热处理各个金相组课件

碳钢热处理与金相观察实验指导参考书(1)

目录 前言 --------------------------------------------------------------------------------- 2实验一金属的磨片实验 --------------------------------------------------------- 3实验二铁碳合金的平衡组织观察 ---------------------------------------- 12 实验三钢的热处理综合实验 ------------------------------------------------- 20

前言 本实验指导书内容侧重于金相实验技术基本操作方法、热处理及金相显微组织的观察,使学生在金相实验基本技能方面得到初步训练并有利于巩固和深化课堂学到的知识,而热处理综合实验不仅能使学生建立起完整的知识体系,还能有效地提高学生的整体思维能力和总结概括能力。

实验一金属的磨片实验 一、实验目的 1 掌握金相显微试样的制备过程和基本方法,并观察、认识其金相显微组织; 2 初步学会用比较法测定工业纯铁的晶粒度。 二、实验仪器及材料 1 仪器:台式金相显微镜、预磨机、抛光机、吹风机等。 2 材料;45 钢待磨试样(O12×15)每人一块;各号金相砂纸(或水磨砂纸)一套;腐蚀剂;4%硝酸酒精;制备好的工业纯铁试样,棉球、镊子等。 三、实验内容 在利用金相显微镜观察、分析和研究金属材料的金相显微组织时,需要在该材料的典型部位截取样块,然后通过一系列的制备过程,制成符合要求的金相显微试样。即在金相显微镜下可以观察到很清晰的金相显微组织,其整个过程即为磨片。磨片的方法与步骤如下: 1 .取样 ①取样的部位及磨面的选择 根据被检验金属材料或零件的特点,加工工艺及研究目的进行选择,如:研究另件破裂的原因时,应在破裂部位取样,再在离破裂处较远的部位取样,以做比较。研究铸造合金时,由于组织不均匀,从铸件表层到中心必须分别截取几个样品。 研究轧材时,如研究材料表层的缺陷、非金属夹杂物的分布等。应在垂直于轧制方向上截取横向试样.如研究夹杂物的形状、类形,材料的的形变程度、晶粒拉长的程度、带状组织等,应在平行于轧制方向上截取纵向试样。 研究焊缝组织时,应在焊缝及热影响区周围取样。 研究热处理后的零件时,固其组织较均匀,可任选一断面试样。若研究氧化、脱碳表面处理(如渗碳)的情况,则应在横断面上观察。

金相实验报告

金相实验报告 篇一:金相实验报告 广州大学机械与电气工程学院 课程报告 报告题目: 金相实验报告 专业班级:机械111 姓名:邓永明 学号: 1107XX14 组别:第六组 指导老师:胡一丹 完成日期: XX.10.18 一. 热处理工艺分析 1. 正火 (1)工艺内容:正火(英文名称:normalizing),又称常化,是将工件加热至Ac3(A 是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是 从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全 奥氏体化的临界温度线 )以上30~50℃,保温一段时间后,从 炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处

理工艺。 其目的是在于使晶粒细化和碳化物分布均匀化。根本目的是去 除材料的内应力、降低材料的硬度为接下来的加工做准备。 (2)工艺特点:正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速 度稍大,组织较细。有些临界冷却速度很小的钢,在空气中冷 却就可以使奥氏体转变为马氏体,这种处理不属于正火性质, 而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制 作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的 效果接近正火。钢正火后的硬度比退火高。正火时不必像退火 那样使工件随炉冷却,占用炉子时间短,生产效率高,所以在 生产中一般尽可能用正火代替退火。对于含碳量低于0.25%的 低碳钢,正火后达到的硬度适中,比退火更便于切削加

工,一 般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中 碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作 的轻载荷零件,正火还可以作为最终热处理。高碳工具钢和轴 承钢正火是为了消除组织中的网状碳 化物,为球化退火作组织 准备。正火与退火的不同点是正火冷却速度比退火冷却速度稍 快,因而正火组织要比退火组织更细一些,其机械性能也有所 提高。另外,正火炉外冷却不占用设备,生产率较高,因此生 产中尽可能采用正火来代替退火。对于形状复杂的重要锻件, 在正火后还需进行高温回火(550-650℃)高温回火的目的在于 消除正火冷却时产生的应力,提高韧性和塑性。 正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+

