注汽锅炉汽水分离器的安装使用汇总

注汽锅炉汽水分离器的安装使用汇总
注汽锅炉汽水分离器的安装使用汇总

FLQ20-18型

球形汽水分离器

安装使用说明书

中国石油天然气第八建设有限公司

2 0 0 5 年9 月

1设备安装说明

1.1 一般规定

1.1.1设备安装必须按照《蒸汽锅炉安全技术监察规程》和DL/T5047-95《电力建设施工验收技术规范》中的有关规定进行,且应符合制造厂的图纸和技术文件要求。

1.1.2设备安装前应经建设单位(业主)组织“监造”和“安检”合格,如发现制造缺陷应提交业主与制造厂厂家处理及鉴证,由于制造缺陷致使安装质量达不到规范要求时,应由业主和制造单位代表鉴证。

1.1.3凡属设备监察范围内的零部件,必须取得制造厂的设备技术文件,证明所用材料和制造质量符合《蒸规》的规定后,方准施工。

1.1.4安装设备和材料均应有产品合格证书,按规范规定应进行检验鉴定,经现场检验合格后,方准使用。

1.1.5现场自行加工的成品或半成品和自行生产配制的材料也应按有关规定进行检查,符合要求后,方准使用。

1.1.6设备安装过程中,应及时进行检查验收,上一工序未经检查验收合格,不得进行下一工序施工。隐蔽工程隐蔽前必须经检查验收合格。

1.1.7施工中必须经常保持现场整洁。设备安装结束后,必须彻底检查和清扫,内部不得有杂物存留。

1.1.8设备安装结束后,应有完整的施工技术记录,并应符合设计、设备技术文件和有关规范的规定。

1.2 管道的安装

1.2.1管子组合前或组合件安装前,均应将管道内部清理干净,管内不得遗留任何杂物。

1.2.2管子对接焊缝位置应符合下列规定:

a.焊缝位置距离弯管的弯曲起点不得小于管子外径或不小于100mm。

b.管子两个对接焊缝间的距离不宜小于管子外径且不小于150mm。

c.支吊架管部位置不得与管子对接焊缝重合,焊缝距离支吊架边缘不得小于50mm。

d.管子接口应避开疏、放水及仪表管等的开孔位置。距开孔边缘,不应小于50mm,且不应

小于孔径。

1.2.3管道上的两个成型件相互焊接时应加接短管。

1.2.4管道连接时,不得用强力对口,管子与设备的连接应在设备安装定位紧好地脚螺栓后自然地进行。

1.2.5管子的坡口形式和尺寸应按相应的设计图纸确定。当无图纸时应按DL5007(焊接篇)的规定加工。

1.2.6管子或管件的对口质量要求,应符合DL5007(焊接篇)的规定。

1.2.7管子或管件的坡口及内、外壁10~15mm范围内的油漆、垢、锈等,在对口前应清除干净,直至显示金属光泽。

1.2.8管子对口时一般应平直,焊接角变形在距离接口中心200mm处测量。应为:

当Dn <100mm时, a≯2mm

当Dn≥100mm时, a≯3mm

1.2.9管子支吊架的安装宜与管道的安装工作同步进行。

1.2.10 在管线上因安装仪表插座,疏水管座等需开孔、且孔径小于30mm时,不得用气割开孔。

1.2.11 支吊架间距参考值如下:

管子外径mm 间距 m

φ25 1.1~1.5

φ32 1.3~1.6

φ57 1.8~2.5

φ76 2.2~2.8

φ89 2.4~3.7

1.2.12管道安装的允许偏差值如下:

标高 <±15

水平管道弯曲度 DN≤100时 1/1000且≤20mm

DN >100时 1.5/1000且≤20mm

立管铅垂度≤2/1000 且≤15mm

交叉管间距偏差 <±10mm

1.2.13 阀门安装前,除复核产品合格以外还应按设计要求核对型号并按介质流向确定其安装方向。

1.2.14 阀门安装前应清理干净,保持关闭状态。安装和搬运阀门时,不得以手轮作为起吊点,且不得随意转动手轮。

1.2.15 所有阀门应连接自然,不得强力对接或承受外加重力载荷。法兰周围紧力应均匀,以防止由于附加应力而损坏阀门。

1.2.16 阀门安装,手轮不宜朝下,且便于操作及检修。

1.2.17安装阀门与法兰的连接螺栓时,螺栓应露出螺母2~3个螺距,螺母宜位于法兰的同一侧。

1.2.18 管道与其它管件的环焊缝、射线或超声波探伤的数量规定如下:

a.当外径大于159mm时,每条焊缝应进行100%探伤,II级合格。

b.当外径小于或等于159mm时,安装工地应各至少抽查接头数的10%。

1.2.19 受压元件的焊缝附近应打上低应力的焊工代号钢印。

1.3热力设备及管道保温

1.3.1需要保温的设备和管道应安装完毕,经焊接检验和严密性试验合格。

1.3.2设备和管道表面上的灰尘、油垢、铁锈等杂物需清除干净。

1.3.3设备的保温,采用δ100mm厚的硅酸铝耐火纤维毯外层为薄铁板作为保护层。

1.3.4管道保温按油田注汽管线保温施工规范执行。

2.设备使用说明

2.1投运前的准备

2.1.1设备试运前,必须完成各系统的分部试运和试验工作。(包括水压试验、安全阀整定、热工测量系统、控制调节系统、取样及冷却系统、余热利用系统等)。

2.1.2设备调试前,与之有关的土建安装应基本结束。

2.1.3设备第一次启动前,应进行一次工作压力的严密性水压试验。水压试验后利用其水压(不低于50%工作压力)冲洗取样系统、排污系统和仪表管路,以保证其畅通;

2.1.4设备启动升压前,水位表高低水位标志应清晰,位置正确,照明良好,控制室内能可靠监视设备水位;热工仪表校验完毕,能投入使用,附属零配件及装置齐全。

2.2设备的投运

2.2.1设备第一次升压应缓慢平稳,升温速度一般控制在50 o C/min之内, 升压过程中应检查各部分的膨胀情况及各部件的震动情况。

2.2.2设备投运时,阀门开启步骤如下:(见流程图)

先缓慢开启阀门1,再缓慢开启阀门2(4个依此开启),接着再缓慢开启阀门3、阀门

2.3.设备的停运与保养

缓慢开启阀门5、12,关闭阀门1、3、4、10、11, 再缓慢开启阀门17进行排污。如果设备停运一周左右,必须将污水排掉,以免沉淀结垢堵塞管路。如果设备长期不用,必须用除氧水中充满设备,并关闭所有进出口阀门,以防止设备内表腐蚀。

2.4.蒸汽干度的测量

蒸汽干度的测量参照GB10180-2003《工业锅炉热工试验规范》附录B的有关规定执行。

由于饱和蒸汽随着压力的升高其性质逐渐接近于水,在高压时饱和蒸汽具有很强的溶盐能力且具有其选择性,因此,利用这一特性测量饱和蒸汽和炉水的钠离子含量就能在工作压力范围内比较精确地计算出蒸汽的干度。其原理是:当炉水中含有一定量钠离子时,蒸汽带出的炉水量越多,蒸汽中的钠离子含量也越多。因此,通过测量蒸汽及炉水钠离子含量按下式即可求出蒸汽干度。

X=100 –(Na+

q /Na+

ls

)×100 %

式中:Na+

q 和Na+

ls

分别为蒸汽冷凝水和炉水的钠离子含量(mg/kg)。

蒸汽和锅水样的采集

为使蒸汽取样管取出的蒸汽含水量与蒸汽引出管中的含水量一致,蒸汽取样管中的速度应和蒸汽引出管中的速度相等,等速取样时蒸汽试样流量可按下式决定:

D qi = (d

qi

2/d2)* D

sc

式中:D

qi

蒸汽试样流量,kg/h

d

qi

蒸汽取样管孔内径,mm

d蒸汽引出管孔内径,mm

D

sc

锅炉输出蒸汽量。kg/h

蒸汽和锅水样品,必须通过冷却器冷却到30~40℃。取样管道与设备必须用不影响分析的耐蚀材料制成。蒸汽和锅水样品应保持常流,以确保样品有充分的代表性。

盛取蒸汽凝结水样品必须是塑料制成的瓶,盛取锅水样品的容器也可以用硬质玻璃瓶。采样前应先将取样瓶彻底清洗干净,采样时再用水样冲洗三次以后,按计算的试样流量取样,取样后应迅速盖上瓶塞。

在试验期间应定期对锅水和蒸汽进行取样和测定。

钠度计法(P

Na

电极法)

当钠离子选择性电极——P

Na

电极与甘汞参比电极同时浸入水溶液后,即组成测量电池

对,其中P

Na

电极的电位随溶液中的钠离子的活度而变化。用一台高阻抗输入的毫伏计测量,

即可获得同水溶液中钠离子活度相对应电极电位,以的P

Na

表示。

P= - lg a

Na

+

P

Na

电极的电位与溶液中钠离子活度的关系,符合涅恩斯托公式:

RT

E=E0+2.3026 —— lg a

Na

+

nF

式中:E —— P

Na

电极所产生的电位,mv

E0 ——零电位,mv

R ——气体常数(8.314J/mol·k)

T ——绝对温度(T=273.15+t℃)

n ——离子价数

F ——法拉第常数(96.487c/ mol)

a

Na

+——离子的活度(g-ion/L)

离子的活度与浓度的关系为

a= r c

式中:a ——离子的活度(g-ion/L)

r ——离子的活度系数(一般小于或等于1)

c ——离子的浓度(g-ion/L)

根据测试的结果,如C

Na +<10-3M时,r≈1,此时活度和浓度相接近。当C

Na

+>10-3M时,

r≠1,因此,在测得的结果中要考虑活度系数的修正。

当测定溶液的C

Na

+<10-3M时,如被测溶液和定位溶液的温度为20℃则式B3简化为

C′

Na

+

0.058lg =ΔE(V)

C

Na

+

0.058(P

Na -P′

Na

)=ΔE(V)

或ΔE

P Na = P′

Na

+

0.058

式中: C′

Na

+定位溶液的钠离子浓度,g-ion/L

C

Na

+被测溶液的钠离子浓度,g-ion/L

仪器

整套DWS-51型钠度计,包括钠离子选择性电极,0.1Nkcl的甘汞电极。0~50℃酒精温度计或水银温度计。

试剂

a、氯化钠标准液

P

Na

2标准贮备液(10-2M Na+):精确称取1.169g,经250-350℃烘干1-2h的基准试剂(或优级纯)氯化钠(NaCl),溶于蒸馏水中,然后移入容量瓶并稀释至2L。

P

Na

4标准定位液(10-4M ),相当于2.3mg/L Na+

取P

Na

2贮备液,用高纯度蒸馏水精确稀释100倍,放置于塑料容器内保存。

b、碱化剂的配置:

试验室试剂二异丙胺母液[(CH

3)

2

CHNH CH(CH

3

2

],含量不少于98%,直接贮存于小塑

料瓶中。

测定方法

a、仪器开启半小时后,按仪器的说明书进行调整,温度补偿以及满刻度校正等手续。

b、以P

Na 4标准溶液定位,定位应重复1-2次,直至重复定位误差不超过P

Na

4.00±0.02。

c、水样测定:以PH调至10以上的高纯度蒸馏水反复冲洗电极和电极杯(塑料制),

使P

Na

电极读数在6.5以上(或冲洗到指示值接近被测值),再用已加二异丙胺的被测溶液(水样)电极冲洗数次,最后重新取被测溶液,调至PH至10以上浸入

电极,再次进行调整温度补偿等手续。然后揿下仪表读数开关,待仪表指针平衡

后读数。

2.5.球形汽水分离器的技术参数:

1).设计压力 18 MPa

2).工作压力 3-17.2 MPa

3).设计流量≤22.5 t/h

4).入口蒸汽干度 >70 %

5).出口蒸汽干度 >95 %

2.6.控制系统

该系统是由中央管理级(上位机)、现场控制级及通信网络构成的对所有流量计量所必需的工艺参数及分离器液位进行实时监控。现场控制级由触摸屏与控制模块等设备来完成;并且由通信电缆进行远距离传送给上位机;实现远程监控的目的。

对重要参数—分离器液位控制采取了双重控制;由现场控制级(触摸屏)和单元仪表来实现;两者可相互切换,保证在一方有故障时投入另一控制单元,实现液位控制的连续性。从而保证了蒸汽分离质量。

对所有运行参数,上位机除有实时监控外,可实现日报表打印和历史数据查询等功能。免除了由人工填写数据报表等操作,使运行数据更具有真实性和可靠性。

其监控参数有:

1)、分离器液位监控

2)、分离器出口蒸汽流量计量

3)、分离器出口压力、温度检测

4)、被分离的热水流量的计量

5)、被分离的热水温度检测

6)、分配器各出口蒸汽流量计量

2.6.1液位控制工作原理

汽水分离器

汽水分离器为压力容器结构碳钢或不锈钢设备,接口型式是法兰结构 DIN16/DIN25/DIN40;汽水分离器必须安装于水平管线上,排水口垂直向下,所有口径的汽水离器均带安装支架,以减小管道承载。为确保被分离的液体迅速排放,应在汽水分离器底部的排水口连接合适的一套疏水阀组合。本类阀门在管道中一般应当水平安装。 汽水分离器 - 工作原理 汽水分离器的工作原理:大量含水的蒸汽进入汽水分离器,并在其中以离心向下倾斜式运动;夹带的水份由于速度降低而被分离出来;被分离的液体流经疏水阀排出,干燥清洁的蒸汽从分离器出口排出。 汽水分离器 - 结构 汽水分离器的结构按压力容器规范设计,应用于去除蒸汽系统或压缩空气系统中所夹带液滴的场合 汽水分离器 - 种类 虽然分离器的设计多种多样,但它们的目的都是除去不能通过疏水阀排掉的悬浮在蒸汽中的水分。一般用于蒸汽系统中的分离器有三种形式。 挡板型 - 挡板或折板式分离器由很多挡板构成,流体在分离器内多次改变流动方向,由于悬浮的水滴有较大的质量和惯性,当遇到挡板流动方向改变时,干蒸汽可以绕过挡板继续向前,而水滴就会积聚在挡板上,汽水分离器有很大的通流面积,减少了水滴的动能,大部分都会凝聚,最后落到分离器的底部,通过疏水阀排出。 汽旋型 - 汽旋或离心型分离器使用了一连串肋片以便产生高速气旋,在分离器内高速旋转流动的蒸汽。 吸附型 - 吸附型分离器内部的蒸汽通道上有一个阻碍物,一般是一个金属网垫,悬浮的水滴遇到它后被吸附,水滴大到一定程度后,由于重力作用落到分离器底部。结合汽旋和吸附两种形式的分离器也很常见,由于结合了这两种方法整个分离效率会有所提高。 挡板式、汽旋式和吸附式分离器的主要不同是,挡板式分离器在较大的流速范围内可以保持很高的分离效率,而汽旋式和吸附式分离器的分离效率只有在蒸汽速度13m/s以下才能达到98%,否则效率会很低,蒸汽速度为25m/s时,其分离效率大概仅为50%。 研究表明,挡板式分离器在10m/s 到30m/s的流速之间分离效率可接近100%,所以说如果有较大的速度波动,挡板式分离器用于蒸汽系统更为合适,况且如果管道选小,湿蒸汽的速度可超过30m/s。解决这一问题的方法之一是增大汽水分离器的口径以及分离器上游管道口径,以减小进入汽水分离器的蒸汽流速。 汽水分离器 - 保温 如果汽水分离器未进行保温,由于表面散热将会增加蒸汽的含水量,损失很多的热量。假如蒸汽温度为150℃,环境温度为15℃,那末增加保温后每年将会节省8600MJ的热量(假定是辐射传热,一年工作8760h),增加保温后会节省相当多的能量,短时间内就能节省出加保温的成本。应使用专门保温套,由于分离器的形状特殊,尤其是法兰连接时,保温比较

