最新膜电位变化及其测量

最新膜电位变化及其测量
最新膜电位变化及其测量

膜电位变化及其测量

一、设计思路及依据

神经纤维受到刺激后,兴奋产生以及传导这部分内容在高三教学中是非常重要的内容之一,上海市在2003和2009年的高考试卷中考到这部分内容,学生的得分率很低。教师在教这部分内容时,也都觉得这部分内容不好处理,虽然教师绞尽脑汁设计教学,但还是无法真正让学生理解透彻甚至掌握,也就成为学生碰到此部分内容就无从下手。

本节课的主要目的,是针对神经纤维上兴奋的产生与传导这部分教学内容,探索一种有效地教学方法,通过绘图使学生能够理解并掌握这部分内容,学会解析这部分内容相关题目的步骤,从而提高解题的正确率。

二、教学目标:

通过对典型题目的分析,结合动手绘图,能够熟练运用神经纤维上兴奋的产生与传导内容解析有关膜电位变化曲线题目,感悟生命科学学习过程中的严谨的逻辑思维。

三、教学重点、难点:

运用神经纤维上兴奋的产生与传导内容解析有关膜电位变化曲线题目

四、教学过程:

复习提问:

1、神经纤维上受到刺激时膜电位会发生什么变化?

2、兴奋在神经纤维上的传到形式以及方向?

例1:神经电位的测量装置如下图所示,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域,下图中指针所示电流方向,依次看到现象的顺序如图:

分析一:指针偏转几次,方向如何?

测膜外电流,指针偏转2次且方向相反

例2:神经电位的测量装置如下图所示,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域,下图中指针所示电流方向,依次看到现象的顺序如图:

分析二:指针偏转几次,方向如何?

测膜内外电流,指针偏转3次且方向相同

例3:(2010年十三校联考)下图为神经电位的测量装置,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域。用仪器记录a、b两电极之间的电位差,结果预期的电位测量结果是()

答案:选A

学生绘图:左侧(a)膜内和右侧(b)膜外的电位差

规律一:如果测量的是膜内和膜外的电位差,当两个测量电极之间的间隔距离较大时、则测量结果会出现两次同向的电位波动。

例4、09年上海28.神经电位的测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域。用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图。若将记录仪的A、B两电极均置于膜外,其它实验条件不变,则测量结果是()

解析1:为什么已知条件中电位波动只有一次?

学生绘图:左侧(a)膜内和右侧(b)膜外的电位差:

规律二:如果测量的是膜内和膜外的电位差,当两个测量电极之间的间隔距离较近时、则测量结果会出现一次电位波动。

解析2:答案为什么选C?

学生绘图:

规律三:如果测量的是膜外两点的电位差,当两个测量电极之间的间隔距离较近时、则测

量结果会出现两次方向相反的电位波动,且中间显示两侧电位差为0的时期较短。

解析3:当两个测量电极之间的间隔距离较远时,测量的是膜外两点的电位差会怎样变化?绘图:

规律四:如果测量的是膜外两点的电位差,当两个测量电极之间的间隔距离较远时、则测量结果会出现两次方向相反的电位波动,且中间显示两侧电位差为0的时期较远。

例5、2010年海南9.将记录仪(R)的两个电极置于某一条结构和功能完好的神经表面,如右图,给该神经一个适宜的刺激使其产生兴奋,可在R上记录到电位的变化。能正确反映从刺激开始到兴奋完成这段过程中电位变化的曲线是()

答案是D

分析:为什么两次波动方向是先向后下,与上海高考题相反?

海南题没有给出两侧电位的变化曲线,推测不出所测的值是左侧电位和右侧电位的差值还是右侧电位和左侧电位的差值,所以不能从应先向下还是应先向上,由于上海题时所测的值是左侧电位和右侧电位的差值,可见海南题所测的值是右侧电位和左侧电位的差值,这样就不难解释上海题曲线一开始是向下变化,海南题曲线一开始是向上变化。

小结:规律一规律二规律三规律四

拓展:分析如下图若b侧损伤则会怎样变化?(涂黑区表示兴奋区域,阴影区表示损伤部位。

解析:

练习:

1、(2009安徽卷)离体神经纤维某一部位受到适当刺激时,受刺激部位细胞膜两侧会出现暂时性的电位变化,产生神经冲动。如图表示该部位受刺激前后,膜两侧电位差的变化。请回答:

(1)图中a线段表示电位;b点膜两侧的电位差为,此时Na+ (内、外)流。

(2)神经冲动在离体神经纤维上以局部电流的方式双向传导,但在动物体内,神经冲动的传导方向是单向的,总是由胞体传向。

(3)神经冲动在突触的传递受很多药物的影响。某药物能阻断突触传递,如果它对神经递质的合成、释放和降解(或再摄取)等都没有影响,那么导致神经冲动不能传递的原因可能是该药物影响了神经递质与的结合。

2、(2009重庆卷)题30图2是反射弧结构模式图,a、b

分别是放置在传出神经和骨骼肌上的电极,用于刺激神经和

骨骼肌;c是放置在传出神经上的电位计,用于记录神经兴

奋电位;d为神经与肌细胞接头部位,是一种突触。

(1)用a刺激神经,产生的兴奋传到骨骼肌引起的收缩

(属于或不属于)反射。

(2)用b刺激骨骼肌,(能或不能)在c处记录到电

位。

(3)正常时,用a刺激神经会引起骨骼肌收缩;传出部分

的某处受损时,用a刺激神经,骨骼肌不再收缩,根据本题

条件,完成下列判断实验:

①如果,表明传出神经受损。

②如果,表明骨骼肌受损。

③如果,表明部位d受损。

对动作电位变化图的分析

对动作电位变化图的分析 1 各个阶段变化原因: 1.1 膜内外的离子分布 细胞内外离子分布不均匀是静息电位和动作电位形成的基础,这种分布不均匀与钠钾泵的作用密不可分。钠钾泵是一种普遍存在于动物各种细胞膜上的特异性蛋白质,这种载体蛋白每分解一个ATP分子,可以将3个Na+送出细胞外,同时将2个K+送入细胞内,从而使细胞内K+浓度高,细胞外Na+浓度高。除了Na+和K+分布不均匀以外,细胞内还存在着大量的带负电的有机大分子物质A-,细胞膜对他们是没有通透性的,同样在细胞膜外也存在着高浓度的Cl-。总的来看,细胞膜内:K+浓度高,同时存在大量的A-;细胞膜外:Na+浓度高,同时也存在着大量的Cl-。这种膜内外离子分布的不平衡是静息电位和动作电位形成的离子基础。 1.2 静息电位的形成 细胞处于静息状态时,细胞膜主要对K+有通透性,而对其他离子通透性很小甚至是没有通透性。这种对K+通透性的实质,是依赖于细胞膜上的漏K+通道来实现的,K+可以通过该通道被动外流,使得膜外的阳离子增多,膜内的阳离子减少,从而造成膜外电位高于膜内电位的状态,当K+的移动达到平衡时,细胞膜内外两侧就形成了一个相对稳定的电位差,这就是我们通常所说的静息电位,这个过程被称为极化。 1.3动作电位的形成 动作电位是膜电位的一次快速变化,随后恢复到静息膜电位状态,包括去极化、反极化和复极化三个连续变化的过程。受到一定的刺激时,细胞膜上的部分电压门控Na+通道开放,允许Na+流进细胞,膜内电位升高膜外电位降低,当膜内外电位相等时膜外仍为高Na+状态,该过程可称为去极化。Na+继续内流,膜内电位继续升高,直至Na+内流达到其平衡状态,膜内外两侧形成的电位差就是动作电位的最大值,这个过程可以称之为反极化。这两个过程也就是上图中所显示的动作电位的上升相。 当动作电位达到最大值时开放的电压门控Na+通道失活、关闭,而电压门控K+通道开放,少量的K+在细胞内强大的电动势和浓度梯度的作用下迅速外流,使细胞内电位降低,细胞外电位升高,这一变化也就是上图中所显示的动作电位的下降相。这个过程被称为复极化。在完全恢复到静息电位之前,钠钾泵的活动会增强,将进入细胞的Na+排出,将透出细胞的K+重新移入细胞内,恢复最开始的离子浓度梯度,为重建膜的静息电位做好准备。 2 关于该变化过程的几个疑问 2.1 钠钾泵的作用实质是什么? 细胞膜电位变化主要依赖于Na+、K+浓度梯度为基础而形成。用某些化学试剂(如氰化钠)使钠钾泵中毒失去作用,且神经细胞存在足够的离子浓度梯度,兴奋仍能传导多次。但每次冲动,钠离子进入细胞内不能泵出去,而钾离子穿出细胞后又不能泵回来。最后形成细胞内钠离子浓度太高而钾离子浓度太低以致没有足够的钾离子外流来维持静息电位,而只有处于静息电位的细胞膜才具有产生兴奋的能力。这时除非钠钾泵再开动,否则神经细胞将失去作用。也就是说若失去了膜内外的离子分布不平衡的状态,神经冲动是不能形成和传导的。因此,这种依赖于ATP的钠钾泵的活动,实质上是将细胞通过代谢产生的ATP中的能量转变为膜两侧的离子势能,细胞受到刺激后,再将这种离子势能转变为动能——动作电位而传播。 2.2 通过离子通道移动的离子何时会达到平衡? 静息状态时,细胞膜上的漏K+通道打开, K+外流既有动力又有阻力。动力来自于膜内的高浓度的K+,促使K+顺浓度梯度外流;K+的外流使膜外的电位逐渐升高,这种膜外的正电位形成的电场力又会阻止带正电荷的K+继续外流,这就是膜内K+外流的阻力。当这两种力达到

膜电位变化及其测量

膜电位变化及其测量 一、设计思路及依据 神经纤维受到刺激后,兴奋产生以及传导这部分内容在高三教学中就是非常重要得内容之一,上海市在2003与2009年得高考试卷中考到这部分内容,学生得得分率很低。教师在教这部分内容时,也都觉得这部分内容不好处理,虽然教师绞尽脑汁设计教学,但还就是无法真正让学生理解透彻甚至掌握,也就成为学生碰到此部分内容就无从下手。 本节课得主要目得,就是针对神经纤维上兴奋得产生与传导这部分教学内容,探索一种有效地教学方法,通过绘图使学生能够理解并掌握这部分内容,学会解析这部分内容相关题目得步骤,从而提高解题得正确率。 二、教学目标: 通过对典型题目得分析,结合动手绘图,能够熟练运用神经纤维上兴奋得产生与传导内容解析有关膜电位变化曲线题目,感悟生命科学学习过程中得严谨得逻辑思维。 三、教学重点、难点: 运用神经纤维上兴奋得产生与传导内容解析有关膜电位变化曲线题目 四、教学过程: 复习提问: 1、神经纤维上受到刺激时膜电位会发生什么变化? 2、兴奋在神经纤维上得传到形式以及方向? 例1:神经电位得测量装置如下图所示,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域,下图中指针所示电流方向,依次瞧到现象得顺序如图: 分析一:指针偏转几次,方向如何? 测膜外电流, 指针偏转2 次且方向相 反例2:神经电位得测量装置如下图所示,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域,下图中指针所示电流方向,依次瞧到现象得顺序如图: 分析二:指针偏转几次,方向如何? 测膜内外电流,指针偏转3次且方向相同 例3:(2010年十三校联考)下图为神经电位得测量装置,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域。用仪器记录a、b两电极之间得电位差,结果预期得电位测量结果就是( )

JC 线粒体膜电位的检测方法

JC-1线粒体膜电位检测试剂盒 产品组成: 产品编号BB-4105-1 BB-4105-2 BB-4105-3 规格20 assays 50 assays 100 assays JC-1 100ul 250ul 500ul 10×孵育缓冲液4ml 10ml 20ml 产品简介: 线粒体膜电位的下降是细胞凋亡早期的一个标志性事件。JC-1是一种广泛用于检测线粒体膜电位(mitochondrial membrane potential)△Ψm的理想荧光探针。可以检测细胞、组织或纯化的线粒体膜电位。在线粒体膜电位较高时,JC-1聚集在线粒体的基质中,形成聚合物,488nm激发时的最大发射波长为590nm,可以产生红色荧光,在流式图上表现为FL1和FL2双阳性;在线粒体膜电位较低时,JC-1不能聚集在线粒体的基质中,此时JC-1为单体,488nm激发时最大发射波长为527nm,可以产生绿色荧光,形成流式图中所有细胞FL1均为阳性。凋亡细胞则大多为FL1单阳性。这样就可以非常方便地通过荧光颜色的转变来检测线粒体膜电位的变化。常用红绿荧光的相对比例来衡量线粒体去极化的比例。 贝博线粒体膜电位检测试剂盒(JC-1)可以快速灵敏地检测细胞、组织或纯化的线粒体膜电位变化,可以用于早期的细胞凋亡检测。试剂盒染料与其他的阳离子染料如DiOC6(3)和罗丹明123相比,特异性更高,对线粒体膜电位变化的特异性高于质膜电位变化,对线粒体去极化检测的检测一致性更好;红绿色荧光强度比率只受线粒体膜电位的变化,不受线粒体大小,形状,密度的差异干扰;检测灵敏度强,对细胞应激反应的微小异质性都能辨别; 使用方法: 悬浮细胞 1、孵育缓冲液和JC-1染色工作液的配制:根据样品数按下列比例配制孵育缓冲液和JC-1染色工作液。 取100ul 10×孵育缓冲液加900ul无菌纯水稀释,混匀并预热至37℃,即成1×孵育缓冲液;在500ul 1×孵育缓冲液中加入5ul JC-1,涡旋混匀配成JC-1染色工作液; 2、收集样本细胞以及阴性、阳性对照细胞。细胞数量在2-5X105个。 3、用PBS洗涤细胞两次。离心收集细胞。 4、用500ul JC-1染色工作液将细胞重悬,37℃,5% CO2的培养箱中孵育15分钟。 5、常温离心收集细胞。 6、用500ul预热的孵育缓冲液将细胞重悬。 7、用流式细胞仪或荧光分光光度计检测分析结果,或者用荧光显微镜或激光共聚焦显微镜观察结果。 贴壁细胞 对于贴壁细胞,可以先收集细胞,重悬后参考悬浮细胞的检测方法。