金属材料及热处理实验报告

金属材料及热处理实验报告 学院:高等工程师学院 专业班级:冶金E111 姓名:杨泽荣 学号: 41102010 2014年6月7日

45号钢300℃回火后的组织观察及洛氏硬度测定 目录 一、实验目的 (1) 二、实验原理 (1) 1.加热温度的选择 (1) 2.保温时间的确定 (2) 3.冷却方法 (3) 三、实验材料与设备 (4) 1.实验材料 (4) 2.实验设备 (4) 四、实验步骤 (4) 1.试样的热处理 (4) 1.1淬火 (4) 1.2回火 (5) 2.试样硬度测定 (5) 3.显微组织观察与拍照记录 (5) 3.1样品的制备 (5) 3.2显微组织的观察与记录 (6) 五、实验结果与分析 (6) 1.样品硬度与显微组织分析 (6) 2.淬火温度、淬火介质对钢组织和性能的影响 (6) 2.1淬火温度的影响 (6) 2.2淬火介质的影响 (7) 3回火温度对钢组织与性能的影响 (7) 3.1回火温度对45钢组织的影响 (7) 3.2回火温度对45 钢硬度和强度的影响 (7) 4合金元素对钢的淬透性、回火稳定性的影响 (8) 4.1合金元素对钢的淬透性的影响 (8) 4.2合金元素对钢的回火稳定性的影响 (9) 5碳含量对钢的淬硬性的影响 (9) 六、结论 (9) 参考文献 (9)

一、实验目的 1.掌握碳钢的常用热处理(淬火及回火)工艺及其应用。 2.研究加热条件、保温时间、冷却条件与钢性能的关系。 3.分析淬火及回火温度对钢性能的影响。 4.观察钢经热处理后的组织,熟悉碳钢经不同热处理后的显微组织及形态特征。 5.了解金相照相的摄影方法,培养学生独立分析问题和解决问题的能力。 二、实验原理 钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。一般热处理的基本操作有退火、正火、淬火、回火等。 进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。正确选择这三者的规范,是热处理成功的基本保证。 1.加热温度的选择 1)退火加热温度一般亚共析钢加热至Ac3+(20—30)℃(完全退火);共析钢和过共析钢加热至Ac1 +(20—30)℃(球化退火),目的是得到球状渗碳体,降低硬度,改善高碳钢的切削性能。 2)正火加热温度一般亚共析钢加热至Ac3 +(30—50)℃;过共析钢加热至Accm +(30—50)℃,即加热到奥氏体单相区。退火和正火的加热温度范围选择见图2.1。 3)淬火加热温度一般亚共析钢加热至Ac3+(30—50)℃;共析钢和过共析钢加热至Ac1+(30—50)℃,见图2.2。 钢的成分,原始组织及加热速度等皆影响到临界点的位置。在各种热处理手册或材料手册中,都可以查到各种钢的热处理温度。热处理时不能任意提高加热温度,因为加热温度过高时,晶粒容易长大,氧化、脱碳和变形等都会变得比较严重。各种常用钢的工艺规范见表2.1。 4)回火温度的选择钢淬火后都要回火,回火温度决定于最终所要求的组织和性能(常常是根据硬度的要求)。按加热温度高低回火可分为三类:

20号钢热处理综合实验报告

实验名称:20号钢热处理组织和硬度综合实验 一.实验目的 (1)了解并掌握20号钢的热处理工艺、。 (2)掌握20号钢正火的步骤、规范以及硬度的变化。 (3)学会观察20号钢正火后的显微组织结构,分析其性能变化的原因。 (4)学会解决实验过程中的问题,探索最佳20号钢热处理工艺。二.简述4种基本热处理工艺(退火、正火、淬火及回火)方法及钢热处理后的显微组织特征 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺方法。 钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。 退火:将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却(冷却速度最慢),目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。 正火:将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 淬火:将工件加热保温后,在水、油或其它无机盐、有机水溶

液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。 回火:为了降低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。 退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 三.简述洛氏硬度测定的基本原理及应用范围 洛式硬度(HR-)是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59或3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,有HRA,HRB,HRC三种硬度。 HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.59mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 另外: (1)HRC含意是洛式硬度C标尺, (2)HRC和HB在生产中的应用都很广泛

