的适应性强。 镗削可有效地校正原孔的位置误差。 镗削的生产率低。因为镗削需用较小的切深和进给量进行多次走刀以减小刀杆的弯曲变形,且在镗床和铣床上镗孔需调整镗刀在刀杆上的径向位置,故操作复杂、费时。 镗削广泛应用于单件小批生产中各类零件的孔加工。 4、铣削加工可完成哪些工作?铣削加工有何特点? 答:1)铣削应用范围:铣床是机械加工主要设备之一,在铣床上用铣刀对工件进行加工的方法称为铣削。它可用来加工平面、台阶、斜面、沟槽、成形表面、齿轮和切断等。如图5—11所示为铣床加工应用示例。 2)铣削特点: (1)生产率高铣削时铣刀连续转动,并且允许较高的铣削速度,因此具有较高的生产率(2)断续切削铣削时每个刀齿都在断续切削,尤其是端铣,铣削力波动大,故振动是不可

高速铣削时刀齿还要经受周期性的冷、热冲击,容易出现裂纹和崩刃,使刀具耐用度下 降。 (3)多刀多刃切削 铣刀的刀齿多,切削刃的总长度大,有利于提高刀具耐用度和生产 率,优点不少。但也存在下述两个方面的问题:一是刀齿容易出现径向跳动,这将造成 刀齿负荷不等,磨损不均匀,影响已加工表面质量;二是刀齿的容屑空间必须足够,否 则会损坏刀齿 五、分析与计算题(每小题9分,共18分) 1、解:(1)电动机(1450r/min — 40, 26, 33 - 325 58 72 65 -—[聖—M3-主轴],[M2 61 —17-主轴] 81 (2) 3X 2 = 6 (3) n min = 1450X 100 X 26 X 17 =33.81344mm 325 72 81 2、 解:先画出尺寸链。 确定圭寸闭环:A0=0.1?0.4mm 命⑴ 90 °严 增环:A2= 0 mm 0.03 ES 减环:A1=A3=6 0.01mm 、 A 4EI m n 1 然后用极值法公式:A 0 A , A j i 1 j m 1

厂典型零件工艺分析

厂典型零件工艺分析 1 汽车发动机缸体加工工艺分析 1.1 汽车发动机缸体结构特点及其要紧技术要求 发动机是汽车最要紧的组成部分,它的性能好坏直截了当决定汽车的行驶性能,故有汽车心脏之称。而发动机缸体是发动机的基础零件,通过它把发动机的曲柄连杆机构(包括活塞、连杆、曲轴、飞轮等零件)和配气机构(包括缸盖、凸轮轴、进气门、排气门、进气歧管、排气歧管、气门弹簧,气门导管、挺杆、挺柱、摇臂、摇臂支座、正时齿轮)以及供油、润滑、冷却等机构联接成一个整体。它的加工质量会直截了当阻碍发动机的性能。 1.1.1缸体的结构特点 由于缸体的功用决定了其形状复杂、壁薄、呈箱形。其上部有若干个经机械加的穴座,供安装气缸套用。其下部与曲轴箱体上部做成一体,因此空腔较多,但受力严峻,因此它应有较高的刚性,同时也要减少铸件壁厚,从而减轻其重量,而气缸体内部除有复杂的水套外,还有许多油道。 1.1.2缸体的技术要求 由于缸体是发动机的基础件,它的许多平面均作为其它零件的装配基准,这些零件之间的相对位置差不多上是由缸体来保证的。缸体上的专门多螺栓孔、油孔、出砂孔、气孔以及各种安装孔都能直截了当阻碍发动机的装配质量和使用性能,因此对缸体的技术要求相当严格。现将我国目前生产的几种缸体的技术要求归纳如下: 1)主轴承孔的尺寸精度一样为IT5~IT7,表面粗糙度为Ral6—0.8μm,圆柱度为0.007~0.02mm,各孔对两端的同轴度公差值为¢0.025~0.04mm。 2)气缸孔尺寸精度为IT5~IT7,表面粗糙度为Ral.6~0.8μm,有止口时其深度公差为0.03~0.05mm,其各缸孔轴线对主轴承孔轴线的垂直度为0.05mm。 3)各凸轮轴轴承孔的尺寸精度为IT6~IT7,表面粗糙度为Ra3.2~0.8μm,各孔的同轴度公差值为0.03~0.04mm。