膜电位变化曲线分析

膜电位变化曲线分析 1、(09年上海28)神经电位的测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域。用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图。若将记录仪的A、B两电极均置于膜外,其它实验条件不变,则测量结果是 答案是C,曲线一开始是向下变化,中间显示两侧电位差为0的时期较长。 先需所给的条件“用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图”得出记录仪记录A、B两电极之间的电位差是A点的膜内电位和B点的膜外电位的差值(A点的膜内电位减去B点的膜外电位),可知若将记录仪的A、B两电极均置于膜外,一开始A、B两处都是静息电位,膜外都是正电位,所以A、B两处的电位差为0,知道答案在C和D中选。又因为若将记录仪的A、B两电极均置于膜外,记录仪记录的就是A、B两处的膜外电位的差值,动物电位先传到A点,所以当A点的膜外先变成负电位,A、B两处的膜外电位的差值为负值,可知只有C符合。 做过这个上海题后,可做如下总结:当记录仪记录两处的膜外电位的差时,所得出的曲线除了开始和结束是0电位外,中间也要经历0电位。 2、(2010年海南9)将记录仪(R)的两个电极置于某一条结构和功能完好的神经表面,如右图,给该神经一个适宜的刺激使其产生兴奋,可在R上记录到电位的变化。能正确反映从刺激开始到兴奋完成这段过程中电位变化的曲线是 答案是D,曲线一开始是向上变化,中间显示两侧电位差为0的时期很短。 若细心观察这两年高考题的答案就会发现,同样是刺激左侧,然后记录右侧两处的膜外电位变化,

和上海题相似之处是都是刺激两处的左侧,再记录两处的膜外电位,但不同的是,做上海题时能从已给的曲线图推测所测的值是左侧电位和右侧电位的差值,解题时可据曲线是应先向下还是应先向上,初定是哪几个选项正确。海南题没有给出两侧电位的变化曲线,推测不出所测的值是左侧电位和右侧电位的差值还是右侧电位和左侧电位的差值,所以不能从应先向下还是应先向上,但可以根据所得出的曲线除了开始和结束是0电位外,中间也要经历0电位直接选出D选项。 若细心观察这两年高考题的答案就会发现,09年上海题给的答案是C,曲线一开始是向下变化,中间显示两侧电位差为0的时期较长,2010年海南给的答案是D,曲线一开始是向上变化,中间显示两侧电位差为0的时期很短。由于上海题时所测的值是左侧电位和右侧电位的差值,可见海南题所测的值是右侧电位和左侧电位的差值,这样就不难解释上海题曲线一开始是向下变化,海南题曲线一开始是向上变化。 按教材,刺激神经左侧某处时,记录右侧两处膜外电位的变化图应如下图所示 不难看出,图②和图③之间应还有一个图,应由五个图表示,这五个图只能由下图(一)或图(二)表示: 就09年上海题而言,若这五个图由图(一)所示,由于图(一)的①、③、⑤三处的A、B两处的电位变化完全相同,所以表示A的膜内电位和B的膜外电位差的曲线应有三处是负值,而题中的表示A的膜内电位和B的膜外电位差的曲线只有首末两处是负值,不符合,故这五个图由图(二)所示。 当两侧的兴奋传导如图(一)所示时,记录两处膜外电位变化的曲线中间是0的时间可以维持较长的时间,当两侧的兴奋传导如内(二)所示时,记录两处膜外电位变化的曲线中间是0的时间只可以维持较短的时间,有关09年上海题

膜电位变化及其测量

膜电位变化及其测量 LELE was finally revised on the morning of December 16, 2020

膜电位变化及其测量 一、设计思路及依据 神经纤维受到刺激后,兴奋产生以及传导这部分内容在高三教学中是非常重要的内容之一,上海市在2003和2009年的高考试卷中考到这部分内容,学生的得分率很低。教师在教这部分内容时,也都觉得这部分内容不好处理,虽然教师绞尽脑汁设计教学,但还是无法真正让学生理解透彻甚至掌握,也就成为学生碰到此部分内容就无从下手。 本节课的主要目的,是针对神经纤维上兴奋的产生与传导这部分教学内容,探索一种有效地教学方法,通过绘图使学生能够理解并掌握这部分内容,学会解析这部分内容相关题目的步骤,从而提高解题的正确率。 二、教学目标: 通过对典型题目的分析,结合动手绘图,能够熟练运用神经纤维上兴奋的产生与传导内容解析有关膜电位变化曲线题目,感悟生命科学学习过程中的严谨的逻辑思维。 三、教学重点、难点: 运用神经纤维上兴奋的产生与传导内容解析有关膜电位变化曲线题目四、教学过程: 复习提问: 1、神经纤维上受到刺激时膜电位会发生什么变化? 2、兴奋在神经纤维上的传到形式以及方向? 例1:神经电位的测量装置如下图所示,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域,下图中指针所示电流方向,依次看到现象的顺序如图:

分析一:指针偏转几次,方向如何? 测膜外电流,指针偏转2次且方向相反 例2:神经电位的测量装置如下图所示,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域,下图中指针所示电流方向,依次看到现象的顺序如图: 分析二:指针偏转几次,方向如何? 测膜内外电流,指针偏转3次且方向相同 例3:(2010年十三校联考)下图为神经电位的测量装置,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域。用仪器记录a、b两电极之间的电位差,结果预期的电位测量结果是() 答案:选A 学生绘图:左侧(a)膜内和右侧(b)膜 外的电位差