蒸汽疏水阀与汽水分离器的选用依据

蒸汽疏水阀与汽水分离器的选用依据 超过对300家蒸汽用户的现场调研,大部分的工业应用中,加热介质使用的是饱和蒸汽。饱和蒸汽在沿着输送的过程中,不可避免有散热损失,部分蒸汽冷凝成小水滴。另外,在现代锅炉中,水容积普遍较小,当锅炉水处理不良或者超负荷运行,蒸汽快速脱离水汽表面时会带出部分的水滴。以上这些小水滴会被高速流动的蒸汽携带,弥散在整个蒸汽流中。 杭州瓦特节能在过往2年的蒸汽工程实践中发现:提高蒸汽的干度是蒸汽系统中最需要关注的问题之一,这是因为含有水分的湿蒸汽会带来许多问题,包括水锤、冲蚀、振动、噪音、换热效率低下、蒸汽耗量增加、维修量增加、产品质量问题等许多问题。 一般而言,选用合适的DT580蒸汽疏水阀可以及时把凝结水排除,但是如果蒸汽品质较差、或换热器对蒸汽要求较高的话,还是采用瓦特DF200系列汽水分离器。 疏水阀的主要作用是:将我们蒸气管道当中凝结的水、空气、二氧化碳等进行排出,并且阻止我们项目当中的蒸气泄漏。一般蒸汽管道的疏水,只要设置适当的集水装置,正确安装,就可以有效地排除冷凝水。 但是对于一些重要设备,比如关键换热器、昂贵换热器、灭菌器、重要设备、距离锅炉房较远的设备、间歇式加热设备的蒸汽入口,最好采用汽水分离器。 在蒸汽减压阀前,最好采用汽水分离器。应为蒸汽减压阀上的压力降比较大,流速也较高,任何水滴都会造成减压阀的寿命减短。所以最好采用汽水分离器。 汽水分离器的原理和它的名字一样,就是把气和水分开,进入汽水分离器的是气和水的混合物,进入汽水分离器后,水自动沉到汽水分离器的底部,由下面的冷凝水管流出,气由上面气管排出,根据汽水分离器用途不同,可将水或气循环利用。但是汽水分离器并没有排水功能,所以必须同时安装蒸汽疏水阀和热静力排空气阀来实现排水和排气的功能。 DF汽水分离器全范围内自动分离,没有振动、噪音、干度不稳定、压降大等缺陷节能、热效率高。蒸汽得以充分利用,与传统换热系统相比,热效率达100%,节约蒸汽20%以上。寿命长,免维护,寿命可长达十五年。无需人员值班,节约人工费。广泛适用于居民住宅、商务办公楼、宾馆、医院、洗浴中心的采暖和供热水系统以及电力、化工、橡胶、食品、制药等行业。 无论疏水阀还是汽水分离器,最重要的是满足及时有效排除蒸汽中的冷凝水的同时,避免蒸汽泄漏,以确保蒸汽系统能长期、安全、稳定地运行。

工艺流程+控制+方案

一、确定工艺流程:供料—— 圈圆——高频焊接——补涂——烘干 (1) 供料 ① 用机械手将一摞铁皮放置于托盘之上,由带有传感器发射器的机械托盘 带动铁皮上抬运输。 ② 如图1和图2.1所示,将铁皮升高至光电管处(光电管与吸盘为同一高度, 未画出),由带有吸盘的机械手吸起,放置Z 字形轨道进行圈圆。 ③ 如图2.1所示,若铁皮高度低于光电管时,反馈信号。由控制系统控制托 盘继续上移,光电管失去信号后1s ,停止上移。 ④ 如图2.2所示,此时红外测距传感器检测到托盘侧面的信号,反馈至控制系统。此时托盘下降至最低位置,由机械臂将新铁皮装入托盘。 (2) 圈圆 图2.1 托盘工作 图1. 工艺流程图 图2.2 上料

进入“Z”字形轨道将铁皮圈圆。由槽轮带动含吸铁石的轨道吸引前进,送至焊接处。 (3)高频焊接 ①用铜丝辅助对单张圈圆的铁皮进行电阻高 频焊接。 图3 电阻焊 ②如图3,由侧面推杆推桶底进入焊接位置由光电管检测,当进入被圈 圆的铁皮时反馈信号,进行焊接。等到焊接结束,由传送带传 动送至补涂处。 (4)补涂 ①焊接结束后由传送带运输,使用光电管控制,对桶外(内)壁进行补涂。 ②如图4,由光电管检测,当有桶时,反馈信号,喷头喷漆并由毛刷刷平。 图4 补涂 (5)烘干 使用链传动,18L方罐采用回转式的电磁烘干机进行烘干。送入下一阶段进行胀方。 二、控制要求 (1)伺服电机1工作,带动机械手(吸盘)移动到铁皮上方后下降至光电检测器1失去信号(此位置即吸盘与铁皮接触)。 (2)机械手上的气动装置打开,使吸盘吸附铁皮。 (3)机械手运动到滚轮下方(经过一个单张检测仪),气动装置关闭。 (4)机械手吸住铁皮运动至圈圆处,进入“Z”字形轨道