金属材料金相热处理检验方法标准汇编

金属材料金相热处理检验方法标准汇编 一、金属材料综合检验方法 GB/T4677.6—1984金属和氧化覆盖层厚度测试方法截面金相法 GB/T6394—2002金属平均晶粒度测定方法 GB/T6462—2005金属和氧化物覆盖层厚度测量显微镜法 GB/T13298—1991金属显微组织检验方法 GB15735—2004金属热处理生产过程安全卫生要求 GB/T15749一1995定量金相手工测定方法 GB/T18876.1—2002应用自动图像分析测定钢和其他金属中金相组织、夹杂物含量和级别的标准试验方法第1部分:钢和其他金属中夹杂物或第二相组织含量的图像分析与体视学测定 二、钢铁材料检验方法 GB/T224一1987钢的脱碳层深度测定法 GB/T225—1988钢的淬透性末端淬火试验方法 GB/T226—1991钢的低倍组织及缺陷酸蚀检验法 GB/T227—1991工具钢淬透性试验方法 GB/T1814—1979钢材断口检验法 GB/T1979—2001结构钢低倍组织缺陷评级图 GB/T4236一1984钢的硫印检验方法 GB/T4335—1984低碳钢冷轧薄板铁素体晶粒度测定法 GB/T4462—1984高速工具钢大块碳化物评级图 GB/T6401—1986铁素体奥氏体型双相不锈钢中а-相面积含量金相测定法 GB/T7216—1987灰铸铁金相 GB/T9441—1988球墨铸铁金相检验 GB/T9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法 GB/T11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T13299—1991钢的显微组织评定方法 GB/T13302—1991钢中石墨碳显微评定方法 GB/T13305—1991奥氏体不锈钢中а-相面积含量金相测定法 GB/T13320—1991钢质模锻件金相组织评级图及评定方法 GB/T13925—1992铸造高锰钢金相 GB/T14979—1994钢的共晶碳化物不均匀度评定法 GB/T15711—1995钢材塔形发纹酸浸检验方法 GB/T16923—1997钢件的正火与退火 GB/T16924—1997钢件的淬火与回火 GB/T18683—2002钢铁件激光表面淬火 YB/T130—1997钢的等温转变曲线图的测定 YB/T153一1999优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图 YB/T169一2000高碳钢盘条索氏体含量金相检测方法 YB/T4002—1991连铸钢方坯低倍组织缺陷评级图 YB/T4003—1997连铸钢板坯低倍组织缺陷评级图 YB/T4052—1991高镍铬无限冷硬离心铸铁轧辊金相检验 YB/T5127—1993钢的临界点测定方法(膨胀法) YB/T5128—1993钢的连续冷却转变曲线图的测定方法(膨胀法)

热处理实验报告

篇一:钢得热处理实验报告 钢得热处理实验报告 一、实验目得 1、了解热处理对材料性能得影响 2、了解在相同得热处理状态下材料成分对材料性能得影响 3、了解用显微镜观察金相得制样过程 二、仪器材料 箱式电炉(sx2—4-10、sx—4-10)、硬度测试仪(hr—150a)、30钢、t10钢、砂轮(砂纸) 三、实验过程 1)、金相得制备 将一小块金属材料用金相砂纸磨光后进行抛光,去除金相磨面由细磨所留下得细微磨痕及表面变形层,使磨面成为无划痕得光滑镜面,然后用侵蚀剂进行腐蚀,以使组织被显示出来,这样就得到了一块金相样品。 2)、钢得热处理淬火与正火 钢得淬火:淬火就就是将钢加热到相变温度以上,保温后放入各种不同得冷却介质中(v冷应大于v临),以获得马氏体组织。钢经淬火后得组织由马氏体及一定数量得残余奥氏体所组成。 步骤为:加热前先对试样进行硬度测定(为便于比较,一律用洛氏硬度测定);再将试样放入箱式电炉中,t10钢在770℃左右,30钢在860℃左右分别均匀加热15分钟;然后迅速在水中冷却,并不断搅拌.将淬火后得试样用砂轮磨平,并测出硬度值(hrc)填入表1中。 钢得正火:钢加热到ac3(亚共析钢)或ac1(过共析钢)以上30~50℃以上,保温适当时间后,在自由流动得空气中冷却得热处理工艺。 步骤为:加热前先对试样进行硬度测定(为便于比较,一律用洛氏硬度测定)。再将试样放入箱式电炉中,t10钢在770℃左右,30钢在860℃左右分别均匀加热15分钟,后在空气中缓慢冷却。将正火后得试样用砂轮磨平,并测出硬度值(hrc)填入表2中。 四、结果及讨论 1、为什么淬火处理后得硬度值比正火处理后得高? 答:因为淬火冷却速度比正火冷却速度快,由过冷奥氏体得连续冷却转变图像可知淬火后得到得就是马氏体组织,而正火后得到得组织主要就是珠光体.马氏体比珠光体晶粒度细晶界面多,使得晶体得位错滑移阻力增大,从而硬度提高。 2、在相同得热处理状态下不同得材料成分对钢得硬度得影响? 答:钢得硬度与钢得含碳量有关。30钢就是亚共析钢,热处理后室温下得组织为铁素体与珠光体,而t10钢为过共析钢,热处理后室温下得组织为珠光体与渗碳体.渗碳体就是脆硬相硬度比铁素体高,所以在相同得热处理状态下t10得硬度比30钢高。 五、结论 1、不同得热处理对材料得性能影响不同。 2、不同材料成分得钢在相同得热处理状态下性能不同。篇二:金属材料及热处理实验报告金属材料及热处理实验报告 学院:高等工程师学院专业班级:冶金e111姓名:学号: 杨泽荣 41102010 2014年6月7日45号钢300℃回火后得组织观察及洛氏硬度测定 目录 一、实验目得、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、