心室肌细胞跨膜电位及其形成机制X (1)

第二节心脏的电生理学及生理特性(5学时) Part 1 心室肌细胞跨膜电位及其形成机制(1学时) 掌握内容工作细胞静息电位产生原理及主要钾离子通道类型和特点。心室肌细胞动作电位的波形特点及0、1、2、3、4期的分期。参与心室肌细胞动作电位各期形成的离子电流、离子通道种类(INa、Ito、ICa-L、IK1 、IK)。心室肌细胞动电位发生后细胞内外离子恢复的方式,解释钠泵抑制剂增强心肌收缩的机制。 熟悉内容参与心室肌细胞动作电位各期形成的各离子通道开闭的条件及主要通道的阻断剂。 了解内容工作细胞和自律细胞的生理特点差异及主要代表细胞。心房肌细胞无明显2期的原理。 [练习] (一)选择题 【A1型题】单项选择题,每题有A、B、C、D、E五个备选答案,请从中选出一个最佳答案。 1.在心室肌细胞动作电位,接近于钠平衡电位的是 A. 最大复极电位 B. 平台期时的膜电位 C. 阈电位 D. 动作电位0期去极化结束时的膜电位 E. 复极化结束时的膜电位 2. 心室肌细胞动作电位平台期的离子跨膜流动是 A. Na+内流,Cl-外流 B. Na+内流,K+外流 C. Na+内流,Cl-内流 D. Ca2+内流,K+外流 E. K+内流,Ca2+外流 3.关于Na+泵生理作用的描述,不正确的是 A. Na+泵活动使膜内外Na+、K+呈均匀分布 B. 将Na+移出膜外,将K+移入膜内 C. 建立势能储备,为某些营养物质吸收创造条件 D. 细胞外高Na+可维持细胞内外正常渗透压 E. 细胞内高K+保证许多细胞代谢反应进行 4. 下列关于动作电位的描述,正确的是 A. 刺激强度小于阈值时,出现低幅度动作电位

线粒体膜电位测量

线粒体膜电位测量 线粒体功能状态和不少疾病的密切相关,线粒体膜电位(MMP)则是反映细胞内线粒体功能状态的重要参数之一。本人整理一下线粒体膜电位测量方法,包括主要测量仪器和常用荧光探针,欢迎补充讨论。 常用测量仪器:(1)普通荧光显微镜;(2)激光扫描共聚焦显微镜;(3)流式细胞仪。 常用荧光探针:JC-1,DioC6,mitocapture,罗丹明123,TMRM等。 JC-1(也称CBIC2(3))是一种广泛用于检测线粒体膜电位(mitochondrial membrane potential)△Ψm的理想荧光探针。可以检测细胞、组织或纯化的线粒体膜电位。在线粒体膜电位较高时,JC-1聚集在线粒体的基质(matrix)中,形成聚合物(J-aggregates),可以产生红色荧光;在线粒体膜电位较低时,JC-1不能聚集在线粒体的基质中,此时JC-1为单体(monomer),可以产生绿色荧光。这样就可以非常方便地通过荧光颜色的转变来检测线粒体膜电位的变化。JC-1单体可采用488或514nm激光激发,发出绿色荧光波长为529nm左右;JC-1聚合物(J-aggregates)的最大激发波长为585nm,发出红色波长为590nm。 罗丹明123(Rhodamine 123, Rh123)是一种可透过细胞膜的阳离子荧光染料,在正常细胞中能够依赖线粒体跨膜电位进入线粒体基质,荧光强度减弱或消失。在细胞凋亡发生时,线粒体膜完整性破坏,线粒体膜通透性转运孔开放,引起线粒体跨膜电位(ΔΨm) 的崩溃,Rh123 重新释放出线粒体,从而发出强黄绿色荧光,通过荧光信号的强弱来检测线粒体膜电位的变化和凋亡的发生,可用于培养的细胞或从组织中提取出的线粒体的膜电位检测。 Tetramethylrhodamine, methyl ester (TMRM)也是一种可透过细胞膜的阳离子荧光染料,单激光激发和单荧光发射峰。可用543nm激光激发,发射橙红色荧光波长在580nm左右。相对其他荧光探针,TMRM 具有许多优点如染料在线粒体积累仅源于膜电位变化更;相对毒性更小;和细胞器结合率低;适合做线粒体膜电位的定量分析等。

窦房结P细胞跨膜电位及产生机理

【提问】窦房结P细胞跨膜电位及产生机理? 【回答】学员dbss9ffe42,您好!您的问题答复如下:外Ca2+浓度的影响,可被Ca2+通道抑制剂(如维拉帕米、Mn2+)阻断。当膜电位由最大复极电位自动去极化到阈电位时,膜上L型Ca2+抖通道被激活,引起Ca2+。内流,导致0期去极化。 祝您学习愉快! 【追问】那么请问窦房结P细胞的复极化是受什么影响【回答】学员nflalihh,您好!您的问题答复如下: 窦房结细胞的动作电位具有以下特点: ①最大复极电位与阈电位的绝对值小; ②0期去极化的幅度小、时程长、去极化速率较慢; ③没有明显的复极1期和2期; ④4期自动去极化速度快。 1.去极化过程:0期去极L型Ca2+通道激活,Ca2+内流。 2.复极化过程:3期复极L型Ca2+通道逐渐失活,Ca2+内流相应减少,及Ik通道的开放,K+外流增加。 3.4期自动去极化机制:①IK:复极至-60mV时,因失活逐渐关闭,导致K+外流衰减,是最重要的离子基础;②Ica-T:

在4期自动去极化到-50mV时,T型Ca2+通道激活,引起少量Ca2+内流参与4期自动去极化后期的形成;③If:窦房结细胞最大复极电位只有-70mY,If不能充分激活,在P细胞4期自动去极化中作用不大。 【追问】老师这道题还是不明白 【回答】学员zhulipeng,您好!您的问题答复如下: 窦房结细胞的生物电特点是没有稳定的静息电位。动作电位复极至3期末进入第4期,便自动缓慢去极。 窦房结的最大舒张电位约-60mV,阈电位约-40mV。 0期去极化速度缓慢,主要是Ca2+缓慢内流引起。复极化无明显的l期和2期平台,随即转入复极化3期,后者主要是K+外流形成。4期的自动去极化主要是由于K+通道逐渐关闭,Na+、Ca2+内流逐渐增多而引起。

