光学原理的力学类比

光学原理的力学类比
光学原理的力学类比

光学原理的力学类比

摘要:系统地类比了光学原理与力学原理,并从这种类比关系出发对波动力学的建立进行了讨论 关键词:力学原理;光学原理;类比

为了解决光在连续变化的非均匀媒质中从一点传播到另一点所遵循的普遍规律,1679年费马(Fermat )将此规律表述为:光线从一点P 传播到另一点Q 的实际路线上,光程取极值(可以是极小值、极大值、定值),即

?=?Q

P nds 0 (1) 或 0=??Q P u ds

(n=c/u) (2)

式(1)、(2) 即为几何光学中著名的费马原理的两种基本形式,式中△为全变分算符,n 为媒质折射率,L 为积分路径,ds 为路径线元,u 为光波速度,c 为真空中的光速.由费马原理能推出几何光学的全部定律。

为把力学包含在一个极值化的原理中,莫培丢(Maupertuis )于1744年首先提出,拉格朗日(Lagrange )于1760年严格论证并加以推广的适用于保守系统的力学原理——最小作用原理,表述为:对理想、完整的保守系统,通过相同起终位置的一切运动,其可能实现的运动是在其附近考虑到的相同能量的各种路径中,使拉格朗日作用量取极值的运动,即 ?=?2

102t t Tdt (3)

式(3)中T 为系统动能,dt 为时间元,t 1、t 2为粒子从P 点到Q 点的时刻.最小作用原理是力学及各种场论的基本原理、曾被雅可比(Jacobi )称作“分析力学之母”,常常被奉为物理学的最高原理.由费马原理确定的光传播规律和由最小作用原理确立的粒子运动,两者类比如下.

1.原理形式的类比

对于单粒子保守系统,设粒子质量为m ,速度为υ,势能为U ,注意到能量E 积分 T +U=E ,有

ds u E m ds mT mvds dt mv Tdt )(2222-====

代人式(3)得

0)(2221=-?=???ds U E m Tdt t t Q P (4)

式(4)为最小作用原理的雅可比形式,它是确定真实运动轨线的变分原理.

比较式(1)、(4)可知,若使n (r )∝))((2r U E m -,则单粒子力学问题可以当

作一条光线的几何光学问题来求解;反之,几何光学的路线问题,也可以当作质点力学问题来求解.即按最小作用原理运动的粒子轨线和按费马原理决定的光线是完全一致的。

对自由粒子,U=常量,因而T =E —U 也是常量,则式(3)可以写成

?=?210t t dt 或 ??Q P ds =0 (5)

式(5)表明:自由粒子由P 到Q 将沿花时(t 2-t 1)最少的路径运动,由于自由粒子的速度V 为常量,所以花时最少的运动就是所需路径最短的运动,故此跟短程线运动的结论一致. 显然,式(5)与几何光学中光线沿短时线传播的原理式()是相似的.

2.斯涅耳(Snell )定律与务能突变面处的粒子行为

光线从一种折射率的媒质进入到另一种折射率的媒质,遵从斯涅耳定律.该定律表明:

n 1sin θ1=n 2sin θ 2

其中山、n 。是两煤质折射率,氏、人是光线与两媒质界面法线所成角,如图1所示.应用该定律,可通过几何作图确定光线经过煤质的路线.

图1光的折射 图2粒子越过势能突变面的速度变化

粒子在保守力场中的运动,也存在着和斯涅耳定律相类似的规律.考察一粒子由一个区域进入另一个区域的界面时,设势能由U 1变为U 2( U 2< U 1=,粒子势能的变化,必然引起粒子动能T 的改变?'T=U 1-U 2,根据保守力性质:力F 处处和等势面垂直,并从势能较高处指向势能较低处.设?'r 为粒子位移,由?'U=-F ·?'r 可得

