绝对值不等式考点与题型归纳

绝对值不等式考点与题型归纳
绝对值不等式考点与题型归纳

绝对值不等式考点与题型归纳

一、基础知识

1.绝对值三角不等式

定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.

定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓

|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.

2.绝对值不等式的解法

(1)|x|a型不等式的解法

(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:

①|ax+b|≤c?-c≤ax+b≤c;

②|ax+b|≥c?ax+b≥c或ax+b≤-c.

|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想

①利用绝对值不等式的几何意义求解,体现了数形结合的思想;

②利用“零点分段法”求解,体现了分类讨论的思想;

③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.

考点一绝对值不等式的解法

[典例] (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.

(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.

[解] (1)由题意得f (x )=???

x -4,x ≤-1,

3x -2,-1

,-x +4,x >3

2

故y =f (x )的图象如图所示.

(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3;

当f (x )=-1时,可得x =1

3或x =5.

故f (x )>1的解集为{x |1

f (x )<-1的解集为????

??x ??

x <1

3或x >5. 所以|f (x )|>1的解集为????

??x ??

x <1

3或15.

[题组训练]

1.解不等式|x +1|+|x -1|≤2. 解:当x <-1时,

原不等式可化为-x -1+1-x ≤2, 解得x ≥-1,又因为x <-1,故无解; 当-1≤x ≤1时,

原不等式可化为x +1+1-x =2≤2,恒成立; 当x >1时,

原不等式可化为x +1+x -1≤2, 解得x ≤1,又因为x >1,故无解;

综上,不等式|x +1|+|x -1|≤2的解集为[-1,1]. 2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R . (1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =1时,f (x )=|x -1|+3x .

法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0, 当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解; 当-12≤x ≤1时,1-x -(2x +1)≥0,得-1

2≤x ≤0;

当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.

∴不等式的解集为{x |-2≤x ≤0}.

法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|, 两边平方,化简整理得x 2+2x ≤0, 解得-2≤x ≤0,

∴不等式的解集为{x |-2≤x ≤0}.

(2)由|x -a |+3x ≤0,可得????? x ≥a ,4x -a ≤0或?????

x

2x +a ≤0,

即????? x ≥a ,x ≤a 4或?

????

x

x ≤-a 2.

当a >0时,不等式的解集为?

???

??

x ?

?

x ≤-a 2. 由-a

2

=-1,得a =2.

当a =0时,不等式的解集为{x |x ≤0},不合题意.

当a <0时,不等式的解集为????

??x ??

x ≤a 4. 由a

4=-1,得a =-4. 综上,a =2或a =-4.

考点二 绝对值不等式性质的应用

[典例] (2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R . (1)解不等式f (x )<|x |+1;

(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤1

6,求证:f (x )<1.

[解] (1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,

即????? x ≥12,2x -1

0

或?????

x ≤0,

1-2x <-x +1,

得12≤x <2或0

2

或无解. 故不等式f (x )<|x |+1的解集为{x |0

(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=5

6

<1.

故不等式f (x )<1得证.

[解题技法] 绝对值不等式性质的应用

利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.

[题组训练]

1.求函数f (x )=|x +2 019|-|x -2 018|的最大值.

解:因为f (x )=|x +2 019|-|x -2 018|≤|x +2 019-x +2 018|=4 037, 所以函数f (x )=|x +2 019|-|x -2 018|的最大值为4 037. 2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤5

3.

证明:因为x ∈[-1,1],|y |≤16,|z |≤1

9

所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=5

3,

所以|x +2y -3z |≤5

3

成立.

考点三 绝对值不等式的综合应用

[典例] (2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;

(2)若关于x 的不等式f (x )

则????? x ≥12,2x -1-2x -1≤1或????? -12

x ≤-12,1-2x +2x +1≤1, 解得x ≥12或-14≤x <12,即x ≥-14,

所以原不等式的解集为???

?-1

4,+∞. (2)由条件知,不等式|2x -1|+|2x +1|(|2x -1|+|2x +1|)min 即可.

由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈???