线粒体膜电位(MMP)检测的具体步骤及方法

线粒体膜电位(MMP)检测的具体步骤及方法 一、技术简介 大量的研究表明线粒体与细胞凋亡密切相关,其中线粒体跨膜电位(MMP)的下降,被认为是细胞凋亡级联反应过程中最早发生的事件之一。它发生在细胞核凋亡特征(染色质浓缩、DNA断裂)出现之前,一旦线粒体跨膜电位崩溃,则细胞凋亡不可逆转。 JC-1是一种碳氰化合物类阳离子荧光染料,可作为检测线粒体跨膜电位指示剂。JC-1在细胞内以聚合体和单体两种不同的物理形式存在,分别处于不同的荧光发射峰。当JC-1 浓度低或膜电位水平低时,主要以单体形式存在,激发波长为527nm,呈绿色荧光;当JC-1浓度升高或线粒体膜电位水平较高时,形成聚合物,发出红色的荧光,激发波长为590nm。当细胞发生凋亡时,线粒体跨膜电位被去极化,JC-1从线粒体内释放,红光强度减弱,以单体的形式存在于胞质内发绿色荧光,根椐这一特征就可以检测线粒体膜电位的变化。 二、实验流程 1. 细胞培养。 2. 用适当的方法诱导细胞凋亡,同时设立阴性依照组合阳性对照组,收集细 胞。 3. 用PBS洗涤细胞三次,收集不多于1×106的细胞。 4. 取100μL 10×Incubation Buffer加900μL灭菌去离子水稀释成 1×Incubation Buffer,混匀并预热至37℃。 5. 吸取500μL 1×Incubation Buffer,加入1μL JC-1,涡旋混匀配成JC-1 工作液。 6. 取500μL JC-1工作液将细胞均匀悬浮,37℃,5% CO2的培养箱中孵育 15~20min。 7. 室温离心(2000rpm, 5min)收集细胞,用1×Incubation Buffer洗两次。 8. 吸取500μL 10×Inc ubation Buffer重新悬浮细胞。 9. 流式细胞仪检测,分析。

线粒体膜电位检测(JC-1)

线粒体膜电位检测(JC-1) 大量的研究表明线粒体与细胞凋亡密切相关,其中线粒体跨膜电位(△ψ 的破坏,被认为是细胞凋亡级联反应过程中最早发生的事件之一,它发生在细胞核凋亡特征(染色质浓缩、DNA断裂)出现之前, 一旦线粒体跨膜电位崩溃,则细胞凋亡不可逆转。 JC-1(5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolcarbocyanine iodide)是一种阳离子脂质荧光染 料,可作为检测线粒体跨膜电位指示剂。JC-1有单体和多聚体两种存在状态,在低浓度时以单体的形式存 在,高浓度时以多聚体形式存在,两者的发射光谱不同,但均可在流式细胞仪绿色(FL-1)通道检测出绿 色荧光,JC-1可透过正常细胞膜以单体状态聚集胞内,正常健康线粒体的膜电位(△ψ)具有极性,JC-1依赖于△ψ的极性被迅速摄入线粒体内,并因浓度增高而在线粒体内形成多聚体,多聚体发射光为红色荧光;可被流式细胞仪的红色(FL-2)通道检测到,而细胞发生凋亡时,线粒体跨膜电位被去极化,JC-1从 线粒体内释放,红光强度减弱,以单体的形式存在于胞质内发绿色荧光。根椐这一特征检测线粒体膜电位 的变化。 所需仪器或者试剂 流式细胞仪或荧光显微镜、高速离心机、CO2培养箱、微量移液器 1.5m L Microtube、载玻片、盖玻片(荧光显微镜观察需用)、PBS、灭菌去离 子水 使用注意事项 1.微量试剂取用前请离心集液。 2. JC-1避光保存及使用。 3.细胞培养的数量不宜超过1×106,否则细胞会产生自然凋亡影响检测。 4.对PH变化过于敏感的细胞建议用胎牛血清取代Buffer孵育染色及洗涤,或延长观测时间 5.流式细胞仪检测线粒体膜电位变化受到多种因素的影响,因诱导剂、细胞株类型,作用时 间的不同而荧光强度比例都有不同,因此没有通用标准的补偿设门指南,因此每个试验需设 阴性及阳性对照组进行荧光补偿及设门。 6.组织需先制备单细胞悬液或提取纯化线粒体后方可进行检测,可选用凯基细胞悬液制备试剂 盒(KGA829)或线粒体提取试剂盒(KGA827)。 操作方法 1.用适当的方法诱导细胞凋亡,同时设立阴性对照组和阳性对照组【用适当的凋亡诱导剂(如 星形孢菌素,staurosporine),诱导适当时间后经其它检测(如AnnexinV或Caspase 3 活性)证实确有凋亡产生】,收集细胞;

生物膜电位变化

生物膜电位变化综述 东北师范大学生命科学学院2009级秦刚1244409017 我们知道,生物的信息传递可以说是多样性的,但是其最根本的方式就是细胞之间的信息传递。所有信息的传递都是由细胞间快速传递才能够形成的。那么细胞间的信息传递是怎么样进行的呢?究竟有什么机制使得细胞间传递信息可以如此的精确和快速呢? 根据科学家的研究发现,在细胞间的信息传递过程中,细胞膜电位的变化起了很重要的作用。那么细胞膜上的怎么会有电位变化呢?它怎么能够传递信息呢? 其实细胞膜在正常的存在于人体身体内时,在安静状态时,正电荷位于膜外一侧(膜外电位为正),负电荷位于膜内一侧(膜内电位为负,)这种状态称为极化。如果膜内外电位差增大,即静息电位的数值向膜内负值加大的方向变化时,称为超极化。相反地,如果膜内外电位差减小,即膜内电位向负值减小的方向变化,则称为去极化或极化。静息电位是由于细胞内K+出膜,膜内带负电,膜外带正电导致的。 当细胞受刺激时,在静息电位的基础上可发生电位变化,细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是Na+-K+泵的转运)。细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透,形成机制如下图:

如上面四幅图所示。当细胞受到刺激时,导致细胞部分去极化致使Na+少量内流然后使得去极化至阈电位水平,Na+内流与去极化形成正反馈(Na+爆发性内流)从而达到Na+平衡电位(膜内为正膜外为负)形成了动作电位的上升。当膜去极化达一定电位水平后Na+内流停止、K+迅速外流,这样就导致了形成动作电位的下降。 动作电位是一种快速,可逆的电变化,传播的方式为局部电流,传播速度与细胞直径成正比。产生动作电位的细胞膜将经历一系列兴奋性的变化:绝对不应期——相对不应期——超常期——低常期,它们与动作电位各时期的对应关系是:峰电位——绝对不应期;负后电位——相对不应期和超常期;正后电位——低常期。 动作电位期间Na+、K+离子的跨膜转运是通过通道蛋白进行的,通道有开放、关闭、备用三种状态,由当时的膜电位决定,故这种离子通道称为电压门控的离子通道,而形成静息电位的K+通道是非门控的离子通道。当膜的某一离子通道处于失活(关闭)状态时,膜对该离子的通透性为零,同时膜电导就为零(电导与通透性一致),而且不会受刺激而开放,只有通道恢复到备用状态时才可以在特定刺激作用下开放。 由此可以看出细胞膜上的电位变化是迅速的,这也使得人的反应速度也能有一定的加强。但是也是有一定的时间段不应期,说明细胞膜上的电位不能够一直持续一个高水平的电位差。因此会有一个电位差的下降过程,在下降之后才能继续接受刺激。整个过程中完全是通过通道蛋白对于Na+和K+的通透性的变化而导致的。但是细胞电位还有许多未知的奥秘在其中,需要更进一步的去挖掘,去探索。

线粒体膜电位检测试剂盒(JC-1)使用说明

线粒体膜电位检测试剂盒(JC-1)使用说明 产品货号:M8650 产品规格:100T 产品内容: 产品名称包装 JC-1(200×)100μL/管,共5管 超纯90mL JC-1染缓冲液(5×)80mL CCCP(10mM)20μL 保存条件: -20℃避光保存,尽量避免反复冻融,有效期一年。超纯水和JC-1染色缓冲液(5×)也可4℃保存。 产品简介: 线粒体膜电位检测试剂盒(JC-1)是一种以JC-1为荧光探针,快速灵敏地检测细胞、组织或纯化的线粒体膜电位变化的试剂盒,可以用于早期的细胞凋亡检测。JC-1是一种广泛用于检测线粒体膜电位Ψm△的理想荧光探针。可以检测细胞、组织或纯化的线粒体膜电位。在线粒体膜电位较高时,JC-1聚集在线粒体的基质中,形成聚合物,可以产生红色荧光;在线粒体膜电位较低时,JC-1不能聚集在线粒体的基质中,此时JC-1为单体,可以产生绿色荧光。这样就可以非常方便地通过荧光颜色的转变来检测线粒体膜电位的变化。常用红绿荧光的相对比例来衡量线粒体去极化的比例。

线粒体膜电位的下降是细胞凋亡早期的一个标志性事件。通过JC-1从红色荧光到绿色荧光的转变可以很容易地检测到细胞膜电位的下降,同时也可以用JC-1从红色荧光到绿色荧光的转变作为细胞凋亡早期的一个检测指标。 JC-1单体的最大激发波长为515nm,最大发射波长为529nm;JC-1聚合物的最大激发波长为585nm,最大发射波长为590nm。实际观察时,使用常规的观察红色荧光和绿色荧光的设置即可。本试剂盒提供了CCCP作为诱导线粒体膜电位下降的阳性对照。对于六孔板中的样品,本试剂盒共可以检测100个样品;对于12孔中的样品,本试剂盒共可以检测200个样品。 操作步骤: 1、JC-1染色工作液的配制: 六孔板每孔所需JC-1染色工作液的量为1mL,其他培养器皿的JC-1染色工作液的用量以此类推;对于细胞悬液每50~100万细胞需0.5mL JC-1染色工作液。取适量JC-1(200×),按照每50μL JC-1(200×)加入8mL超纯水的比例稀释JC-1。剧烈震荡充分溶解并混匀JC-1。然后再加入2mL JC-1染色缓冲液(5×),混匀后即为JC-1染色工作液。 2、阳性对照的设置: 把试剂盒中提供的CCCP(10mM)推荐按照11000∶的比例加入到细胞培养液中,稀释至10μM,处理细胞20分钟。随后按照下述方法装载JC-1,进行线粒体膜电位的检测。对于大多数细胞,通常10μM CCCP处理20分钟后线粒体的膜电位会完全丧失,JC-1染色后观察应呈绿色荧光;而正常的细胞经JC-1染色后应显示红色荧光。对于特定的细胞,CCCP的作用浓度和作用时间可能有所不同,需自行参考相关文献资料决定。 3、对于悬浮细胞:

离子跨膜转运与膜电位变化

由于钠泵的作用,造成膜两侧钠离子和钾离子的不均匀分布,(K+和Na+分布状况的叙述:K+在维持细胞内液渗透压中具有决定作用,Na+在维持细胞外液渗透压中具有决定作用,两者在细胞膜的分布是不均匀的。)因此,钠离子和钾离子分别有向膜内或膜外扩散的趋势,至于它们能否扩散以及扩散通透量的大小则决定于膜上的相应离子通道开放情况,即膜对相应离子通透性的高低,这就是静息电位和动作电位的离子基础。 细胞静息时,膜对K+通透性大,对Na+通透性很小,此时,K+顺浓度差由膜内向膜外流动,每流出一个K+,细胞外便增加一个正电荷,相应的细胞内便产生一个负电荷,随着K+的外流,正负电荷之间产生的电场力会阻止K+的继续外流,当促使K+外流的浓度差力与阻止K+外流的电场力达到平衡时, K+的净移动就会等于零,此时,细胞膜两侧稳定的电位差即为静息电位,也称为K+的平衡电位,由此可见,静息电位实质是K+外流形成的电—化学平衡电位,和Na+在细胞外的浓度无关。静息电位主要受细胞内外K+浓度的影响:如细胞外K+浓度增高,细胞内外K+浓度差减小,向外扩散的动力减弱,K+外流减少,静息电位减小,如细胞外的K+浓度降低,细胞内外K+浓度差增大,K+外流增多,静息电位增大。 当受到刺激兴奋时细胞会产生动作电位,膜上的离子通道会被激活,但膜对Na+ ,K+的通透性增高在时间上是不一致的,Na+通道蛋白几乎立即被激活,由于膜内外Na+的浓度梯度很大,因此大量Na+内流,膜两侧的静息电位差急剧减小,进而膜电位倒转,直至新形成的膜内正电位足以阻止Na+继续内流为止,这时膜两侧的电位相当于Na+平衡电位,因此动作电位是由膜对Na+的通透性增高导致Na+内流造成的,动作电位主要受细胞内外Na+浓度的影响,与K+在细胞内外的浓度无关。如细胞外Na+浓度增大,Na+浓度差增大,Na+内流增多,动作电位增大,如细胞外Na+浓度降低,Na+浓度差减小, Na+内流减少,动作电位减小,如将神经浸浴在无Na+溶液中,则动作电位不复出现。 受刺激时,K+通道蛋白激活稍迟,通透性增加也较缓慢,它导致K+外流逐渐增多,起了抵消Na+内流所引起的膜电位倒转的作用,有利于静息电位的恢复,在动作电位发生后的恢复期间,钠泵活动增强,将内流的Na+的排出,同时将透出膜外的K+重新移入膜内,恢复了原先的离子浓度梯度,重建膜的静息电位。