碳钢的热处理后硬度测定以及金相分析实验指导书

实验七碳钢的热处理及硬度测定以及金相分析 实验项目名称:碳钢的热处理及硬度测定、金相分析 实验项目性质:综合实验 所属课程名称:金属材料与热处理 实验计划学时:4 一、实验目的 (1)熟悉碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。 (2)了解含碳量、加热温度、冷却速度等因素与碳钢热处理后性能的关系。 (3)分析淬火及回火温度对钢性能的影响。 (4)学会洛氏硬度计的使用。 (5)学会采用不同的热处理工艺,将会得到不同的组织结构,从而使钢的性能发生变化。 二、实验内容和要求 热处理是一种很重要的金属加工工艺方法,热处理的主要目的是改善钢材性能,提高工件使用寿命。钢的热处理工艺特点是将钢加热到一定的温度,经一定 时间的保温,然后以某种速度冷却下来,通过这样的工艺过程能使钢的性能发生改变。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织发生了质的变化。采用不同的热处理工艺过程,将会使钢得到不同的组织结构,从而获得所需要的性能。 普通热处理的基本操作有退火、正火、淬火及回火等。 热处理操作中,加热温度、保温时间和冷却方式是最重要的三个关键工序,也称热处理三要素。正确选择这三种工艺参数,是热处理成功的基本保证。Fe-FeC 相图和C-曲线是制定碳钢热处理工艺的重要依据。 1、加热温度 (1)退火加热温度:完全退火加热温度,适用于亚共析钢,AC3+ (30~50C);

球化退火加热温度,适用于共析钢和过共析钢,Ac i+ (30~50C) (2)正火加热温度:对亚共析钢是AC3+ (30~50C);过共析钢是Ac cm+ (30~50C),也就是加热到单相奥氏体区。 退火和正火的加热温度范围见图2-1所示。 图2-1退火与正火的加热温度

碳钢热处理后的组织金相分析

4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 ??托氏体+马氏体 图4 ??上贝氏体+马氏体 (3)贝氏体(B)为奥氏体的中温转变产物,它也是铁素体与渗碳体的两相混合物。在显微形态上,主要有三种形态: A、上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的非层状组织。当转变量不多时,在光学显微镜下为与束的铁素体条向奥氏体晶内伸展,具有羽毛状特征。在电镜下,铁素体以几度到十几度的小位向差相互平行,渗碳体则沿条的长轴方向排列成行,如图4。 B、下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。它比淬火马氏体易受浸蚀,在显微镜下呈黑色针状(如图5)。在电镜下可以见到,在片状铁素体基体中分布有很细的碳化物片,它们大致与铁素体片的长轴成55~60°的角度。 C、粒状贝氏体是最近十几年才被确认的组织。在低、中碳合金钢中,特别是连续冷却时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。它的形成温度范围大致在上贝氏体转变温度区的上部,由铁素体和它所包围的小岛状组织所组成。 (4)马氏体(M):是碳在a-Fe中的过饱和固溶体。马氏体的形态按含碳量主要分两种,即板条状和针状(如图6、图7所示) 图5 ??下贝氏体 ????图6 ??回火板条马氏体 A、板条状马氏体一般为低碳钢或低碳合金钢的淬火组织。其组织形态是由尺寸大致相同的细马氏体条定向平行排列组成马氏体束或马氏体领域。在马氏体束之间位向差较大,一个奥氏体晶粒内可形成几个不同的马氏体领域。板条马氏体具有较低的硬度和较好的韧性。 B、针状马氏体是碳量较高的钢淬火后得到的组织。在光学显微镜下,它呈竹叶状或针状,针与针之间成一定的角度。最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体的大小受到限制。因此,针状马氏体的大小不一。同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。针状马氏体的硬度高而韧性差。