T t F r F U U ?'=?'?=?'?=-υ21

可见,粒子势能的改变仅仅导致速度的法向分量变化而引起速度变化,从而改变了粒子动能,但速度的切向分量是连续的(如图2所示).即

2211sin sin θυθυ= (7)

其中θ1和θ2是两个区域内的速度矢量与界面法线间的夹角.将式(7)中两区域的速度用能量守恒原理表示为

211sin )(2sin )(2θθU E m U E m -=- (8)

比较式(6)、(8),显然,在那些折射率与函数)(2U E m -对位置有相同的函数关系的问题中,当光线与总能量为E 的粒子具有相同的初位置和传播方向时,光的传播路线与粒子的运动轨线遵从相似的规律,折射率n (r )与函数)((2r U E m -的地位相当.这种形式上的相似,可以合理地设想为

)((2)(r U E m r n -∝

3.光与粒子路线

光在媒质中传播的路线,由矢量形式的光线微分方程

n n ds

dr ds d

?=)( (9) 所确定.式(9)中v 为哈密顿算符,r 表示某一光线上任一点的位置矢量,s 表示r 矢端离光线上某固定点的光线弧长.

对于光的路线,选用自然坐标法是方便的.设光线上某点的主法向单位矢量为v ,切向单位矢量为s ,曲率半径为ρ,则单位矢有如下关系:

ds dr

s = (10)

ds

v ρ

= (11)

由式(9)、(10)得

s n n ds dn ds ds -?= ( 12)

用v 标乘式(12)两边,利用式(11),整理可得

)(log 11n n n ??=??=υυρ (13)

因ρ>0,式(12)表明光线弯向折射率大的一边,如图3所示.

对一个质量为m 的粒子在保守场中的运动,根据牛顿运动定律

U dt dp -?= (14)

图3非均匀煤质中光线的弯曲 图4粒子轨线向势能小的区域弯曲

式(14)中p =m υ是粒子动量,考虑粒子的运动轨线,对式(14)作如下处理:

因p =p s ,υ=υs ,故有

υυρpv dt dp ds ds dt dp dt ds dt dp dt dP

s p p s +=+=+= (15)

将F=-?U 在S 、v 方向上分解,有

])()[(v U v s U s v s pv dt dp

??+??-==ρ (16)

考察v 方向上的运动方程有:

-=ρυp υ·U ? υρp 1

1-=υ·U ?

利用U=E -p 2/2m ,υ=p /m 代人上式,有:

)(log 11p U p

??=??=υυρ (17) 可见,式(17)与关于折射率n 与p 成正比的媒质中光线曲率方程式(13)完全一致,它表示粒子路线弯向势能小的一边(如图4所示),因此保守力场中的运动粒子具有会聚特性.顺便指出,设计会聚带电粒子的静电透镜正是基于这一原理.

由此看出,保守场中粒子的运动轨线与光线在折射率随位置缓慢变化的空间中所经过的路线,有着十分重要的相似性.

4.波前传播与相空间内“波前面函数”的传输

惠更斯(Huygens )原理是几何光学中的另一著名原理.该原理通过一个“波前曲面”函数刻划光的传播,光线被定义为定相波面的正交轨线,把光的传播看成是“波前曲面”的运动,“波前曲面”的每个面元产生球面子波,“波前曲面”的未来位置是所有子波面的包络面.因此,“波前曲面”函数能完全决定光线的传播.

哈密顿(Hamilton )建立了力学系统的“波前面函数”——哈密顿主函数S (q ,P ,t ),S 能完全

决定系统的运动,如果哈密顿函数不是时间t 的显函数,则S 的形式解为

S (q ,p ,t )=W (q ,p )-Et (18)

其中W (q ,P )为哈密顿特征函数,不显合时间,所以各定值的W 曲面在位形空间有确定位置.在位形空间内,考察S 为定值的曲面运动,由式(18)可知,定值S 曲面在运动过程中,势必依次与有着确定位置的W 曲面族重合,如图5所示.定值S 随时间的传输类似于波前的传输,因此,定值S 曲面可视为在位形空间内传输的波前.