?-12,1

2时等号成立,故m >2.所以m 的取值范围是(2,+∞). [解题技法] 两招解不等式问题中的含参问题 (1)转化

①把存在性问题转化为求最值问题;

②不等式的解集为R 是指不等式的恒成立问题;

③不等式的解集为?的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立?a >f (x )max ,f (x )>a 恒成立?a <f (x )min .

(2)求最值

求含绝对值的函数最值时,常用的方法有三种: ①利用绝对值的几何意义;

②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||; ③利用零点分区间法. [题组训练]

1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.

解:(1)当a =1时,f (x )=????

?

2x +4,x <-1,

2,-1≤x ≤2,

-2x +6,x >2.

当x <-1时,由2x +4≥0,解得-2≤x <-1, 当-1≤x ≤2时,显然满足题意, 当x >2时,由-2x +6≥0,解得2

而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.

所以a 的取值范围是(-∞,-6]∪[2,+∞).

2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且????

34,2?A ,求实数m 的取值范围.

解:∵????

34,2?A ,

∴当x ∈????34,2时,不等式f (x )≤|2x +1|恒成立, 即|x +m |+|2x -1|≤|2x +1|在x ∈????34,2上恒成立, ∴|x +m |+2x -1≤2x +1,

即|x +m |≤2在x ∈????34,2上恒成立, ∴-2≤x +m ≤2,

∴-x -2≤m ≤-x +2在x ∈????34,2上恒成立, ∴(-x -2)max ≤m ≤(-x +2)min ,

∴-11

4

≤m ≤0,故实数m 的取值范围是????-114,0. [课时跟踪检测]

1.求不等式|2x -1|+|2x +1|≤6的解集.

解:原不等式可化为????? x <-12,1-2x -2x -1≤6或?????

-12≤x ≤12,

1-2x +2x +1≤6

或?????

x >12,

2x -1+2x +1≤6. 解得-32≤x ≤32

即原不等式的解集为?

?????

x ??

-32≤x ≤32. 2.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.

解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.

(2)由(1)知,f (x )=|x -4|+|x -2|=????

?

-2x +6,x ≤2,2,2<x ≤4,

2x -6,x >4.

故当x ≤2时,由-2x +6≤5,得1

2≤x ≤2;

当24时,由2x -6≤5,得4

2

故不等式f (x )≤5的解集为?

?????x ??

12≤x ≤112. 3.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;

(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=????

?

-2,x ≤-1,

2x ,-1

2,x ≥1.

故不等式f (x )>1的解集为??????

x ??

x >12.

(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;

若a >0,则|ax -1|<1的解集为?

???

??

x ?

?

0

a ≥1,故0

综上,a 的取值范围为(0,2]. 4.设函数f (x )=|3x -1|+ax +3. (1)若a =1,解不等式f (x )≤4;

(2)若f (x )有最小值,求实数a 的取值范围. 解:(1)当a =1时,f (x )=|3x -1|+x +3≤4,

即|3x -1|≤1-x ,

x -1≤3x -1≤1-x ,解得0≤x ≤1

2,

所以f (x )≤4的解集为???

?0,12. (2)因为f (x )=???

(3+a )x +2,x ≥13

(a -3)x +4,x <1

3

所以f (x )有最小值的充要条件为?

????

a +3≥0,

a -3≤0,解得-3≤a ≤3,

即实数a 的取值范围是[-3,3].

5.(2019·贵阳适应性考试)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>-x ;

(2)若关于x 的不等式f (x )≤a 2-2a 的解集为R ,求实数a 的取值范围. 解:(1)原不等式等价于f (x )+x >0,不等式f (x )+x >0可化为|x -2|+x >|x +1|, 当x <-1时,-(x -2)+x >-(x +1),解得x >-3,即-3x +1,解得x <1,即-1≤x <1; 当x >2时,x -2+x >x +1,解得x >3,即x >3,

综上所述,不等式f (x )+x >0的解集为{x |-33}. (2)由不等式f (x )≤a 2-2a 可得|x -2|-|x +1|≤a 2-2a ,

∵|x -2|-|x +1|≤|x -2-x -1|=3,当且仅当x ∈(-∞,-1]时等号成立, ∴a 2-2a ≥3,即a 2-2a -3≥0,解得a ≤-1或a ≥3. ∴实数a 的取值范围为(-∞,-1]∪[3,+∞). 6.已知函数f (x )=|x -a |+|x +1|.