典型零件的机械加工工艺的分析

型零件的机械加工工艺分析 本章要点 本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下: 1.介绍机械加工工艺规程制订的原则与步骤。 2.以轴类、箱体类、拨动杆零件为例,分析零件机械加工工艺规程制订的全过程。 本章要求:通过典型零件机械加工工艺规程制订的分析,能够掌握机械加工工艺规程制订的原则和方法,能制订给定零件的机械加工工艺规程。 §4.1 机械加工工艺规程的制订原则与步骤§4.1.1机械加工工艺规程的制订原则 机械加工工艺规程的制订原则是优质、高产、低成本,即在保证产品质量前提下,能尽量提高劳动生产率和降低成本。在制订工艺规程时应注意以下问题: 1.技术上的先进性 在制订机械加工工艺规程时,应在充分利用本企业现有生产条件的基础上,尽可能采用国内、外先进工艺技术和经验,并保证良好的劳动条件。 2.经济上的合理性 在规定的生产纲领和生产批量下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,一般要求工艺成本最低。充分利用现有生产条件,少花钱、多办事。 3.有良好的劳动条件 在制订工艺方案上要注意采取机械化或自动化的措施,尽量减轻工人的劳动强度,保障生产安全、创造良好、文明的劳动条件。 由于工艺规程是直接指导生产和操作的重要技术文件,所以工艺规程还应正确、完整、统一和清晰。所用术语、符号、计量单位、编号都要符合相应标准。必须可靠地保证零件图上技术要求的实现。在制订机械加工工艺规程时,如果发现零件图某一技术要求规定得不适当,只能向有关部门提出建议,不得擅自修改零件图或不按零件图去做。 §4.1.2 制订机械加工工艺规程的内容和步骤 1.计算零件年生产纲领,确定生产类型。 2.对零件进行工艺分析 在对零件的加工工艺规程进行制订之前,应首先对零件进行工艺分析。其主要内容包括: (1)分析零件的作用及零件图上的技术要求。 (2)分析零件主要加工表面的尺寸、形状及位置精度、表面粗糙度以及设计基准等; (3)分析零件的材质、热处理及机械加工的工艺性。 3.确定毛坯

毕业论文(典型零件的工艺分析)

北京农业职业学院机电工程学院 毕业论文 论文(设计)题目:典型零件的加工工艺 系别:机电工程学院 专业:数控技术 班级:高职数控1012 学生姓名(学号):许磊 17 指导教师姓名:诸刚 论文完成日期: 2012年 04月 30日

摘要 本次设计典型零件的机械加工工艺规程制订过程及分析、介绍,机械加工工艺规程制订的原则与步骤。 机械加工工艺规程的制定原则是优质、高产、低成本,即在保证产品质量的前提下尽可能的提高劳动生产率和降低成本。 零件的数控加工工艺分析是编制数控程序中最重要而又极其复杂的环节,也是数控加工工艺方案设计的核心工作,必须在数控加工方案制定前完成。全面合理的数控加工工艺分析是提高数控编程质量的重要保障。 工艺分析的主要内容包括: 分析零件的作用及零件图上的技术要求。 分析零件主要加工表面的尺寸、形状及位置精度、表面粗糙度以及设计的基准等。 分析零件的材质、热处理及机械加工的工艺性。 关键词:机械加工、工艺规程、变速齿轮拨叉

目录 一、毛坯选择 (4) (一)确定毛坯的类型、制造方法和尺寸及其公差 (4) (二)确定毛坯的技术要求 (4) (三)绘制毛坯图 (4) 二、基准的选择 (5) 三、拟定机械加工工艺路线 (6) (一)确定各表面的加工方法 (6) (二)拟定加工工艺路线 (7) 四、确定机械加工余量、工序尺寸及公差 (7) 五、选择机床及工艺装备 (8) (一)选择机床 (8) (二)选择刀具 (8) (三)选择夹具 (9) (四)选择量具 (9) 六、确定切削用量 (10) 七、填写工艺文件 (10) 八、参考文献 (22) 九、结论 (22) 十、致谢 (23)