图5位形空间内定值S 曲面的

运动确定垂直曲面的粒子轨线

对保守场中的单粒子情况,S 曲面上某确定点的速度u (曲面的运动速度一般是不均匀的)定义为dt 时间内定值S 曲面移动的垂重距离dl ,即

u=dt

dl (19) 又上时间内定值S 曲面将从W 曲面处运动到W + dW 的新曲面处.对式(18)取微分得

d W= Edt (20)

另一方面,单粒子位形空间可为寻常三维空间.

dW=? W ·dl=|? W |dl (21)

联立上列3式得

W E dt dl

u ?== (22)

W 满足哈密顿—雅可比方程,对保守场中运动式(23)给出粒子的动量声垂直于W (q ,p )的等值面,即粒子运动的可能路径垂直于等值面W ,因而位形空间中“波前”的速度为:

υm E p E

u == (24)

式(24)表明,等值S 曲面上一点的速度与用S 描述的粒子在空间内的运动速度保持着互为倒数的关系,粒子的轨线始终与等值S 曲面正交.所以,与等值S 曲面正交的粒子运动轨线相当于与波前垂直的光线.这就是为什么光的惠更斯波动说和牛顿微粒说都能说明光的反射和折射现象,因为两者的几何光学理论在形式上完全一致.

u 与υ互为倒数关系,还反映在基本原理的形式上,因为在单粒子情况下,式(3)可以写成 ???=?=?=?Q

P t t dt ds t t ds m dt m dt m 0)(22212

1υυ 或 ?=?Q

P ds 0υ (25)

比较式(2)和式(25),若把光子视为粒子,则υ∝1/u .通过这一反比关系,式(2)和式(25)成为同一原则.1924年法国物理学家德布罗意(de Broglie )按照这一光子和粒子的平行关系,提出了物质波理论.该理论是1926年薛定谔(Schr ?dinger )进一步建立波动力学的先导.

5.电子光学情况

对电荷为e 和静质量为m 的相对论电子,拉格朗日函数为

L=-m )()(122Φ-?+-A e c c

c υυ (26) 这里Φ是静电势,A 是磁场矢势,对单色光或单能电子,能量是常数,E =∑x p x -L .因 x c e c x m x L

x A p +==-??2)/(1υ

故 A P c e c m +=-2

)/(1υυ

(27) 上3式中,x

是速度υ的分量,p x 、A x 分别是p 和A 的x 分量.将最小作用原理写成 ???

∑?∑=??=?=?=+?Q P t t t t Q P x x dr p dx P dt p x dl E L 0)(2

121 (28) 其中d r 为位移元矢量.式(28)给出,除任意常数因子外,一般的电子光学的折射率可表为 n=S A c e c m ?+-2)/(1υυ

(29)

c

式中,A ·s 是矢势在运动方向上的分量.它不是一个物理量,而是一个函数,其旋度等于磁感应强度.由此可见,一般的电子光学折射率本身不是一个物理量,而是一个拉格朗日函数,加上一个任意位置函数的梯度在运动方向上的分量,不会改变任何物理结果.因此,式(29)是具有给定总能量的电子位置的函数.如果把电子光学的折射率定义为动量在轨线方向上的分量,那么,式(28)表明,对电子运动的研究就化为一个光学问题.可见在电子光学情况下,再次揭示了最小作用原理与费马原理是完全相似的.

6.程函方程与哈密顿—雅可比方程的类比

程函方程是几何光学的基本方程,导出方法颇多,为简明起见,这里采用德拜(Debye ) 的建议,由入→0极限情况的标量波动方程导出.