(1)若a =2,求不等式f (x )>x +2的解集;

(2)如果关于x 的不等式f (x )<2的解集不是空集,求实数a 的取值范围. 解:(1)当a =2时,f (x )=????

?

-2x +1,x <-1,3,-1≤x <2,

2x -1,x ≥2,

不等式f (x )>x +2等价于????? x <-1,-2x +1>x +2或????? -1≤x <2,3>x +2或?

????

x ≥2,

2x -1>x +2,

解得x <1或x >3,

故原不等式的解集为{x |x <1或x >3}.

(2)∵f (x )=|x -a |+|x +1|≥|(x -a )-(x +1)|=|a +1|,当(x -a )(x +1)≤0时取等号. ∴若关于x 的不等式f (x )<2的解集不是空集,只需|a +1|<2, 解得-3<a <1,即实数a 的取值范围是(-3,1). 7.已知函数f (x )=|2x -a |+a .

(1)当a =2时,求不等式f (x )≤6的解集;

(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.

(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即????x -a 2+????12-x ≥3-a 2

. 又????????x -a 2+????12-x min =???

?12-a 2, 所以????12-a 2≥3-a 2,解得a ≥2.

所以a 的取值范围是[2,+∞).

8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;

(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若????1,3

2?M ,求实数a 的取值范围.

解:(1)因为f (x )≤3-f (x -1),

所以|x -1|≤3-|x -2|?|x -1|+|x -2|≤3??????

x <1,

3-2x ≤3

或???

1≤x ≤2,1≤3或

?

??

??

x >2,

2x -3≤3, 解得0≤x <1或1≤x ≤2或2

故不等式f (x )≤3-f (x -1)的解集为[0,3]. (2)因为???

?1,3

2?M , 所以当x ∈???

?1,3

2时,f (x )≤f (x +1)-|x -a |恒成立, 而f (x )≤f (x +1)-|x -a |?|x -1|-|x |+|x -a |≤0?|x -a |≤|x |-|x -1|, 因为x ∈????1,3

2,所以|x -a |≤1,即x -1≤a ≤x +1, 由题意,知x -1≤a ≤x +1对于任意的x ∈????1,3

2恒成立, 所以1

2

≤a ≤2,故实数a 的取值范围为????12,2.

不等式知识点与题型总结

不等式 一、知识点: 1. 实数的性质: 0>-?>b a b a ;0<-??<,a b b a . 传递性 a b >且b c a c >?>. 加法性质 a b a c b c >?+>+;a b >且c d a c b d >?+>+. 乘法性质 ,0a b c ac bc >>?>;0a b >>,且00c d ac bd >>?>>. 乘方、开方性质 0,n n a b n N a b *>>∈?>;0,n n a b n N a b *>>∈?>. 倒数性质 11,0a b ab a b >>? <. 3. 常用基本不等式: 条 件 结 论 等号成立的条件 a R ∈ 20a ≥ 0a = ,a R b R ∈∈ 2 2 2a b ab +≥,2()2 a b ab +≤, 22 2()22a b a b ++≥ a b = 0,0>>b a 基本不等式: 2a b ab +≥ 常见变式: 2≥+b a a b ; 21 ≥+a a a b = 0,0>>b a 22112 2 2b a b a ab b a +≤ +≤≤+ a b = 4.利用重要不等式求最值的两个命题: 命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b= 时,和a +b 有最小值2 . 命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2 s 时,积ab 有最大值42s . 注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积 为定值,取最值时等号能成立,以上三个条件缺一不可. 5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有

绝对值不等式(经典题型)