数控车削工艺

车削加工的走刀路径与刀片的选择 普通车削也叫单点切削,其基本定义是用单点刀具生成圆柱形状,并且在大多数情况下,刀具是固定的,而工件是旋转的。在许多方面,车削是定义相对简单且最直接的金属切削方法。车削是高度优化的工艺,需要在应用中彻底评估各种因数。 尽管为单刃加工,车削工艺也总是多种多样的,这是由于工件形状和材料、工序类型、工况要求及现代加工经济成本等决定了许多刀具选择与数控编程编排。除ISO 标准车刀,有许多基本的车削加工类型要求使用特定的非标准刀具以便 能够以最有效的方法来执行这些工序。 应用单点切削的许多原理,也适用于其他切削刀具加工效率与刀具寿命的平衡。例如:镗削和多点的旋转切削的铣削。车削是两种运动的组合:工件的旋转和刀具的进给移动,在一些应用中,也可以是工件进给移动,而刀具绕其旋转,已进行切削,但其基本原理是相同的。刀具进给沿着工件的轴向进行移动这意味着可把零件的直径车削为更小的尺寸,此外,刀具还可在零件的末端朝中心方向进给,这意味着零件的长度将变短;有时,进给是这两种方向的组合,其结果是形成曲线表面,而CNC 车床的数控单元可以对这样的运动进行编程和处理。 车削工序刀路安排的一般确定原则 被车削的零件加工轮廓是影响走刀路线编程和刀片形状选择的重要因数。我们将数控车削工序分为几个基本切削类型,以评价哪一种刀柄类型的选择与应用。这几个基本切削类型是:1、纵向车削;2、端面车削;3、仿型车削(球面形状的车削可以被看作是仿型车削);4、插车。

刀柄类型由主偏角Kr 和刀尖角所决定,同时,这两个角度决定了车刀的副偏角Kr ′的大小,对于机夹车刀的使用,通常保持Kr ′不小于3o~5o。当刀片有后角设计时为3o;当刀片为正反两面可用的、无后角设计时,Kr ′最小为5o(通常为了形成加工需要的、正的主后角,安装该类刀片的刀柄平面是一负的角度,故当刀片装上后,一方面形成了正的主后角,另一方面也形成了负的副后角,增大了副后刀面与已加工表面擦挤的可能,故要求适当加大副偏角) 由上图可知当车刀进行仿形车削时,主偏角的大小随着刀具走向的改变,也可看到无论何时++ Kr ′=180o。在确保工件轮廓及断屑等前提下,选择最小主偏角刀具,这样可以使刀尖角β和副偏角Kr ′最大,有利于刀尖的强度和刀具的斜向进给范围。 刀杆尺寸的选择是依机床可能夹持的最大刀柄尺寸h 所决定的。这为了降低刀具悬伸率以及为切削刃提供更加刚性的基础。刀片的大小由实际所需的有效切削刃的长度所影响。 Kr Kr Kr ′ Kr ′ Kr ′ Kr β

典型轴类零件加工工艺分析修订版

典型轴类零件加工工艺 分析 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

阶梯轴加工工艺过程分析 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。 (一)结构及技术条件分析该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。(二)加工工艺过程分析1.确定主要表面加工方法和加工方案。 传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。其加工方案可参考表 3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。但下列情况不能用两中心孔作为定位基面:(1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。(2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔;

典型零件加工工艺

箱体类零件加工工艺 箱体零件是机器或部件的基础零件,轴、轴承、齿轮等有关零件按规定的技术要求装配到箱体上,连接成部件或机器,使其按规定的要求工作,因此箱体零件的加工质量不仅影响机器的装配精度和运动精度,而且影响机器的工作精度、使用性能和寿命。下面以图1所示齿轮减速箱体零件的加工为例讨论箱体类零件的工艺过程。 图1 某车床主轴箱体简图