设f 表示电磁场的某一分量,ω为波的角频率,λo 为自由空间的波长,k o =ω/c=2π/λo 表示自由空间的波数,光(电磁波)在各向同性媒质中的波动方程为

022222=-???t c f

n f (30)

对单色波f=Φ(r)exp (-i ωt ),代人式(30)得Φ(r )满足

0)()(222=Φ+Φ?r n k r o (31)

n 为常数时,式(31)中Φ(r )为平面波解,讨论在空间平缓变化情况,设式(31)的解接近平面波,取下面形式

Φ(r)= Φo exp[ikL(r)] (32)

上式中Φ。和L(r)是待定的空间位置实函数,并且假定与k 。无关.将式(32)代人式(31)得 0]2[])([2222=Φ?+?Φ+Φ???+Φ?-o o o o o o L L ik L n k (33)

由于Φo 和L 是实数,要方程(33)成立,其实部和虚部必同时为零.考虑实部有

o k o o n L Φ??+=?Φ21

222)( (34)

因为已假定Φ。和L 与κ。无关,所以在λ→0,即κ。→∞的极限条件下,有

2

2)(n L =? (33)

上式中L (r )称为程函,方程(3)称为程函方程,由它决定常数L (r )曲面是光的定向波面,因而也就决定了波前波面的正交曲线族就是几何光学中的“光线”.

可见,程函方程(35)在形式上与力学中的W 的哈密顿—雅可比方程(23)是一致的.特征函数W 起了与程函L 相同的作用,而)(2U E m -则可看成折射率.若把光线看作是某种微粒的轨线,则这种微粒的动量正比于|L ?|,即p ∝|L ?|=n .

由此看出,几何光学是波动光学在波长λo →0的极限情况,因而几何光学的基本方程也就是波动方程在λo →0条件的近似,所以,哈密顿—雅可比方程揭示:经典力学相当于波动光学的几何光学极限.

7.从经典力学到波动力学

几何光学已被证明是波动光学规律在短波波长的极限.由上述相似性讨论,很自然地设想经典力学是不是更一般的波动力学的短波极限呢?而巨能推测出波动方程在某种极限下应该蜕化为哈密顿—雅可比方程.德布罗意根据这个启示,在 1924年提出了物质波动性假说,并把波动光学中的重要关系类推到粒子波,预测了动量广和能量E 的粒子,其波长入与频率。

有下列关系:

λ=h/p (36)

ν=E /h (37)

h 为反映波动性的物理量λ、ν和

朗克(Planck)常量.

像几何光学基本方程(35)是波动光学的波动方程(31)的近似那样,可以设想哈密顿—雅可比方程(23)是下列波动方程的近似

022222=-Φ??Φ

?t c n (38)

把空间坐标r 与时间坐标t 分离,令

)ex p()(),(t i r t r ωψ-=Φ (39)

式(39)代人式(38)得ψ(r )满足的方程为

0)(2

2=+?ψψωc n

(40) 根据波动理论:

k=2π/λ=n ω/c (41)

由德布罗意关系:

k 2)()(222

2222

2844U E m U E m h h h p -?=-?=πππ (42) 将式(41)、(42)代人式(40)得

)()()(2822

r E r U r h ψψψπ=+?- (43)

这就是量子力学中著名的定态薛定谔方程.

对式(39)求t 的偏微商:

)ex p()(t i r i t ωωψ--=?Φ

? (44)

式(43)代人式(44),并考虑到式(37)有

)exp()]()([)exp()(2822t i r U r t i r i m h h i h E t ωψψωψωπνων-+?--=--=?Φ?

即得到含时的薛定谔方程为

t ih m h t r U ?Φ?

?=Φ+?-ππ228),(][22 (45)

这正是量子力学中的波动方程.

可以证明,经典力学是波动力学在h (因而λ)→0的短波极限,微观意义下的波函数和薛定谔方程就蜕化为经典力学的哈密顿主函数和哈密顿—雅可比方程,有兴趣的读者可以参阅文献[7]. 德布罗意和薛定愕在建立波动力学过程中,对于力学和光学的相似性的深刻理解起了

重要作用,正是基于这一类比和原子物理学的大量实验事实所揭示的经典力学的局限

性,德布罗意提出了物质波理论,薛定愕建立了波动力学方程——薛定愕方程,逐渐发展成为今日量子力学.