蒸汽管道汽水分离器原理和使用范围

蒸汽管道汽水分离器原理和使用范围 湿蒸汽就是指蒸汽中含有水份,是蒸汽系统中最主要关注的问题之一,会降低设备的生产效率和产品质量,也会导致设备损坏,虽然疏水可以去除大部分水分,但并不能处理掉悬浮在蒸汽中的液滴,为分离掉这些悬浮液滴,需要在蒸汽管道上安装汽水分离器。 实际上锅炉中产生的饱和蒸汽本来就不是很干燥的,虽然蒸汽干度会因锅炉不同有一定差别,大多数壳式锅炉产生的蒸汽干度都在95%和98%之间,而且锅炉汽水共腾发生后携带的水分就会更多。蒸汽中含水会带来产品问题,水是热的不良导体,水的出现会降低生产效率和产品质量。 和蒸汽一起高速流动的水滴将会侵蚀阀座和其他相关部件,出现抽丝,同时水滴也会增加腐蚀的可能性;由于水滴携带很多杂质,会增加管道和换热器表面附着水垢;引起控制阀和流量计波动;快速磨损或水锤将会使流量计和控制阀失效。虽然分离器的设计多种多样,但都能去除悬浮在蒸汽中的水分,而这些水分是不能仅通过蒸汽疏水就能除掉的。一般用于蒸汽系统中的分离器有三种形式。 挡板或折板式分离器由很多挡板构成,流体在分离器内多次改变流动方向,由于悬浮的水滴有较大的质量和惯性,当遇到挡板流动方向改变时,干蒸汽可以绕过挡板继续向前,而水滴就会积聚在挡板上,而且汽水分离器有很大的通流面积,减少了水滴的动能,大部分都会凝聚,最后落到分离器的底部,通过疏水阀排出。 汽旋型汽水分离器利用汽旋或离心型分离器使用了一连串肋片以便产生高速汽旋,在分离器内高速旋转流动的蒸汽把其中的水滴抛向分离器内壁和肋片,分离出的水分通过底部的疏水阀排出。 吸附型分离器内部的蒸汽通道上有一个阻碍物,一般是一个金属网垫,悬浮的水滴遇到它后被吸附,水滴大到一定程度后,由于重力作用落到分离器底部。结合汽旋和吸附两种形式的分离器也很常见,由于结合了这两种方法整个分离效率会有所提高。 分离器的分离效率可以用分离的水的重量占整个蒸汽中所含的水的重量的比例来度量,但在实际应用中很难确定分离器的准确效率,这由蒸汽的干度、流动速度和方式决定。但如果出管道侵蚀、抽丝和水锤现象就说明管道中有湿蒸汽。挡板式、汽旋式和吸附式分离器的主要不同是,挡板式分离器在较大的流速范围内可以保持很高的分离效率,而汽旋式和吸附式分离器的分离效率只有在13m/s的速度以下才能达到98%,否则效率会很低,蒸汽速度为25m/s时,其分离效率大概仅为50%。瓦特研究表明,挡板式分离器在10m/s到30m/s的流速之间分离效率可接近100%,所以说如果有较大的速度波动,挡板式分离器用于蒸汽系统更为合适,况且如果管道选小,湿蒸汽的速度可达30m/s. 虽然蒸汽干度较原来有所提高,但还是含有较多的水分。由于分离器内部的通流面积很大,蒸汽通过分离器时的速度下降,所以压降很低,比通过等效长度的同口径管道的压降还低。与此对照,由于必须维持一定的流速以产生汽旋,因此通过汽旋式分离器的压降就有些高了。 在非关键应用场合,板式分离器一般根据管道口选型,但也需要检查所选择的口径是否能保证最大的分离效率,压降是否能接受。在关键应用场合,应根具工作压力和流量来选择分离器,这样可以得到合适的压降和分离效率。而选择汽旋式分离器就比较复杂了,既要保证流动速动,还要维持较高的分离效率,同时限制压降在可接受的范围内。 为保证有效去除分离后的冷凝水,避免蒸汽损失,应在分离器的冷凝水出口安装疏水阀。最合适的疏水阀就是浮球式疏水阀,可快速排除冷凝水。有的分离器有内置的疏水装置。大多数垂直安装的分离器顶部有一个排放口,可用于排除空气,利于起机时蒸汽空间内冷凝水的排除。 如果汽水分离器未进行保温,由于表面散热将会增加蒸汽的含水量,损失很多的热量。假如蒸汽温度为150°C,环境温度为15°C,那末增加保温后每年将会节省8600MJ的热量(假定是辐射传热,一年工作8760小时),增加保温后会节省相当多的能量,短时间内就能节省出加保温的成本。应使用专门保温套,由于分离器的形状特殊,尤其是法兰连接时,保温比较困难,使保温效果受到了限制。即使最好的保温也不可能完全消除热量损失,一般保温效率为90%,使用专门为特殊的分离器设计的保温套非常重要,否则保温效率将下降,保温良好的分离器也会减少人被烫伤的危险。

催化工艺流程简述

工艺流程简述 1、反应-再生部分 原料油由装置外原料油储罐进入本装置原料油罐(V2201),经原料油泵(P2201/A、B)升压与轻柴油(E2211/A、B)、循环油浆(E2207)换热,换热后温度至200℃左右,与回炼油混合后分四路经原料油雾化喷嘴进入提升管反应器(R2101A),回炼油浆经原料油喷嘴上方单独的—组喷嘴进入提升管反应器,在此与高温再生催化剂接触并迅速升温、汽化,催化剂沿提升管向上流动的同时,原料不断进行反应,生成汽油、轻柴油、液化气、干气、中段油、回炼油、油浆等气相产物,同时生成的焦炭覆盖在催化剂表面,使其裂化活性、选择性逐步降低,成为待生催化剂,反应油气与待生催化剂经提升管反应器出口粗旋迅速分离。进入沉降器(R2101)之后,夹带有少量催化剂的油气经单级旋风分离器分离催化剂后,离开沉降器进入分馏塔(T2201)。 为促进氢转移等二次反应和减少热裂化反应,降低干气、焦炭产率,提高轻质油品收率,在提升管中上部(第一反应区出口)设置有常压直馏汽油、自产粗汽油或除氧水作为反应终止剂的注入点,以增加操作灵活性和弹性。 积炭的待生催化剂自粗旋料腿及沉降器单级旋风分离器料腿进入汽提段,在此与过热蒸汽逆流接触,以置换催化剂所携带的油气,汽提后的催化剂经待生立管、待生塞阀、待生立管套筒进入再生器(R2102)的密相床,在690℃的再生温度、富氧、CO助燃剂存在的条件下进行逆流完全再生,催化剂活性得到恢复后,经再生立、斜管及再生滑阀进入提升管反应器底部,在予提升蒸汽(干气)的提升下,完成催化剂加速、分散过程,然后与雾化原料接触循环使用。

再生过程的过剩热量由内取热器取走恒定热量后,仍然过剩的热量由外取热器(R2103)取走。再生器的部分催化剂由外取热入口管进入外取热器壳程,在流化风的作用下,呈密相向下流动在流经翅片管束间降温冷却,冷却后的催化剂经外取热器返回管由提升风提升返回再生器密相床层中部,外取热器流化风、提升风由增压机(B2103/A、B)提供。 再生器烧焦所需的主风由主风机提供,主风自大气进入主风机(B2101),升压后经主风管道、辅助燃烧室(F2101)及主风分布管进入再生器。 再生烟气经四组二级旋风分离器分离催化剂后,经三旋(CY2104)分两支,一支进烟机回收系统,进入烟气轮机(BE2101)膨胀作功以驱动主风机(B2101);另一支经双动滑阀调节压力后与烟机出口烟气合并,进入余热锅炉回收烟气的热能,使烟气温度降至180℃左右,最后经烟囱排入大气。当烟机停运时,主风由备用主风机(B2102)提供,此时再生烟气经三级旋风分离器分离催化剂后由双动滑阀及降压孔板(PRO2101)降压后进入余热锅炉。 开工用的催化剂由冷催化剂罐(V2101)或热催化剂罐(V2102)用非净化压缩空气输送至再生器,正常补充催化剂可由催化剂小型加料线输送至再生器。CO助燃剂由助燃剂加料斗(V2110)、助燃剂罐(V2111)用非净化压缩空气经小型加料管线输送至再生器。 生产所用的催化剂运进装置,通过催化剂加料斗(V2104)送至冷催化剂罐(V2101),正常由小型加料线向再生器补充新鲜催化剂。停工时由大型卸料线卸出催化剂至热催化罐。三级旋风分离器回收的催化剂,由三旋回收催化剂储罐(V2112)用非净化压缩空气间断送至废催化剂罐(V2103)。

厨房油水分离器内部结构完美呈现

厨房油水分离器内部结构完美呈现 厨房内产生的厨余垃圾,常常就把下水道堵塞了,堵塞了又得请人来清理,清理后没多长时间还是堵,堵了还得请人来清理.......这就是个死循环呀,一个过不去的梗。要我说,不用这么麻烦了,科技发展的年代,这种方式应该早被淘汰了,因为专注厨房污水处理的厨房油水分离器已经横空出世了! 厨房油水分离器有效的治理了餐饮店面的污水排放问题,分离精度可达98%以上,不用电,无动力,省费用。安装维护简单方便。实现了油水的完全达标排放。目前来说,厨房油水分离器已经被广泛的应用推广,使用范围非常大,但还需要对设备认知的更透彻才能做好物尽其用! 厨房油水分离器内部构造: 1、出水口:采用外丝出水口,安装更方便; 2、提渣篮:带提手设计,提取更方便,有效防止下水道堵塞; 3、进水口:磨具冲孔,更圆滑,单个进水口,适合单个水池或单个下水管; 4、上盖提手:设有上盖提手,方便提拉; 5.排油口:油水分离之后,定期打开排油口的阀门来排油。 时至今日,随着环保市场竞争力的增大,以及客户需求的不断提高,市场上厨房油水分离器也正呈现多元化趋势,形状多种多样,充分满足客户不同需求,安装类型也呈多样式,安装类型有: 1.地埋式安装:

有地下埋设空间时,建议选用安装地下埋设型。具体位置上,尽量设在排水支管始端。据悉,这样可以不占使用空间,同时不影响行走和运输。 2.平置型安装 当地下没有埋设空间,而有地面放置部位时建议选用该种安装方式。具体的施工位置,可以选在排水支管之前,与洗碗池,灶台或水台直排连接。 无论何时何地,厨房油水分离器依然是最受人们青睐环保设备,给我们的食品安全提供了一个保障,也永保了地球的健康美丽,使得我们的生存环境得到提高,让我们每天在好的环境中保持一种好心情。

油田注汽锅炉水处理装置经济运行技术研究

油田注汽锅炉水处理装置经济运行技术研究 顾 嵘,杨 彬,郝 军,赵红岩 (新疆油田分公司重油公司,新疆克拉玛依) 摘 要:简要介绍了油田注汽锅炉水处理装置运行现状、存在问题以及解决方法,通过对软化装置和除氧装置工艺进行改造,合理调控运行参数,引进应用了硬度在线监测装置等手段,有效地降低了水处理装置运行成本。 关键词:钠离子交换剂;交换软化;真空脱氧;化学除氧 油田注汽锅炉是随着重油热力开采而迅速发展起来的一种新型工业锅炉,是一种高压直流锅炉。直流锅炉对给水质量要求较高,为使锅炉给水质量达标,保证锅炉安全经济运行,油田注汽锅炉配有专用水处理装置,来进行锅炉给水处理。由于水处理装置部分工艺流程和控制系统方面存在的不足及缺陷,使得锅炉水处理装置在生产合格给水的同时,吨水处理成本偏高,影响了注汽锅炉安全经济运行。经过深入细致的调研和探索,终于成功的解决了油田注汽锅炉水处理装置存在的问题。1 软化装置运行技术研究1.1 软化再生工艺改造研究 当钠离子交换剂失效后,为了恢复其软化能力,必须用Na +再生剂进行再生,油田注汽锅炉水处理 采用的再生剂为食盐(NaCL)溶液。再生是离子交换器使用过程中十分重要的一个环节,再生效果的好坏直接影响软化器出水质量。现场运行中就出现再生时间长、再生剂流量小、再生后效果差、离子交换剂使用时间短、失效快的现象。经开罐检查发现以上情况均是二级交换器内的布盐器堵塞、脱落造成的。原设计二级罐内装有布盐器,布盐器易堵,再生进盐时压力较低(0.2~0.3M Pa ),盐水不能将堵塞物冲开,造成进盐量小,影响进盐、置换。造成一级罐树脂得不到充分还原,使用时间短。为此联合站技术人员通过研究决定改造原再生工艺流程。根据改造方案,对水处理再生工艺流程进行了改造,去除了二级罐内的布盐器,变更了一、二级罐之间盐路连接方式,如图1 所示。 图1 改造后工艺流程 1.2 交换器软化能力提高研究 1.2.1 交换器的周期制水量的调整 正常工作的离子交换器,不论进入去硬度交换器的生水硬度如何变化,其出水(软水)的残留硬度都不受影响。交换剂开始运行时,软水残留硬度较 高,此情况短时间就消失,这种现象是正常软化水量的。然后软水的残留硬度就很小,并保持平稳,直到快失效前残留硬度迅速增高,失效以后的曲线称为(尾部)。性能越好的交换剂,其尾部的失效曲线应越接近于垂直。若失效曲线很倾斜,则说明尾部交换能 11  2007年第5期 内蒙古石油化工 收稿日期:2006-11-12

生产工艺流程控制的规程

生产工艺流程控制的规程(草稿) 一、目的 为加强企业的生产工艺流程控制,全面提升产品的制作质量,降低生产成本,各相关部门和人员按照优化5M1E(注1)的原则进行生产活动,增强企业的竞争力,特制订本规程。 ——注1:5M1E分别是英文-人员、机器、材料、方法、测量和环境的单词首位字母。 二、使用范围 本集团下属各公司的应依据本规程来制订、执改进行、生产工艺流程、对其结果进行考核、奖惩,除另有规定外,均以本规程执行; 三、规程的内容: 1、工艺流程涉及的部门(体系化) 工艺流程涉及的部门有:各公司的技术部、生产部、质检部、和集团采购部。 2、管理责任(制度化) (1)各公司技术部责任 a,制定合理的工艺流程文件 各公司的技术部依据产品任务单,制定生产工艺流程的文件,工艺流程文件的主要是以下三种类: ——工艺过程卡片;

——工序卡片; ——操作说明书; 工艺流程的卡片和操作说明书中应包含:图纸(加工的工件图纸以及关键步骤和重要环节都有图纸说明)、加工工序、加工方法及对环境的要求、检验及方法、产品的包装、工时定额、材料和物耗定额、使用的设备和工装、加工工具、对特殊工件的吊装位置及方法、包装方法、加工的起始时间、责任者的签名等,总之应当是实际工作中涉及的工序和各个工序中要点(5M1E)都要简约地反映在流程中;——注2:工时定额和物耗定额:在实际中灵活应用和执行,对于首件和单件生产可以是定性管理;对于3-5件的小批量生产应当是首件完成后,对出其余件进行的半定量管理,就是给个范围值;对于成熟的大批量生产件应当是定量管理,就是应当给出固定的定额;——注3:可以有空项,按实际生产中需要的项目编写,应当简要全面部不应当有漏项;各个公司在制定工艺流程时,可以是表格式、卡片式、文字表述式,只要能在实际生产中,对生产的产品有以下作用即可--加工的指导、检验指导、记录完整(可以追溯产品的加工历史);b,根据生产出现的问题,可以用工艺流程附加单的形式进行补充及修改,必要时废除老工艺,重新制定新工艺; c,会同质检部门处理质量异常问题。 (2)各公司生产部责任

汽水分离器-Arimori Valve

汽水分离器

汽水分离器的简介 汽水分离器是用于工业含液系统中将气体和液体分离的设备。汽水分离器将蒸汽或压缩空气在流动中突然改变方向,将蒸汽或压缩空气中含有的水滴分离出来,减少蒸汽或压缩空气中的含水量。分离出的水滴集聚在分离器下面,通过另配的疏水阀排出。汽水分离器能保证用汽设备所用蒸汽或空中的干燥性,提高用汽设备的工作效率,延长设备的使用寿命。 汽水分离器的工作原理特点 原理:大量含水的蒸汽进入汽水分离器,并在其中以离心向下倾斜式运动。夹带的水份由于速度的降低而被分离出来。被分离出来的液体流入下部经疏水阀排出体外,干燥清洁的蒸汽从分离器出口排出。 汽水分离器为压力容器结构碳钢或不锈钢设备。对蒸汽中含有空气的情况,汽水分离器上部设计了排空气口。 汽水分离器的应用范围 1.压缩空气冷凝水分离回收; 2.蒸汽管线冷凝水分离 3.气液混合部位的进、出口分离; 4.真空系统中冷凝水分离排放; 5.水冷却塔后的冷凝水分离; 6.地热蒸汽分离器; 7.其他多种汽液分离应用。