1.若a >0,且|x |>a ,则____________;若a >0,且|x |c (c >0)型不等式的解法: 3.解下列不等式. (1)|2x +5|<7. (2)|2x +5|>7+x . (3)|x 2-3x +1|<5. (4)|2x -1|<2-3x . (5)1<|2-x |≤7. (6)1<|x -2|≤3 4.集合A ={x ||2-x |<5},B ={x ||x +a |≥3},且A ∪B =R ,求a 的取值范围 |x -a |+|x -b |≥c |x -a |+|x -b |≤c 5.解不等式 (1)|x -1|+|x -2|>2. (2)|x +2|-|x -1|<2 |(3)x +2|-|x -1|<2x 6.恒成立问题 (1)对任意x ∈R ,若|x -3|+|x +2|>a 恒成立,则实数a 的取值范围 . (2)关于x 的不等式a >|x -3|+|x +2|的解集非空,则实数a 的取值范围 . (3)关于x 的不等式a >|x -3|+|x +2|在R 上无解,则实数a 的取值范围 . (4)若不等式|x +3|-|x -5|x -2x 的解集是________. 10..已知函数f (x )=|x +2|-|x -1|,则f (x )的值域是________. 11. 对于x ∈R ,不等式||x +10-||x -2≥8的解集为______ 12.设函数f(x)=|3x -1|+x +2. (1)解不等式f(x)≤3; (2)若不等式f(x)>a 的解集为R ,求a 的取值范围.

绝对值题型归纳总结

. ... .. . 绝对值题型归纳总结 一、知识梳理 模块一绝对值的基本概念 模块二零点分段法(目的:去无围限定的绝对值题型) 模块三几何意义 . . .z

例题分析 题型一 绝对值代数意义及化简 【例1】 ⑴ 下列各组判断中,正确的是 ( ) A .若a b =,则一定有a b = B .若a b >,则一定有a b > C. 若a b >,则一定有a b > D .若a b =,则一定有()2 2a b =- ⑵ 如果2a >2b ,则 ( ) A .a b > B .a >b C .a b < D a <b ⑶ 下列式子中正确的是 ( ) A .a a >- B .a a <- C .a a ≤- D .a a ≥- ⑷ 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤ ⑸若220x x -+-=,求x 的取值围. 【解析】 ⑴ 选择D .⑵ 选择B .

. ... .. . . . .z ⑶ 我们可以分类讨论,也可以用特殊值法代入检验,对于绝对值的题目我们一般需要代正数、负数、0,3种数帮助找到准确答案.易得答案为D . ⑷ 我们可以用特殊值法代入检验,正数、负数、0,3种数帮助找到准确答案C . ⑸ ()22x x -=--,所以20x -≤,即2x ≤. 【变1】 已知:⑴52a b ==,,且a b <;⑵()2 120a b ++-=,分别求a b ,的值 【解析】 因为55a a ==±,,因为22b b ==±,,又因为a b <,所以22a b =-=±, 即52a b =-=,或52a b =-=-, ⑵由非负性可知12a b =-=, 【例2】 设a b c ,,为整数,且1a b c a -+-=,求c a a b b c -+-+-的值 【解析】 因为a b c ,,为整数,且1a b c a -+-= 故a b -与c a -一个为0,一个为1,从而()()1b c b a a c -=-+-=,原式2= 【例3】 (1)已知1999x =,则2245942237x x x x x -+-++++= . (2)满足2()()a b b a a b ab -+--=(0ab ≠)有理数a 、b ,一定不满足的关系是( ) A . 0ab < B . 0ab > C . 0a b +> D . 0a b +< (3)已知有理数a 、b 的和a b +及差a b -在数轴上如图所示, 化简227a b a b +---. a-b a+b 【解析】 (1)容易判断出,当1999x =时,24590x x -+>,2220x x ++>, 所以 224594223710819982x x x x x x -+-++++=-+=- 这道题目体现了一种重要的“先估算+后化简+再代入求值”的思想. (2)为研究问题首先要先将题干中条件的绝对值符号通过讨论去掉, 若a b ≥时,222()()()()0a b b a a b a b a b ab -+--=---=≠, 若a b <时,2222()()()()2()a b b a a b a b b a a b ab -+--=-+-=-=,