碳钢的热处理实验报告-(恢复)

碳钢的热处理实验报告-(恢复)

金属热处理实验报告 张金垚 41030165 材控102班

热处理实验报告(T8钢300℃回火) 一、实验目的 1、了解碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。 2、研究含碳量、加热温度、冷却速度、回火温度对钢热处理后性能的影响。 3、掌握洛氏硬度机的使用方法。观察热处理后钢的组织特征。 二、实验原理 1、钢的淬火 所谓淬火就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30~50℃,保温后放入各种不同的冷却介质中( V冷应大于V临),以获得马氏体组织。碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。 为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。

(1)淬火温度的选择 选定正确的加热温度是保 证淬火质量的重要环节。淬火 时的具体加热温度主要取决于 钢的含碳量,可根据相 图确定(如图4所示)。对亚 共析钢,其加热温度为+ 30~50℃,若加热温度不足(低 于),则淬火组织中将出现铁 素体而造成强度及硬度的降 低。对过共析钢,加热温度为 +30~50℃,淬火后可得到细 小的马氏体与粒状渗碳体。后 者的存在可提高钢的硬度和耐 磨性。 (2)保温时间的确定 淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。

表1 碳钢在箱式电炉中加热时间的确定 加 热 温度(℃) 工件形状 圆柱形方形板形 保温时间 分钟/每毫 米直径 分钟/每毫 米厚度 分钟/每毫 米厚度 700 1.5 2.2 3 800 1.0 1.5 2 900 0.8 1.2 1.6 1000 0.4 0.6 0.8 (3)冷却速度的影响 冷却是淬火的关键工序, 它直接影响到钢淬火后的组 织和性能。冷却时应使冷却速 度大于临界冷却速度,以保证 获得马氏体组织;在这个前提 下又应尽量缓慢冷却,以减少 钢中的内应力,防止变形和开 裂。为此,可根据C曲线图(如

金相实验报告 实验报告范本

实验一 金属材料显微分析的基本方法 一、实验目的: 了解金相显微镜的构造、原理及使用规则; 掌握金相显微试样制备的基本操作方法。 通过观察,熟悉铁碳合金在平衡状态下的显微组织; 了解并掌握铁碳合金中的相及组织组成物的本质、形态及分布特征; 分析并掌握平衡状态下铁碳合金的组织和性能之间的关系。 二、实验概述: 金相分析是研究工程材料内部组织结构的主要方法金相显微分析法:利用金相显微镜在专门制备的试样上观察 材料的组织和缺陷的方法。 1.金相显微镜的构造、原理及使用; 2.金相显微试样的制备方法。 为了能够在金相显微镜下真实地、清楚地观察到 金属内部的显微组织,需要精心地制备金相显微试样。 金相试样的制备过程主要步骤有: 本实验金相试样制备过程的步骤如下: 3.观察碳钢和白口铸铁的平衡组织 分析各种相组分和组织组成物的特征 碳钢:亚共析钢、共析钢、过共析钢 白口铸铁:亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁 相或组织:铁素体、渗碳体、珠光体、莱氏体 区分:铁素体与渗碳体、各种渗碳体

磨制方法 ●砂纸平铺在玻璃板上,一手按住砂纸,另一手握住试样,使 试样磨面朝下并与砂纸接触,在轻微压力作用下向前推行磨制。 方式重复进行。

显微组织。 右图为单相组织和 双 相组织的显微组织图 实验概述: 三、实验设备及材料 ?金相分析实验使用的主要仪器设备有: 光学金相显微镜、抛光机、电吹风机等。 ?实验材料有: 低碳钢试样,工业纯铁、20钢、T8钢、亚共晶白口铸铁等显微组织样品,金相砂纸,抛光粉,硝酸酒精溶液(含4%HNO3),酒精,脱脂棉等。 实验一金属的显微分析法 实验内容及步骤 ?实验前必须仔细阅读实验讲义的有关内容; ?听取实验指导教师讲解金相显微镜的构造、使用方法等内容,熟悉金相显微镜的构造及其操作规程; ?由实验指导教师讲解金相试样制备的基本操作过程,学生每人一块试样,进行试样制备全过程的操作,直至制成合格的金相试样; ?在金相显微镜下观察所制备试样的显微组织特征,并用摄像机拍照存盘。