汽水分离器的安装检测 安装汽水分离器必须安装于水平管线上,排水口垂直向下,所有口径的汽水分离器均带安装支架,可减小管道承载。为确保被分离的液体迅速排放,应在汽水分离器底部的排水口连接合适的一套疏水阀组合。 1.检查材料、压力和温度的最大值。如果产品的最大运行条件低于它所安装的系统,确保系统中有安全装置防止超压。 2.检查安装位置和流向是否正确。 3.从所有接口取下保护套。 4.分离器按需进行隔热保护。 5.安装 安装在水平管道上排水口垂直朝下。所有口径的分离器都配有安装支架减少管道承载,每个支架上有两个钻好的孔。为了保证分离器液体尽快排走,排液口必须要连接合适的排液阀或蒸汽疏水阀。推荐使用浮球式疏水阀。浮球式疏水阀有有水即排的特点。 对空气中含有空气的情况,空气聚集在分离器上部。这种情况下将合适的排空阀安装在排空气口。 6.调试 在安装或维修后保证系统以能完全运行。在报警或保护装置上进行测试。 7.运行 分离器用于聚集气体/蒸汽流中内含的小液滴并将之分离。相对较重的液滴在撞击内挡板后落入分离器排放接口由蒸汽疏水阀从系统中排除,如用于空气或气体分配系统,则使用排液阀排除。

芳烃工艺流程简述

工艺流程简述 1)总工艺流程 直馏石脑油和加氢裂化石脑油混合后在石脑油加氢装置(NHT Unit)通过加氢处理及汽提脱去硫、氮、砷、铅、铜、烯烃和水等杂质。在连续重整装置中把石脑油中的烷烃和环烷烃转化成芳烃,并副产大量的富氢气体。其中一部分产氢用于异构化、歧化和预加氢装置,其余部分则送到炼厂其它加氢装置。 连续重整装置的重整油经过脱戊烷塔脱去C5-馏分进入重整油分离塔。乙烯裂解汽油从边界来后先与重芳烃塔顶物流换热后进入重整油分离塔。塔顶C6/C7送到SED装置把C6/C7馏分中的芳烃和非芳烃分开。混合芳烃和歧化汽提塔底物混合送到苯-甲苯分馏装置的苯塔。苯塔顶产生高纯度的苯产品,塔底物流送到甲苯塔。甲苯塔顶生产C7芳烃,其中一部分C7芳烃与重芳烃塔塔顶物流混合送到歧化装置,其余部分作为汽油调组分送出装置。 甲苯塔底物料与重整油塔底物料、异构化产物混合送到二甲苯塔,二甲苯塔塔顶的混合二甲苯送到吸附分离装置,在这里PX作为产品被分离出来。含有EB、MX 和OX的吸附分离抽余液去异构化装置,PX达到新的平衡。异构化脱庚烷塔底物循环回二甲苯塔。二甲苯塔底的C9+送到重芳烃塔,重芳烃塔顶物料C9组分一部分送到歧化装置,其余部分作为汽油调和组分送出装置。重芳烃塔塔底物料作为燃料油供装置内使用。 2)直馏石脑油加氢装置 直馏石脑油进入原料缓冲罐(1510-D101),由预加氢进料泵(1510-P101A/B)泵送与预加氢循环压缩机(1510-K101A/B)来的循环氢混合后进入预加氢进料换热器(1510-E101A/B/C)和预加氢进料加热炉(1510-F101),加热后进入预加氢反应器(1510-R101)和脱氯反应器(1510-R102)。 已脱除硫、氮、氯的预加氢反应产物与硫化氢、氨及含氢气体一起通过与原料换热,再注入凝结水以溶解因冷却可能在下游设备形成的氨盐。再经预加氢产物空冷器(1510-A101),预加氢产物后冷器(1510-E102)冷却后进入预加氢产物分离罐(1510-D102)。预加氢产物分离罐顶含氢气体和补充氢混合经循环压缩机入口分液罐(1510-D103)进入预加氢循环压缩机(1510-K101A/B)循环使用。 预加氢产物分离罐(1510-D102)底液体通过液位控制进入预加氢汽提塔

油水分离器的基本原理介绍

油水分离器的基本原理介绍 基本工作原理: 为满足MARPOL73/78公约的要求,凡400总吨及以上的任何船舶应装设有油水分离装置(油水分离器),10000总吨及以上的任何船舶还应装有应装设经主管机关批准的滤油设备和当排出物的含油量超过15ppm时能发出报警并自动停止含油混合物排放的装置。机舱油水分离器主要由滤油设备、油分计(报警器和记录器组成)和自动停止装置组成,其工作原理如下。 1.滤油设备工作原理 滤油设备的主要功能就是将油分从含油污水中分离出来,其分离原理有重力分离法、聚结分离法、过滤法以及吸附法等。目前船用滤油设备绝大多数采用重力分离法,再加上聚结或过滤或吸附等组合方式, 以CYF-B型滤油设备为例,该系统采用重力分离与聚结分离相结合的方法,其工作原理如(图一)所示: 以上图片来源于(https://www.360docs.net/doc/817629159.html,)1—泄放阀;2—蒸汽冲洗喷嘴;3—安全阀;4—板式聚结器;5—清洁水排出口; 6—油污水进口;7—加热器;8—油位检测器;9—集油室A;10—手动排油阀;11—自动排油阀; 12—污油排出管;13—集油D;14—纤维聚结器;15—隔板;16—细滤器;17—泄放阀工作原理:油污水经进口6进入集油室A后,粗大油滴随即上浮进入集油室顶部,含有小颗粒的油污水向

下流动经过板式聚结器4进行粗分离,形成较大油滴上浮集中到集油室D,其余污水经过细滤器16,滤除机械杂质及部分石蜡胶体,剩余的细微油粒经过纤维聚结器的两级分离分离出来,最终上浮在集油室B和C 顶部,最后符合排放标准的水从排放口5排至舷外。当油位检测器8检测到集油室A和D里的污油达到一定位置时,启动排油阀11将污油泵至污油柜,集油室B和C产生的污油较少,采用人工方法将污油排出。 2.油分计的工作原理 油分计的功能是能连续记录油水分离器处理水中的油分浓度,并在处理水超过排放标准(>15ppm)时通过自动报警器报警,并将不合标准的处理水通过三通电磁阀的启闭自动泄放返回舱底。目前船上的油分计有:红外线、紫外线、激光和超声波等多种油分计,以YNY-1型油分计为例,其工作原理如(图二) 工作原理:测量时,靠定时器把运转周期控制在120秒,120秒时,试液泵及三通电磁阀启动,通过红外线分析仪比较标准液与萃取液的油分浓度,并通过放大器放大,通过电讯号控制。如果处理水超过排放标准(>15ppm),报警器报警,并启动电磁阀,把不符合标准的处理水泄放回舱底。同时记录器记录处理水中的油分浓度、日期、时间,并打印在记录纸上。 3.自动停止装置工作原理 常见的自动停止装置有两种,一种是采用气控或电控三通阀,当排放水样超过排放标准时,15ppm 报警器报警,同时自动打开旁通回流管路,切断舷外排放管路,将超标污水导回污油水柜;另一种是当排放水样超过排放标准时,15ppm报警器报警,同时打开旁通回流管路、关闭舷外排放管路的同时停止污水泵。