膜电位变化曲线分析

膜电位变化曲线分析 1、(09年上海28)神经电位得测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域.用记录仪记录A、B两电极之间得电位差,结果如右侧曲线图。若将记录仪得A、B两电极均置于膜外,其它实验条件不变,则测量结果就是 答案就是C,曲线一开始就是向下变化,中间显示两侧电位差为0得时期较长. 先需所给得条件“用记录仪记录A、B两电极之间得电位差,结果如右侧曲线图”得出记录仪记录A、B两电极之间得电位差就是A点得膜内电位与B点得膜外电位得差值(A点得膜内电位减去B点得膜外电位),可知若将记录仪得A、B两电极均置于膜外,一开始A、B两处都就是静息电位,膜外都就是正电位,所以A、B两处得电位差为0,知道答案在C与D中选.又因为若将记录仪得A、B两电极均置于膜外,记录仪记录得就就是A、B两处得膜外电位得差值,动物电位先传到A点,所以当A点得膜外先变成负电位,A、B两处得膜外电位得差值为负值,可知只有C符合。?做过这个上海题后,可做如下总结:当记录仪记录两处得膜外电位得差时,所得出得曲线除了开始与结束就是0电位外,中间也要经历0电位. ?2、(2010年海南9)将记录仪(R)得两个电极置于某一条结构与功能完好得神经表面,如右图,给该神经一个适宜得刺激使其产生兴奋,可在R上记录到电位得变化.能正确反映从刺激开始到兴奋完成这段过程中电位变化得曲线就是答案就是D,曲线一开始就是向上变化,中间显示两侧电位差为0得时期很短。 若细心观察这两年高考题得答案就会发现,同样就是刺激左侧,然后记录右侧两处得膜外电位变化, 与上海题相似之处就是都就是刺激两处得左侧,再记录两处得膜外电位,但不同得就是,做上海题时能从已给得曲线图推测所测得值就是左侧电位与右侧电位得差值,解题时可据曲线就是应先向下还就是应先向上,初定就是哪几个选项正确。海南题没有给出两侧电位得变化曲线,推测不出所测得值就是左侧电位与右侧电位得差值还就是右侧电位与左侧电位得差

膜电位变化曲线分析

膜电位变化曲线分析 1、(09年上海28)神经电位的测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域。用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图。若将记录仪的A、B两电极均置于膜外,其它实验条件不变,则测量结果就是 答案就是C,曲线一开始就是向下变化,中间显示两侧电位差为0的时期较长。 先需所给的条件“用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图”得出记录仪记录A、B两电极之间的电位差就是A点的膜内电位与B点的膜外电位的差值(A点的膜内电位减去B点的膜外电位),可知若将记录仪的A、B两电极均置于膜外,一开始A、B两处都就是静息电位,膜外都就是正电位,所以A、B两处的电位差为0,知道答案在C与D中选。又因为若将记录仪的A、B两电极均置于膜外,记录仪记录的就就是A、B两处的膜外电位的差值,动物电位先传到A点,所以当A点的膜外先变成负电位,A、B两处的膜外电位的差值为负值,可知只有C符合。 做过这个上海题后,可做如下总结:当记录仪记录两处的膜外电位的差时,所得出的曲线除了开始与结束就是0电位外,中间也要经历0电位。 2、(2010年海南9)将记录仪(R)的两个电极置于某一条结构与功能完好的神经表面,如右图,给该神经一个适宜的刺激使其产生兴奋,可在R上记录到电位的变化。能正确反映从刺激开始到兴奋完成这段过程中电位变化的曲线就是答案就是D,曲线一开始就是向上变化,中间显示两侧电位差为0的时期很短。 若细心观察这两年高考题的答案就会发现,同样就是刺激左侧,然后记录右侧两处的膜外电位变化, 与上海题相似之处就是都就是刺激两处的左侧,再记录两处的膜外电位,但不同的就是,做上海题时能从已给的曲线图推测所测的值就是左侧电位与右侧电位的差值,解题时可据曲线

1 心室肌细胞跨膜电位及其形成机制X

第二节心脏的电生理学及生理特性 Part 1 心室肌细胞跨膜电位及其形成机制 掌握内容工作细胞静息电位产生原理及主要钾离子通道类型和特点。心室肌细胞动作电位的波形特点及0、1、2、3、4期的分期。参与心室肌细胞动作电位各期形成的离子电流、离子通道种类(INa、Ito、ICa-L、IK1 、IK)。心室肌细胞动电位发生后细胞内外离子恢复的方式,钠泵抑制剂增强心肌收缩的机制。 熟悉内容心室肌细胞动作电位各期形成的各离子通道开闭的条件及主要通道的阻断剂。了解内容工作细胞和自律细胞的生理特点差异及主要代表细胞。心房肌细胞无明显2期的原理。 (一)选择题 【A1型题】单项选择题,每题有A、B、C、D、E五个备选答案,请从中选出一个最佳答案。 1.在心室肌细胞动作电位,接近于钠平衡电位的是 D A. 最大复极电位 B. 平台期时的膜电位 C. 阈电位 D. 动作电位0期去极化结束时的膜电位 E. 复极化结束时的膜电位 2. 心室肌细胞动作电位平台期的离子跨膜流动是 D A. Na+内流,Cl-外流 B. Na+内流,K+外流 C. Na+内流,Cl-内流 D. Ca2+内流,K+外流 E. K+内流,Ca2+外流 3.关于Na+泵生理作用的描述,不正确的是 A A. Na+泵活动使膜内外Na+、K+呈均匀分布 B. 将Na+移出膜外,将K+移入膜内 C. 建立势能储备,为某些营养物质吸收创造条件 D. 细胞外高Na+可维持细胞内外正常渗透压 E. 细胞内高K+保证许多细胞代谢反应进行 4. 下列关于动作电位的描述,正确的是 D A. 刺激强度小于阈值时,出现低幅度动作电位 B. 刺激强度达到阈值后,再增加刺激强度能使动作电位幅度增大 C. 动作电位一经产生,便可沿细胞膜作电紧张式扩布