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

《不等式》常见题型归纳和经典例题讲解

? x + 1 ?? 2 3 《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 定义类 1.下列不等式中,是一元一次不等式的是( ) A. 1 x +1>2 B.x 2>9 C.2x +y ≤5 D. 1 2 (x -3)<0 2.若 (m - 2) x 2m +1 - 1 > 5 是关于 x 的一元一次不等式,则该不等式的解集为 . 用不等式表示 a 与 6 的和小于 5; x 与 2 的差小于-1; 数轴题 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a . 2.已知实数 a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、 a > b C 、a -b >0 D 、a +b >0 同等变换 1.与 2x <6 不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 借助数轴解不等式(组): (这类试题在中考中很多见) ?1 - ≥ 0 1.(2010 湖北随州)解不等式组 ? 3 ??3 - 4( x - 1) < 1 D.-2x <-6 2.(2010 福建宁德)解不等式 2 x - 1 - 5x + 1 3 2 ?1 - 2( x -1) > 1, ? 3.(2006 年绵阳市) ? x 1 - ≥ x. 含参不等式: 此类试题易错知识辨析 ≤1,并把它的解集在数轴上表示出来.

含有绝对值的不等式·典型例题分析

含有绝对值的不等式·典型例题分析 例1 求下列函数的定义域和值域: 分析利用绝对值的基本概念. 解 (1)x+|x|≠0,即|x|≠-x.∴x>0. ∴定义域为(0,+∞),值域为(0,+∞). (2)|x|≥x,x∈R.|x|-x≥0,∴y∈[0,+∞). (3)x+|x|>0,x∈R+.y∈R. 画出函数图象如图5-17所示.不难看出,x∈R,y∈[-1,1]. 说明本例中前三个易错,第四个要分析写出函数表达式,并画出函数图象,此法在求值域时常用. 例2 解不等式|x+1|>|2x-3|-2.

将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. (1)当x≤-1时原不等式化为-(x+1)>-(2x-3)-2. ∴x>2与条件矛盾,无解. 综上,原不等式的解为{x|0<x<6}. 注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏. 例3 解不等式|x2-4|<x+2. 分析解此题的关键是去绝对值符号,而去绝对值符号有两种方法:

二是根据绝对值的性质:|x|<a?-a<x<a,|x|>a?x>a或x<-a,因此本题有如下两种解法. ∴2≤x<3或1<x<2 故原不等式的解集为{x|1<x<3}. 解法二原不等式等价于-(x+2)<x2-4<x+2 例4 求使不等式|x-4|+|x-3|<a有解的a的取值范围. 分析此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便. 解法一将数轴分为(-∞,3],[3,4],(4,+∞)三个区间 当3≤x≤4 时,得(4-x)+(x-3)<a,即a>1;

绝对值考点题型总结

绝对值 1、如果| -a | = -a ,下列成立的是( ) A .a<0 B .a ≦0 C.a>0 D.a ≧0 2、 的绝对值是8。 3、若11=-b ,则b= ,若==+a a 则,06 ,若a a -=,则a 0 4、若5,3==b a ,则b a +等于( ) A 、2 B、8 C 、2或8 D 、81--或 5、已知3a =,且0a a +=,则3 2 1a a a +++=___________. 6、绝对值大于 1 小于 4 的整数的和是( ) A 、0 B 、5 C 、-5 D 、10 7、若2 3(2)0m n -++=,则2m n +的值为( ) A.4-? B.1- ?C.0? D.4 8、在数轴上,距离原点4个单位长度的点所表示的数是 9、如果互为相反数的两个数在数轴上的点相距6个单位长度,这两个数为 10、在数轴上与表示-2的点的距离为3的点所表示的数是 11、已知132x +与1 22 y -互为相反数,求x y +的值。 12、已知()0122 =++-b ab (1) 求a,b 的值,(2)求2008 2008 2?? ? ??-a b 的值 (3)求()()()() ()()2008200812211111--+??+--+--+b a b a b a ab

13、计算: =-+??+-+-+-99 1100131412131121 14、若a<0,且a b<0,化简|b-a+4|-|a-b-7|=___________. 15、若ab <0,-b>0,且b a ,则a+b 0(填“>”“<”) 16、若m>0,n<0,且|m|>|n|,用“>”把m 、m -、n 、n -连接起来。 17、已知│x-1│=3,求 -3│1+x │-│x │+5的值. 18、()() 的值。求且若b a c c b a a -?=-=++-3 2 ,21,0212 19、已知|a |=5,|b |=2,ab <0. 求:3a+2b的值 20、已知a 、b 互为相反数,c 、d互为倒数,x 的绝对值比它的相反数大2, 求式子x3+cdx+a+b+c d的值 21、已知|m|=5,|n|=2,且|m +n|=m +n ,求m-n 的值。 22、已知m 、n互为相反数,p、q 互为倒数,a 的绝对值等于2, 求24 1 20052005a pq a n m +-+的值