箱体类零件的结构特点和技术要求分析 图3所示零件为某车床主轴箱体类零件,属于中批生产,零件的材料为HT200铸铁。一般来说,箱体零件的结构较复杂,内部呈腔形,其加工表面主要是平面和孔。对箱体类零件的技术要求分析,应针对平面和孔的技术要求进行分析。 1.平面的精度要求箱体零件的设计基准一般为平面,本箱体各孔系和平面的设计基准为G面、H面和P面,其中G面和H面还是箱体的装配基准,因此它有较高的平面度和较小表面粗糙度要求。 2.孔系的技术要求箱体上有孔间距和同轴度要求的一系列孔,称为孔系。为保证箱体孔与轴承外圈配合及轴的回转精度,孔的尺寸精度为IT7,孔的几何形状误差控制在尺寸公差范围之内。为保证齿轮啮合精度,孔轴线间的尺寸精度、孔轴线间的平行度、同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,均应有较高的要求。 3.孔与平面间的位置精度箱体上主要孔与箱体安装基面之间应规定平行度要求。本箱体零件主轴孔中心线对装配基面(G、H面)的平行度误差为0.04mm。 4.表面粗糙度重要孔和主要表面的粗糙度会影响连接面的配合性质或接触刚度,本箱体零件主要孔表面粗糙度为0.8μm,装配基面表面粗糙度为1.6μm。 箱体类零件的材料及毛坯 箱体零件的材料常用铸铁,这是因为铸铁容易成形,切削性能好,价格低,且吸振性和耐磨性较好。根据需要可选用HT150~350,常用HT200。在单件小批量生产情况下,为缩短生产周期,可采用钢板焊接结构。某些大负荷的箱体有时采用铸钢件。在特定条件下,可采用铝镁合金或其它铝合金材料。 铸铁毛坯在单件小批生产时,一般采用木模手工造型,毛坯精度较低,余量大;在大批量生产时,通常采用金属模机器造型,毛坯精度较高,加工余量可适当减小。单件小批生产直径大于50mm的孔,成批生产大于30mm的孔,一般都铸出预孔,以减少加工余量。铝合金箱体常用压铸制造,毛坯精度很高,余量很小,一些表面不必经切削加即可使用。 箱体类零件的加工工艺过程 箱体零件的主要加工表面是孔系和装配基准面。如何保证这些表面的加工精度和表面粗糙度,孔系之间及孔与装配基准面之间的距离尺寸精度和相互位置精度,是箱体零件加工的主要工艺问题。 箱体零件的典型加工路线为:平面加工-孔系加工-次要面(紧固孔等)加工。 图1车床主轴箱体零件,其生产类型为中小批生产;材料为HT200;毛坯为铸件。该箱体的加工工艺路线如表1。 表1车床主轴箱体零件的加工工艺过程

浅谈数控车削加工工艺性分析

浅谈数控车削加工工艺性分析 数控机床是我国机械设备领域的高精度设备之一,其自动化程度较高,属于高科技产品,目前已成为机械设备领域的主流设备。数控机床的高精准性使其成为加工行业的重要设备,同时其加工工艺虽然传承了普通机床设备的诸多优点,但还是有许多不同之处的。为此,对数控车削加工工艺的内容进行了分析,并进一步对数控加工工艺进行了具体的阐述。 标签:数控车床;车削加工工艺;工艺分析;车削 前言 数控机床作为一种高效率的自动化设备,其工作效率是普通机床所无法比拟的,因此在使用时要对其功能进行充分的发挥,需要在编程之前就做好工艺分析,确保数控加工的工艺更加详细,从而对充分提高数控机床的加工质量、生产效率及除低加工成本。 1 数控车削加工工艺的内容 数控车床在加工零件时需要运用一定的方法和技术手段来完成加工任务,这即是数控车削加工工艺。其具体包含以下几个方面: (1)选择并确定零件的数控车削加工内容;(2)对零件图纸进行数控车削加工工艺分析;(3)工具、夹具的选择和调整设计;(4)工序、工步的设计;(5)加工轨迹的计算和优化;(6)数控车削加工程序的编写、校验与修改;(7)首件试加工与现场问题的处理;(8)编制数控加工工艺技术文件。 总之,数控加工工艺内容较多,虽然部分与普通机床有很多相似的地方,但因其精度高,自动化程度较高等特点与普通加要还有许多区别的地方。 2 数控车削加工工艺分析 工艺分析是根据图纸上对零件加工要求分析其合理性,同时确定加工零件在数控车床上采取何处装夹方式,并对零件各表面的加工顺序、进给路线及用量等进行合理的选择。这是车削加工的前期准备阶段,对工艺制定的分析直接影响着以后编程、加工效率和零件加工精度。同时车削加工工艺中对于程度的编制非常严格,对编程者的要求较高,为了保证程度的合理和实用性,要求编程者不仅要熟悉程序语言还要对数控车床的工作原理、性能、加工工艺熟练掌握,这样才能保证加工工艺的合理、实用性。因此,在对数控车削工艺分析时要根据数控车床的特点和加工工艺原则进行,确保其加工工艺合理、实用。 2.1 零件图分析