钢的热处理实验报告

预习报告 一、实验目的 1.根据所学热处理的知识,了解钢的基本热处理工艺制定过程; 2.学习不同热处理工艺对钢的性能的影响; 3.了解洛氏硬度计的主要原理、结构,学会操作方法。 二、实验原理 钢的热处理就是对钢在固态范围内的进行加热、保温和冷却,以及改变其内部组织,从而获得所需要的性能的一种加工工艺。热处理的基本工艺有退火、正火、淬火、回火等。 进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。正确选择这三者,是热处理成功的基本保证。 三、实验过程 1、设计可使材料达到实验性能要求的热处理工艺 2、对所给退火态试样进行硬度测定 3、按所给定工艺进行热处理 4、测定处理后试样的硬度以及检验所订工艺。对测试结果进行分析,必要时修改实验方案,重新实验 四、实验仪器 1、最高加热温度达1000℃的各种实验用箱式电阻炉 2、可供冷却的介质水和油 3、测试硬度的设备有洛氏硬度计 4、捆绑式样的细铁丝,夹持试样的铁钳

一、实验目的 1.根据所学热处理的知识,了解钢的基本热处理工艺制定过程; 2.学习不同热处理工艺对钢的性能的影响; 3.了解洛氏硬度计的主要原理、结构,学会操作方法。 二、实验原理 1、加热温度的选择 (1) 退火加热温度 +(20~30)℃(完全退火)。共析钢和过共析钢加热至一般亚共析钢加热至A c3 A +(20~30)℃(球化退火),目的是得到球状渗碳体,降低硬度,改善高碳钢的切c1 削性能。 (2) 正火加热温度 + (30~50)℃;过共一般亚共析钢加热至Ac3十(30~50)℃;共析钢加热至A c1 析钢加热至A ccm+ (30~50)℃,即加热到奥氏体单相区。 (3) 淬火加热温度 十一般亚共析钢加热至Ac3十(30~50)℃;共析钢和过共析钢加热至A c1 (30~50)℃; (4) 回火温度的选择 钢淬火后都要回火,回火温度决定于最终所要求的组织和性能按加热温度高低回火可分为三类:低温回火中温回火高温回火。 2、保温时间的确定 为了使工件内外各部分温度约达到指定温度、并完成组织转变,使碳化物溶解和奥氏体成分均匀化,必须在淬火加热温度下保温一定的时间。通常将工件升温和保温所需时间算在一起,统称为加热时间。 实际工作中多根据经验大致估算加热时间。一般规定,在空气介质中,升到规定温度后的保温时间,对碳钢来说,按工件厚度每毫米需一分钟到一分半钟估算;合金钢按每毫分二钟估算。在盐浴炉中,保温时间则可缩短为空气介质中保温时间的1/2~1/3。 3、冷却方法 热处理时的冷却方式要适当,才能获得所要求的组织和性能。

热处理与金相

一、目的 (1)观察碳钢经不同热处理后的基本组织。 (2)了解热处理工艺对钢组织和性能的影响。 (3)熟悉碳钢几种典型热处理组织的形态及特征。 二、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表4-1中。 2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图4-1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图4-1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,如图4-2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图4-2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 表4-1

热处理实验报告

《热处理实验》报告 实验名称金属材料热处理实验 学院高等工程师学院 专业班级材E152 姓名魏学源 学号41518120 2018年6月1日

目录 一、实验目的 (3) 二、实验工艺及原理 (3) 1.金属热处理 (3) 2.热处理方法及目的 (3) 3.热处理后的组织 (4) 4.硬度测量原理 (6) 三、实验仪器与设备 (6) 四、实验步骤及具体操作: (6) 1.试样热处理 (6) 2.硬度测量 (7) 3.显微组织观察 (7) 五、实验结果与分析 (8) 实验一:45号钢860°C保温30min水淬,400°C回火40分钟空冷显微组织分析 (8) 实验二:不同试样不同热处理后组织和性能 (9) 1.热处理工艺对试样影响 (10) 1.1淬火温度对试样影响 (10) 1.2冷却速度对试样的影响 (11) 1.3回火工艺对试样影响 (12) 2.合金元素对试样影响 (15) 2.1合金元素对热处理方法的影响 (15) 2.2合金元素对淬硬性的影响 (17) 六、结论 (17) 七、参考文献 (18)