卫生级汽水分离器是档板式分离器是可拆卸清理内部及内部结

卫生级汽水分离器是档板式分离器是可拆卸清理内部及内部结构不留死角光洁度达到0.8pa用于分离蒸汽、压缩空气和气体系统中内含的液滴。配上绝热套可提高分离器的工作性能。最高分离效率(干燥度可达到 98 % )最低压降(约为千分之五);结构按容器规范设计。汽水分离器为可拆卸结构碳钢或不锈钢材质。对蒸汽中含有空气的情况,汽水分离器上部设计了排空气口。 工作原理 大量含水的蒸汽进入汽水分离器,并在其中以离心向下倾斜式运动。夹带的水份由于速度的降低而被分离出来。被分离出来的液体流入下部经疏水阀排出体外,干燥清洁的蒸汽从分离器出口排出。 产品广泛应用于水处理设备,化工设备,石化设备,石油设备,造纸设备,采矿设备,电力设备配套,液化气设备,食品设备,制药设备,给排水设备,市政阀门,机械设备阀门,电子工业阀门,城建阀门,工业管道阀门,通用零部件,工业设备,消防暖通,中央空调,过滤设备,环保设备等领域。欢迎选购订做!公称压力:PN0.5-16Mpa 工作温度:0-550℃ 公称通径:DN15-150mm 连接方式:法兰,螺纹,焊接,卡箍 材质:304,316,304L,316L,SS316 蒸汽疏水阀的基本作用是将蒸汽系统中的凝结水、空气和二氧化碳气体尽快排出;同时最大限度地自动防止蒸汽的泄露。疏水阀的品种很多,各有不同的性能。选用疏水阀时,首先应选其特性能满足蒸汽加热设备的最佳运行,然后才考虑其他客观条件,这样选择你所需要的疏水阀才是正确和有效的。 疏水阀的工作原理 蒸汽疏水阀安装在蒸汽加热设备与凝结水回水集管之间。开车时,桶在底部,阀门全开。凝结水进入疏水阀后流到桶底,充满阀体,全部浸没桶体,然后,凝结水通过全开阀门排至回水集管。蒸汽也从桶体底部进入疏水阀,占据桶体内的顶部,产生浮力。桶体慢慢升起,逐渐向阀座方向移动杠杆,直到完全关闭阀门。空气和二氧化碳气体通过桶体的排气小孔,聚集在疏水阀的顶部。从排气孔排出的蒸汽,都会因疏水阀的散热而凝结。当进来的凝结水开始充满桶体时桶体开始对杠杆产生一个拉力。随着凝结水位不断升高,产生的力不断增加,直到能够克服压差,打开阀门。疏水阀阀门开始打开,作用在阀瓣上的压差就会减小。桶体将迅速下降,使阀门全开。积聚在疏水阀顶部的不凝性气体先排出,然后凝结水排出。水流从桶体流出时带动污物一起流出疏水阀。凝结水排放的同时,蒸汽重新开始进入疏水阀,新的一个周期又开始的。

汽水分离器的安装使用

汽水分离器将蒸汽或压缩空气在流动中突然改变方向,将蒸汽或压缩空气中含有的水滴分离出来,减少蒸汽或压缩空气中的含水量。分离出的水滴集聚在分离器下面,通过另配的疏水阀排出。汽水分离器能保证用汽设备所用蒸汽或空中的干燥性,提高用汽设备的工作效率,延长设备的使用寿命。 1、安全信息 装置要正确安装,并要有资质的操作工按照操作指南进行调试和维护,才能使其安全运行。要正确使用工具和安全措施。在安装管道和设备时,要遵守安装和安全指南。 隔离: 安装维修时不关闭隔离阀将对系统的部件造成损害,对人体造成伤害,危险还包括:关闭了保护装置和和通气道或者报警系统。确保隔离阀关闭,避免系统的冲击。 压力: 维护修理前要考虑到管道中是否有介质,在对产品进行维修前确保压力介质已被隔离并且安全气道已通向大气,这通过安装排空阀便容易解决。即使压力表指示为零也不要认为系统以排空。 温度: 关闭隔离阀后要有一段时间使操作部位温度接近常温,避免烫伤。保护外套是必须的。 处置: 产品可再循环。处理得当不会引起生态问题。 2、产品信息 2.1简介 使用范围:本产品是挡板式分离器用于分离蒸汽、压缩空气及其它气体系统中内含的液滴,配上绝热套可提高分离器的工作性能。。 工作原理:大量含水的蒸汽进入汽水分离器,并在其中以离心向下倾斜式运动。夹带的水份由于速度的降低而被分离出来。被分离出来的液体流入下部经疏水阀排出体外,干燥清洁的蒸汽从分离器出口排出。 特点:最高分离效率(干燥度可达到98 % )最低压降(约为千分之五);结构按压力容器规范设计。汽水分离器为压力容器结构碳钢或不锈钢设备。对蒸汽中含有空气的情况,汽水分离器 注:AS7分离器按BS 5500 Category 3设计制造。法兰按:HG20594-97

餐饮厨房油水分离器的结构与特点

餐饮厨房油水分离器的结构与特点 隔油器一般是指餐饮油水分离器或者厨房油水分离器,就是用于分离、收集餐饮废水中的固体污物和油脂,处理后的废水排入城市下水管的一种专用设备,蒙克餐饮油水分离器是按照国家标准《建筑给排水设计规范》(GB50015-2003)中第4.8.2A条和行业标准《餐饮废水隔油器》(CJ/T 295-2015)规定的各项技术参数和要求设计的,从而大大提高了隔油器的除油效果。餐饮油水分离器可广泛用于宾馆、酒店、食堂、食品加工厂等含动植物油废水的处理,也适用于石油化工、船舶、加油站、机械加工制造、以及炼焦等含矿物油的工业废水处理,还可以与其他水处理装置配套使用。 蒙克油水分离器M7 餐饮油水分离器主要由固液分离仓、油水分离仓、污水提升仓、管路、控制系统等组成。固液分离仓由进水口、固液分离装置、细微颗粒存储区、排渣阀等组成;油水分离仓由储油仓、恒温电加热系统、搅拌系统、油窗视镜、排油口、排空阀等组成;污水提升仓由液位控制系统、排污泵和管路等组成。 餐饮油水分离器结构图

1. 手动餐饮油水分离器与半自动餐饮油水分离器的主要区别: 1)手动餐饮油水分离器的固液分离装置为提篮格栅固液分离结构 提篮格栅固液分离结构 2)半自动餐饮油水分离器的固液分离装置为旋转格栅或螺旋输送机。 螺旋输送机

自动旋转格栅机 2. 半自动餐饮油水分离器与全自动餐饮油水分离器的主要区别: 1)半自动餐饮油水分离器的油水分离仓排油为手动球阀人工排油。 2)全自动餐饮油水分离器的油水分离仓中设置时间控制的链式刮油装置。 链式刮油装置 (一)排渣 蒙克餐饮油水分离器采用独有的设计结构,由时间控制的旋转格栅机自动除渣。餐饮废水经过饮油水分离器的进口进入固液分离仓,到达旋转格栅的栅条上,液体及微小固体颗粒经过栅条缝隙进入固液分离仓下部,废水中的固体污物就停留在栅条上,旋转格栅由时间控制,一段时间后,旋转格栅开始旋转,把停留在栅条上的固体污物带走落入排渣槽中,由排渣口落入垃圾储存箱。 1. 蒙克餐饮油水分离器的结构优势:

注汽锅炉汽水分离器的安装使用.