膜电位变化曲线分析

膜电位变化曲线分析 1、(09年上海28)神经电位得测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域。用记录仪记录A、B两电极之间得电位差,结果如右侧曲线图。若将记录仪得A、B两电极均置于膜外,其它实验条件不变,则测量结果就是 答案就是C,曲线一开始就是向下变化,中间显示两侧电位差为0得时期较长。 先需所给得条件“用记录仪记录A、B两电极之间得电位差,结果如右侧曲线图”得出记录仪记录A、B两电极之间得电位差就是A点得膜内电位与B点得膜外电位得差值(A点得膜内电位减去B点得膜外电位),可知若将记录仪得A、B两电极均置于膜外,一开始A、B两处都就是静息电位,膜外都就是正电位,所以A、B两处得电位差为0,知道答案在C与D中选。又因为若将记录仪得A、B两电极均置于膜外,记录仪记录得就就是A、B两处得膜外电位得差值,动物电位先传到A点,所以当A点得膜外先变成负电位,A、B两处得膜外电位得差值为负值,可知只有C符合。 做过这个上海题后,可做如下总结:当记录仪记录两处得膜外电位得差时,所得出得曲线除了开始与结束就是0电位外,中间也要经历0电位。 2、(2010年海南9)将记录仪(R)得两个电极置于某一条结构与功能完好得神经表面,如右图,给该神经一个适宜得刺激使其产生兴奋,可在R上记录到电位得变化。能正确反映从刺激开始到兴奋完成这段过程中电位变化得曲线就是答案就是D,曲线一开始就是向上变化,中间显示两侧电位差为0得时期很短。 若细心观察这两年高考题得答案就会发现,同样就是刺激左侧,然后记录右侧两处得膜外电位变化, 与上海题相似之处就是都就是刺激两处得左侧,再记录两处得膜外电位,但不同得就是,做上海题时能从已给得曲线图推测所测得值就是左侧电位与右侧电位得差值,解题时可据曲线

膜电位变化曲线分析资料报告

膜电位变化曲线分析 1、(09年28)神经电位的测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域。用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图。若将记录仪的A、B两电极均置于膜外,其它实验条件不变,则测量结果是 答案是C,曲线一开始是向下变化,中间显示两侧电位差为0的时期较长。 先需所给的条件“用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图”得出记录仪记录A、B两电极之间的电位差是A点的膜电位和B点的膜外电位的差值(A点的膜电位减去B点的膜外电位),可知若将记录仪的A、B两电极均置于膜外,一开始A、B两处都是静息电位,膜外都是正电位,所以A、B两处的电位差为0,知道答案在C和D中选。又因为若将记录仪的A、B两电极均置于膜外,记录仪记录的就是A、B两处的膜外电位的差值,动物电位先传到A点,所以当A点的膜外先变成负电位,A、B两处的膜外电位的差值为负值,可知只有C符合。 做过这个题后,可做如下总结:当记录仪记录两处的膜外电位的差时,所得出的曲线除了开始和结束是0电位外,中间也要经历0电位。 2、(2010年9)将记录仪(R)的两个电极置于某一条结构和功能完好的神经表面,如右图,给该神经一个适宜的刺激使其产生兴奋,可在R上记录到电位的变化。能正确反映从刺激开始到兴奋完成这段过程中电位变化的曲线是答案是D,曲线一开始是向上变化,中间显示两侧电位差为0的时期很短。 若细心观察这两年高考题的答案就会发现,同样是刺激左侧,然后记录右侧两处的膜外电位变化, 和题相似之处是都是刺激两处的左侧,再记录两处的膜外电位,但不同的是,做题时能从已给的曲线图推测所测的值是左侧电位和右侧电位的差值,解题时可据曲线是应先向下还

膜电位测量指针偏转方向与电流流入方向问题分析

膜电位测量指针偏转方向与电流流入方向问题分析用灵敏电流计可以检测膜电位及其变化,当检测静息电位和动作电位时,都会有灵敏电流计指针的偏转;当检测兴奋在神经纤维上的传导和两神经元之间的传递时,灵敏电流计的指针不一定偏转或偏转次数不同;也可以用于探究兴奋在神经纤维上传导的双向性和在神经元之间传递的单向性,以及利用兴奋传导知识分析灵敏电流计指针偏转和电流流入方向问题。 例 1 如下图所示,将连接灵敏电压表的导线两端置于神经纤维的外表面或内部(已知表的指针向电流流入表内的接线柱一侧偏转),显示神经纤维兴奋部位膜电位的是() 例2神经细胞在静息时具有静息电位,受到适宜刺激时可迅速产生能传导的动作电位,这两种电位可通过仪器测量。A、B、C、D均为测量神经纤维静息电位示意图,正确的是() 例3下图1是测量神经纤维膜内外电位的装置,图2是测得的膜电位变化。请回答:

(1)图1装置A测得的电位相当于图2中的点的电位,该电位称为电位。装置B测得的电位相当于图2中的点的电位,该电位称为 电位。 (2)当神经受到适当刺激后,在兴奋部位,膜对离子的性发生变化,离子大量流向膜,引起电位逐步变化,此时相当于图2中的段。 上面三道题都涉及电流方向引起的指针偏转问题,但试题1和2中指针偏转方向与电流流入方向正好相同,试题3中指针的偏转方向与电流流入方向正好相反。好多学生觉得有疑问,甚至认为是不是题目有错误,其实这些题目都没有问题。 电流表中指针的偏转方向不仅与电流的流入方向有关,还与电流表正负极的连接方式有关。同样是测神经纤维的静息电位或者动作电位,电流表的正负极的连接方式不同,指针偏转方向就会不同。对于常规的电流表来说,电流从正极流入,指针会向右偏转;电流从负极流入,指针会向左偏转。 上述三道高考题中,电流表的指针偏转方向的不同,是因为它们的正负极的连接方式不同,因而并不矛盾。试题3的图1已经绘出了电流表正负极的连接方式是正极连接膜内,负极连接膜外,A图膜电位为外正内负(静息电位),电流从负极流入表内,故指针向左偏转;B图膜电位为外负内正(动作电位),电流从正极流入表内,故指针向右偏转。 试题1和2图中并没有表示出电流表正负极的连接方式,按照浙科版生物教材和大学生理学教材,接线柱情况正好相反,所以电流的流向和偏向相同。 题1和2只给出刻度盘面,题3给出整个电流计(包括刻度盘面),是二种不同情景的題。 在分析电流表的指针偏转问题时,一定要注意电流的流入方向和电流表的正负极连接方式,并按照常规的电流表连接方式判断即可:对于常规的电流表

相关文档
最新文档