车床零件加工工艺完整版

车床零件加工工艺 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

轴类零件的数控加工工艺分析与编制 班级 姓名 学号 综合成绩 项目一轴类零件的数控加工工艺分析与编制 零件图 项目一轴类零件的数控加工工艺分析与编制 零件图 任务一、零件图纸的工艺分析 该零件由圆柱、槽、螺纹等表面形成 设计基准径向以轴线为基准,轴向以工件右端面为基准。 未注倒角C1 表面粗糙度为, 工件材料为45钢 任务二、工艺路线的拟定 1、表面加工的方法 粗车---精车 粗车精车 精度等级 IT7,IT8 表面粗糙度 , 2、毛坯尺寸 15mm*145mm 3、工序划分 任务三、机床的选择 零件毛坯尺寸:35mm*145mm 零件最高精度:IT7,IT8 刀具类型:外圆车刀、螺纹刀 机床:CK6141 机床参数 主电机功率:4000(kw) 刀具数量:4

最大加工长度:1000(mm) 最大加工直径:58(mm) 最大回转直径:224(mm) 精度级:IT6~IT8 卡盘:三爪卡盘 任务四、装夹方案及夹具的选择 通过对刀的方式找基准 径向基准为轴线 轴向基准为工件两端面 夹具为三爪卡盘 任务五、刀具的选择 工件材料:45钢 刀具材料:硬质合金(刀片) P类:精JC215V(黛杰) 粗JC450V 适用加工结构钢、工具钢、耐热钢、铸钢可锻造钢,是钢材连续切削加工首选刀具材料 任务六、刀片规格 外圆车刀 CNMG080404 切槽刀 N123H2-03 50-0004-GF 螺纹刀 任务五、刀具的选择 工件材料:45钢 刀具材料:硬质合金(刀片) P类:精JC215V(黛杰) 粗JC450V 适用加工结构钢、工具钢、耐热钢、铸钢可锻造钢,是钢材连续切削加工首选刀具材料 任务六、刀片规格 外圆车刀 CNMG080404 切槽刀 N123H2-03 50-0004-GF 螺纹刀 任务七、切削用量的选择 切削用量选择 1.Ap的选择

典型轴类零件加工工艺标准分析

阶梯轴加工工艺过程分析 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。

(一)结构及技术条件分析 该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆

P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。 (二)加工工艺过程分析 1.确定主要表面加工方法和加工方案。 传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。 但下列情况不能用两中心孔作为定位基面: (1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。 (2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通

孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔; ②当轴有圆柱孔时,可采用图 6—35a所示的锥堵,取1∶500锥度; 当轴孔锥度较小时,取锥堵锥度与工件 两端定位孔锥度相同; ③当轴通孔的锥度较大时,可采 用带锥堵的心轴,简称锥堵心轴,如图 6—35b所示。 使用锥堵或锥堵心轴时应注意,一 般中途不得更换或拆卸,直到精加工完 各处加工面,不再使用中心孔时方能拆 卸。 4.热处理工序的安排 该轴需进行调质处理。它应放在粗 加工后,半精加工前进行。如采用锻件 毛坯,必须首先安排退火或正火处理。 该轴毛坯为热轧钢,可不必进行正火处 理。 5.加工顺序安排 除了应遵循加工顺序安排的一般原 则,如先粗后精、先主后次等,还应注

相关文档
最新文档