FLQ20-18型 球形汽水分离器 安装使用说明书 中国石油天然气第八建设有限公司 2 0 0 5 年9 月

1设备安装说明 1.1 一般规定 1.1.1设备安装必须按照《蒸汽锅炉安全技术监察规程》和DL/T5047-95《电力建设施工验收技术规范》中的有关规定进行,且应符合制造厂的图纸和技术文件要求。 1.1.2设备安装前应经建设单位(业主)组织“监造”和“安检”合格,如发现制造缺陷应提交业主与制造厂厂家处理及鉴证,由于制造缺陷致使安装质量达不到规范要求时,应由业主和制造单位代表鉴证。 1.1.3凡属设备监察范围内的零部件,必须取得制造厂的设备技术文件,证明所用材料和制造质量符合《蒸规》的规定后,方准施工。 1.1.4安装设备和材料均应有产品合格证书,按规范规定应进行检验鉴定,经现场检验合格后,方准使用。 1.1.5现场自行加工的成品或半成品和自行生产配制的材料也应按有关规定进行检查,符合要求后,方准使用。 1.1.6设备安装过程中,应及时进行检查验收,上一工序未经检查验收合格,不得进行下一工序施工。隐蔽工程隐蔽前必须经检查验收合格。 1.1.7施工中必须经常保持现场整洁。设备安装结束后,必须彻底检查和清扫,内部不得有杂物存留。 1.1.8设备安装结束后,应有完整的施工技术记录,并应符合设计、设备技术文件和有关规范的规定。 1.2 管道的安装 1.2.1管子组合前或组合件安装前,均应将管道内部清理干净,管内不得遗留任何杂物。 1.2.2管子对接焊缝位置应符合下列规定: a.焊缝位置距离弯管的弯曲起点不得小于管子外径或不小于100mm。 b.管子两个对接焊缝间的距离不宜小于管子外径且不小于150mm。 c.支吊架管部位置不得与管子对接焊缝重合,焊缝距离支吊架边缘不得小于50mm。 d.管子接口应避开疏、放水及仪表管等的开孔位置。距开孔边缘,不应小于50mm,且不应 小于孔径。 1.2.3管道上的两个成型件相互焊接时应加接短管。

机械滑台工艺流程控制系统设计

电气与自动化工程学院实训评分表 课程名称: PLC控制技术实训 实训题目: 机械滑台工艺流程控制系统设计 班级:电气101 学号:160710118 姓名: 陆敬博 指导老师:许仙珍 2013年7 月 4 日

常熟理工学院电气与自动化工程学院 《PLC控制技术实训》 题目:机械滑台工艺流程控制系统设计 姓名: 陆敬博 学号: 160710118 班级:电气101 指导教师: 许仙珍 起止日期: 2013.6.24----2013.7.2

目录 1.设计任务书…………………………………………………………1 1.1设计任务 1.2设计目的及要求 1.3 设计内容及报告要求 2基础实训项目一: (2) 2.1I/O地址分配表 2.2程序 3基础实训项目二: (5) 3.1 I/O地址分配表 3.2程序 4.综合型自主实训项目 (10) 1.总体设计方案 1.1 方案的确定 1.2 设计方案 2.I/O地址分配表 2.1 I/O模块的地址分配 3.顺序功能图,梯形图及指令表 3.1顺序功能图 3.2 梯形图 3.3程序说明 4.程序的调试运行及其结果

4.1 手动控制的调试运行及结果 4.2单步控制的调试运行及结果 4.3 自动循环控制的调试运行及结果 5.个人小结......................................................296.参考文献 (30)

一.任务书 《PLC控制技术》实训任务书 题目:机械滑台工艺流程控制系统设计(三) 实训学生需要完成2个基础实训项目和1个综合型自主实训项目的训练。 一、基础实训项目一:霓虹灯的PLC控制系统的设计 一)实训目的 1、进一步巩固掌握PLC基本指令功能的及其运用方法; 2、根据实训设备,熟练掌握PLC的外围I/O设备接线方法 3、初步掌握PLC程序设计方法,养成良好的设计习惯,培养基本的设计能力; 二)实训设备: 三相交流电源模块30822001、直流电源模块30824001、PLC主机单元模块30864002、数字量输入模块30824003、霓虹灯显示模块18504003、个人计算机PC、PC/MPI编程电缆。 三)工艺控制要求: 按下启动按钮,灯A亮1秒,接着灯B,C,D,E,F,G,H,I亮1秒,之后灯J1,J2,K1,K2,L1,L2,M1,M2, N1,N2,O1,O2也被点亮。1秒后,灯J1,J2,K1,K2,L1,L2,M1,M2,N1,N2,O1,O2熄灭,再过1秒,灯B,C,D,E,F,G,H,I熄灭,同样再过1秒后,灯A熄灭。紧接着过1秒灯A再次被点亮,重复以上过程,循环往复。按下停止按钮后,所有灯都熄灭。 四)实训内容: 1、进行PLC的I/O地址分配,并画出霓虹灯的PLC控制系统的接线图。 2、设计由PLC 控制的霓虹灯梯形图程序。 3、输入自编程序,上机调试、运行直至符合动作要求。 二、基础实训项目二:模拟量采集与数据处理的综合应用 一) 实训目的 1、掌握PLC中模拟量输入、输出的基本工作原理。 2、掌握数据处理指令的运用方法。 3、掌握功能、功能块的应用,中断组织块OB35用法。 4、掌握DB块建立与数据访问方法。 二)实训设备: 三相交流电源模块30822001、直流电源模块30824001、PLC主机单元模块30864002、数字量输入模块30824003、模拟量输入模块、模拟量输出模块、个人计算机PC、PC/MPI 编程电缆。 三)实训项目原理与要求 1、用模拟量输入模块3081400模拟温度测量变送器,假设当温度是0℃时,对应电位器输出0V电压,假设当温度是100℃时,对应电位器输出电压10V电压。用PLC模拟量输入模块采集电位器电压,使用OB35实现采集温度数据,数据采集频率是1次/秒,进行标度变换,数据存储在共享数据块DB2相应

球形汽水分离器说明书

油田专用球形汽水分离器安装使用说明书 电话:0413--7720018 传真:0413--7720018 邮编:113006 地址:辽宁省抚顺市顺城区高山路114号 版本:2007年8月

目录 第一章汽水分离器的结构概况3 一、概述 (3) 二、球型汽水分离器的工作原理 (3) 三、设备型号及主要参数 (4) 四、结构说明 (4) 第二章汽水分离器的运行 5 一、运行条件 (5) 二、电源条件 (5) 三、安全保护 (6) 四、控制系统 (7) 五、余热回收与利用 (7) 第三章汽水分离器的安装8 一、资料验收 (8) 二、一般规定 (8) 三、安装前检查及要求 (9) 四、水压试验 (9) 第四章汽水分离器的操作规程10 一、启动运行前检查 (10) 二、设备投运 (11) 三、停运 (12) 第五章汽水分离器的调试及运行13 一、初次调试 (13) 二、主要阀件功能简述 (13) 1、蒸汽安全阀 (13) 2、排水调节阀(DREHMO Matic C 系列) (14) 3、SDC31表 (15) 三、主要仪器功能简述 (16) 第六章汽水分离器DCS系统18 一、DCS系统的操作界面 (18) 二、DCS系统的构成 (18) 三、DCS系统操作界面的主要功能 (19) 第七章工控系统24

第一章汽水分离器的结构概况 一、概述 随着我国稠油开采的不断深入,用常规锅炉(80%蒸汽干度)注蒸汽的方法已不能满足稠油开采新技术日益发展的需要。根据国外最新研究成果显示,稠油后期的高轮次开采采用“蒸汽辅助重力泄油(简称SAGD)”采油技术,要求注入的蒸汽干度必须大于95%以上效果才较好。而目前在用的注汽锅炉,由于受其水处理设备的限制,其最高蒸汽干度为80%,而实际运行时仅为70%左右,满足不了SAGD开发的需要。本公司研制的型球形汽水分离器其分离干度可达99%,超过国外同类产品的技术参数,较好的解决了这一技术难题。 二、球型汽水分离器的工作原理 由于两相流体的分离过程相当复杂,往往是靠几种分离作用的综合效应来实现的。旋风分离器就是综合了离心分离、重力分离及膜式分离作用来进行汽水分离的。由锅炉出口来的具有很大动能的汽水混合物沿切线方向引入旋风分离器的筒体,使其由直线运动转变为旋转运动,形成离心力(比重力大17.9~47.5倍),由于汽和水存在重度差,汽在旋风筒中螺旋上升,形成汽柱,而水则抛向筒壁并旋转下降,在筒内形成抛物面;还有少量水滴被汽流带入旋风筒中部的汽空间。这些水滴在随汽流螺旋上升的过程中,逐渐被推向壁面。当蒸汽通过旋

相关文档
最新文档