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

不等式常见题型归纳和经典例题讲解

《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 . a 与6的和小于5; x 与2的差小于-1; 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a - b __________0; a +b __________a -b ; ab __________a . 2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、a b > C 、a -b >0 D 、a +b > 0 1.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-6 ): (这类试题在中考中很多见) 1.(2010湖北随州)解不等式组110334(1)1 x x +?-???--???-≥?? : 此类试题易错知识辨析

(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或b x a >) 当0a <时,b x a <(或b x a >) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠2 7.如果不等式(a -3)x <b 的解集是x < 3-a b ,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x - 41141+

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

绝对值重点题型定稿版

绝对值重点题型精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

绝对值重点题型 例1、已知a0,化简|2a-|a||。 例2、 已知|a|=5,|b|=3,且|a-b|=b-a ,满足条件的a 有 个,则 a+b= 。 例3、已知│a │=2,│b │=3,│c │=6,且│a+b │=a+b ,│a+c │=-(a+c ), 求a-b-c 的值. 例4、 已知a 、b 、c 在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。 练习:数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a|| 例5、若abc ≠0,则 ||||||c c b b a a ++的所有可能值 例6、已知a 、b 、c 是有理数,且a+b+c=0,abc0,求| |||||c b a b a c a c b +++++的值。 例7、已知3π -=x ,化简:m=|x+1|-|x+2|+|x+3|-|x+4|。 例8、 已知|x+5|+|x-2|=7,求x 的取值范围。 练习: 0 b a c

1、若3|x-2|+|y+3|=0,则x y 的值是多少? 2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|。 3、有理数a ,b ,c ,d ,满足 1||-=abcd abcd ,求d d c c b b a a ||||||||+++的值。 4、如果0

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

完整版绝对值重点题型.doc

绝对值重点题型 例1、已知a 0,化简|2a-|a||。 例2、 已知|a|=5,|b|=3,且|a-b|=b-a ,满足条件的a 有 个,则a+b= 。 例3、已知│a │=2,│b │=3,│c │=6,且│a+b │=a+b ,│a+c │=-(a+c ), 求a-b-c 的值. 例4、 已知a 、b 、c 在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。 练习:数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a|| 0 b a c a 0 b

例5、若abc ≠0,则 | |||||c c b b a a ++的所有可能值 例6、已知a 、b 、c 是有理数,且a+b+c=0,abc >0,求 ||||||c b a b a c a c b +++++的值。 例7、已知3π -=x ,化简:m=|x+1|-|x+2|+|x+3|-|x+4|。 例8、 已知|x+5|+|x-2|=7,求x 的取值范围。

练习: 1、若3|x-2|+|y+3|=0,则x y 的值是多少? 2、已知a ,b |a|+|c-b|+|a-c|+|b-a|。 3、有理数a ,b ,c ,d ,满足 1||-=abcd abcd ,求d d c c b b a a ||||||||+++的值。 4、如果0

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

含绝对值不等式的题型

含绝对值不等式题型 一、单绝对值问题 1.解下列不等式: (1).4321x x ->+; (2).|2||1|x x -<+; (3).4|23|7x <-≤: (4).|23|3x x ->; (5). 2x x +≥ 2. 不等式1|1|3x <+<的解集为( ). .A (0,2) .B (2,0)(2,4)- .C (4,0)- .D (4,2)(0,2)-- 3. 已知全集{12345}U =,,,,,集合{} 32A x Z x =∈-<,则U C A = ( ) .A {1234},,, .B {234},, .C {15}, .D {5} 4. 设集合{}22,A x x x R =-≤∈,{}2,12B y x x ==--≤≤,则()R C A B 等于 ( ) .A R .B {},0x x R x ∈≠ .C {}0 .D ? 5. 不等式2103x x -≤的解集为( ) .A {|2x x ≤≤ .B {}|25x x -≤≤ .C {}|25x x ≤≤ .D {}5x x ≤ 6. 若x R ∈,则()()110x x -+>的解集是 ( ) .A {} 01x x ≤< .B {0x x <且1}x ≠- .C {}11x x -<< .D {1x x <且1}x ≠- 7. 不等式()120x x ->的解集是( ) .A ()1 2,-∞ .B ()()1 2,00,-∞ .C ()12,+∞ .D ()120, 8. 不等式3529x ≤-<的解集是 ( ) .A ()(),27,-∞-+∞ .B []1,4 .C [][]2,14,7- .D (][)2,14,7- 9. 不等式211x x --<的解集是_______________. 10. 方程223x x x ++223x x x ++=的解集为___________,不等式22||x x x x -->的解集是_______