一、实验目的 (1)熟悉基本热处理(淬火、回火)的工艺方法; (2)了解基本的金相分析方法(磨样、抛光、观察金相显微镜); (3)练习使用洛氏硬度计; (4)熟悉和了解不同组织所对应的微观形貌; (5)分析热处理钢种(含碳量,合金成分)以及热处理工艺(热处理加热温度,冷却速度)的对比对材料组织、性能的影响。 二、实验工艺及原理 1.金属热处理 金属热处理就是在固相状态下,通过温度的变化,即加热—>保温—>冷却的方式,使原有的组织发生固态相变,从而改变原有的相组成以及组织结构等,从而使我们获得所要求性能的一种工艺操作,从而可以充分发挥金属材料的潜力。常用的热处理手段有:退火,正火,淬火,回火,以及表面处理和形变处理。2.热处理方法及目的 2.1淬火 淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。 淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体

热处理金相基础知识

热处理金相基础知识 RUSER redacted on the night of December 17,2020

一、目的 (1)观察碳钢经不同热处理后的基本组织。 (2)了解热处理工艺对钢组织和性能的影响。 (3)熟悉碳钢几种典型热处理组织的形态及特征。 二、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组 织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C 曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表4-1中。 2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图4-1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图4-1中的υ 1 )应得到100%的珠光 体;当冷却速度增大到υ 2 时(相当于空冷),得到的是较细的珠光体,即索氏 体或屈氏体;当冷却速度增大到υ 3 时(相当于油冷),得到的为屈氏体和马氏 体;当冷却速度增大至υ 4、υ 5 (相当于水冷),很大的过冷度使奥氏体骤冷到 马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ 4 )称为淬火的临界冷却速度。 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,如图4-2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图4-2中υ 1 ),转变产物接近平 衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ 3>υ 2 >υ 1 时,奥氏体 的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 表4-1

实验报告:40钢试样退火、正火、淬火、热处理

西安交通大学实验报告 课程_机械工程材料_实验名称____________________ 系别______________________实验日期年月日 专业班号____________ 组别_________交报告日期年月日 姓名_______学号______________报告退发(订正、重做) 同组者____________________________________教师审批签字 实验名称 一、实验目的 (1)了解碳钢热处理操作。 (2)学会使用洛氏温度计测量材料的硬度性能值。 (3)利用数码显微镜获取金相组织图像,掌握热处理后的钢的金相组织分析。 探讨淬火温度、淬火冷却温度、回火温度T12钢的组织和性能影响。 二、实验内容 (1)40钢试样退火、正火、淬火、热处理。 (2)用洛氏硬度计测定试样热处理实验前后的硬度。 (3)观察样品,获取其纤维组织图像 对照金相图谱,分析讨论本次实验可能获得的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。 三、实验概述 (1)热处理工艺参数的确定

Fe-Fe3C状态图和C-曲线是制定碳钢热处理工艺的重要依据。热处理工艺参数主要包括加热温度、保温时间和冷却速度。 (2)基本组织的金相特征 碳钢经热退火后可得到(近)平衡组织,淬火之后则得到各种不平衡组织。普通热处理除退火、淬火之外还有正火和回火。这样在研究钢热处理后的组织时,还要熟悉索氏体、托氏体、回火马氏体、回火托氏体、回火索式体等基本组织的金相特征。 (3)金相组织的数码图像 金相组织照片可提供材料内在质量的大量信息及数据,金相分析是材料科研、研发及生产中的重要分析手段。 XJP-6A金相显微镜数字采集系统是在XJP-6光学显微镜基础上,添加光学适配镜,通过图像采集和信息化处理,提供计算机数码图像的系统,可获得真实、精细的影像,以及高品质的金相显微组织照片 四、实验材料及设备 (1)砂纸、玻璃板、抛光机等金相制样设备。 (2)40钢 (3)马福电炉 (4)洛氏硬度计 (5)淬火水槽、油槽 (6)铁丝、钳子 (7)金相显微镜、数码金相显微镜

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析) 发布时间:2009-5-30 13:46:34 关闭该页 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 托氏体+马氏体