实数知识点题型归纳

第六章实数 知识讲解+题型归纳 知识讲解 一、实数的组成 1、实数又可分为正实数,零,负实数 2.数轴:数轴的三要素——原点、正方向和单位长度。数轴上的点与实数一一对应 二、相反数、绝对值、倒数 1. 相反数:只有符号不同的两个数互为相反数。数a的相反数是-a。正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。 2.绝对值:表示点到原点的距离,数a的绝对值为 3.倒数:乘积为1的两个数互为倒数。非0实数a的倒数为 1 a . 0没有倒数。 4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1. 三、平方根与立方根 1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。数a的平方根记作(a>=0) 特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。负数没有平方根。 正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。 开平方:求一个数的平方根的运算,叫做开平方。 a | |a

2.立方根:如果一个数的立方等于a,则称这个数为a立方根。数a 的立方根用3a表示。 任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。 开立方:求一个数的立方根(三次方根)的运算,叫做开立方。 四、实数的运算 有理数的加法法则: a)同号两数相加,取相同的符号,并把绝对值相加; b)异号两数相加。绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。2.有理数的减法法则:减去一个数等于加上这个数的相反数。 3.乘法法则: a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零. b)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正 c)几个数相乘,只要有一个因数为0,积就为0 4.有理数除法法则: a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。0除以任何非0实数都得0。 b)除以一个数等于乘以这个数的倒数。

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

专题一、含绝对值不等式的解法(含答案)

第三讲 含绝对值不等式与一元二次不等式 一、知识点回顾 1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ? ??<-=>=0,0,00,a a a a a a 2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。 4、二次函数、一元二次方程、一元两次不等式的联系。(见P8) 5、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。 6、解一元二次不等式的步骤: (1)将不等式化为标准形式()002≥>++c bx ax 或()002≤<++c bx ax (2)解方程02=++c bx ax (3)据二次函数c bx ax y ++=2的图象写出二次不等式的解集。 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。

关于绝对值的几种题型与解题技巧

关于绝对值的几种题型及解题技巧 所谓绝对值就是只有单纯的数值而没有负号。即0≥a 。但是,绝对值里面的数值可以是正数也可以是负数。怎么理解呢?绝对值符号就相当于一扇门,我们在家里面的时候可以穿衣服也可以不穿衣服,但是,出门的时候一定要穿上衣服。 所以,0≥a ,而a 则有两种可能:o a 和0 a 。如:5=a ,则5=a 和5-=a 。合并写成:5±=a 。 于是我们得到这样一个性质: a 很多同学无法理解,为什么0 a 时,开出来的时候一定要添加一个“负号”呢?a -。因为此时0 a ,也就是说a 是一个负数,负数乘以符号就是正号了。如2)2(=--。因此,当判断绝对值里面的数是一个负数的时候,一定要在这个式子的前面添加一个负号。 例如:0 b a -,则)(b a b a --=-。 绝对值的题解始终围绕绝对值的性质来展开的。我就绝对值的几种题型进行详细讲解,希望能对你们有所帮助。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性 质; a (a >0) a 0 a 0 0=a a - 0 a

(2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即|a|≥a ,且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=||| |b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b| 一:比较大小 典型题型: 【1】已知a 、b 为有理数,且0 a ,0 b ,b a ,则 ( ) A :a b b a -- ; B :a b a b -- ; C :a b b a --; D :a a b b -- 这类题型的关键是画出数轴,然后将点按照题目的条件进行标记。

相关文档
最新文档