钢的热处理及热处理后的显微组织观察实验报告

钢的热处理及热处理后的显微组织观察 实验报告 罗毅晗2014011673 一、实验目的 (1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火。 (2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能(硬度)的影响。 (3)观察碳钢热处理后的显微组织。 二、概述 钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。热处理的基本操作有退火、正火、淬火、回火等。进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。 三、实验内容 加热温度冷却方法回火温度洛氏硬度洛氏硬度洛氏硬度平均值860℃水冷﹨52.052.152.652.2 860℃油冷﹨20.223.419.120.9 860℃空冷﹨94.194.694.294.3 860℃炉冷﹨86.085.285.785.6 860℃水冷200℃51.952.052.152.0 860℃水冷400℃34.835.335.735.3 860℃水冷600℃20.321.519.620.5 显微组织观察 45钢 860℃气冷索氏体+铁素体

45钢860℃油冷马氏体+屈氏体 45钢860℃水冷马氏体

45钢 860℃水冷+600℃回火回火索氏体 T12钢 760℃球化退火球化体

T12钢 780℃水冷+200℃回火回火马氏体+二次渗碳体+残余奥氏体 T12钢 1100℃水冷粗大马氏体+残余奥氏体

四、实验分析 1.火温度而言,淬火温度越高,硬度越高。但是一旦达到过高温度会导致形成的马氏体,使得力学性能恶化。 2.火介质而言,硬度大小:空冷>炉冷>水冷>油冷。 3.火温度而言,回火温度越高,硬度越低。 图像: 分析原因: ①据铁碳相图,淬火温度升高,45钢(亚共析钢)中铁素体含量减少,珠光体含量提高,而珠光体硬度很高,铁素体硬度低,导致硬度提高。 ②根据C曲线,对亚共析钢的连续冷却,空冷生成F+S,炉冷生成F+P,水冷产生M,油冷产生T+M。因此,硬度大小为:空冷>炉冷>水冷>油冷。

热处理与金相知识

热处理与金相知识 钢结构组织与特性(No.1) 铁素体(F) 1.组织:碳在α铁中的固溶体 2.特性: 呈体心立方晶格.溶碳能力最小,最大为0.02%;硬度和强度很低, HB=80-120,σb=250N/mm^2;而塑性和韧性很好,δ=50%,ψ=70-80%. 因此,含铁素体多的钢材(软钢)中用来做可压、挤、冲板与耐 冲击震动的机件.这类钢有超低碳钢,如0Cr13,1Cr13、硅钢片等 奥氏体 1.组织:碳在γ铁中的固溶体 2.特性: 呈面心立方晶格.最高溶碳量为2.06%,在一般情况 下,具有高的塑性,但强度和硬度低,HB=170-220,奥氏体组织除了在高温转变时产生以外,在常温时亦存在于不锈钢、高铬钢和高锰钢中,如奥氏体不锈钢等 渗碳体(C) 1.组织:铁和碳的化合物(Fe3C) 2.特性: 呈复杂的八面体晶格. 含碳量为6.67%,硬度很高,HRC70-75,耐磨,但脆性很大,因此, 渗碳体不能单独应用,而总是与铁素体混合在一起.

碳在铁中溶解度很小,所以在常温下,钢铁组织内大部分的碳都是 以渗碳体或其他碳化物形式出现 珠光体(P) 1.组织;铁素体片和渗碳体片交替排列的层状显微组织,是铁素体与 渗碳体祷旌衔?共析体) 2.特性: 是过冷奥氏体进行共析反应的直接产物. 其片层组织的粗细随奥氏体过冷程度不同,过冷程度越大,片层组织 越细性质也不同. 奥氏体在约600℃分解成的组织称为细珠光体(有的叫一次索氏体), 在500-600℃分解转变成用光学显微镜不能分辨其片层状的组织称为极 细珠光体(有的一次屈氏体),它们的硬度较铁素体和奥氏体高,而较渗碳 体低,其塑性较铁素体和奥氏体低而较渗碳体高. 正火后的珠光体比退火后的珠光体组织细密,弥散度大,故其力学性 能较好,但其片状渗碳体在钢材承受负荷时会引起应力集中,故不如索氏体莱氏体(L) 1.组织:奥氏体与渗碳体的共晶混合物 2.特性: 铁合金溶液含碳量在2.06%以上时,缓慢冷到1130℃便凝固出莱氏体. 当温度到达共析温度莱氏体中的奥氏转变为珠光体. 因此,在723℃以下莱氏体是珠光体与渗碳体机械混合物(共晶混合). 莱氏体硬而脆(>HB700),是一种较粗的组织,不能进行压力加工,如白口铁.在铸态含有莱氏体组织的钢有高速工具钢和Cr12型高合金工具钢等. 这类钢一般有较大有耐磨性和较好的切削性

相关文档
最新文档