参考文献:

[I ]加塔克 A K ,塞格雷健 K 现代光学[M ]蒙文林译呼和浩特:内蒙古人民出版社, 1986 2~ 8

[2] Kleppner D ,Kolenkow R J 力学引论[M ]宁远源,刘爱晖泽 北京:高等教育出版社,1980257

[3]加塔克AK ,塞格雷健K .现代光学[M ]蒙文林泽 呼和浩特:内蒙古人民出版社,1986 10

[4]汪家华 分析力学「M 」北京:北京师范大学出版社,1989 176,178

[5]波恩M ,沃耳夫 E .光学原理下册[M ]杨霞称等译 北京:科学出版社,1981.988~989

[6]波恩M ,沃耳夫E 光学原理L 册【M 】杨曹苏等译 北京:科学出版社,1978.150

[7]曾谨言 量子力学(卷11)[M ]第2版北京:科学出版社,199735~39

[8] Schr ?din ger E .hur Lectures on Wave Mechanics [M ].London :Cambridge University Press ,1928

[9] de Broglie L .On the Parallelism between the Dynamics of A Material Particle and Geometrlcal Optlcs [J ].Le Journal de Physique et ie Radium ,1926,7:1

鼠标结构及原理

鼠标的定位原理 光电鼠标就是通过红外线或者激光检测鼠标的位移,将位移信号转换为电脉冲信号,通过程序的处理控制屏幕中光标箭头的移动。 一.鼠标的结构 光学鼠标主要由四部分的核心组件构成,分别就是发光二极管、透镜组件、光学引擎以及控制芯片组成。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送与收取。我们可以将其理解成就是光电鼠标中的“管家婆”,实现与主板USB接口之间的桥接。当然,它也具备了一块控制芯片所应该具备的控制、传输、协调等功能。 这里有一个非常重要的概念大家应该知道,就就是dpi对鼠标定位的影响。dpi就是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi 越大,用来定位点数就多,定位精度就高。 光学感应器 光学感应器就是光电鼠标的核心。 光学感应器主要由CMOS感光块(低档摄像头上采用的感光元件)与DSP组成。CMOS感光块负责采集、接收由鼠标底部光学透镜传递过来的光线(并同步成像),然后CMOS感光块会将一帧帧生成的图像交由其内部的DSP进行运算与比较,通过图像的比较,便可实现鼠标所在位置的定位工作。

光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图中可以清楚地瞧到,光学透镜组件由一个棱光镜与一个圆形透镜组成。 其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观瞧光电鼠标的背面外壳,我们可以瞧出圆形透镜很像一个摄像头。 不管就是阻断棱光镜还就是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。 发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将就是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 通常,光电鼠标采用的发光二极管就是红色的(也有部分就是蓝色的),且就是高亮的(为了获得

陈家璧版光学信息技术原理及应用习题解答(7-8章)

陈家璧版光学信息技术原理及应用习题解答(7-8章) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第七章 习题解答 1. 某种光盘的记录范围为内径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 内、外径均指直径) 解: 记录轨道数为 25000002.0280180=?-=N 单面记录容量按位计算为 ∑=?≈?+=N n n M 110107.10006.0)002.040(2π bits = 17 Gb. 按字节数计算的存储容量为 2.1GB. 2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。 证明: 将体光栅读出满足布拉格条件时的照明光波长(介质内) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距. 对于任意波长λa (空气中) 和入射角θr (介质内), 由(7-17)式, 位相失配 δ 定义为: 24)cos(n K K a r πλθφδ--= 其中n 0为介质的平均折射率, K = 2π/Λ为光栅矢量K 的大小,φ为光栅矢量倾斜角,其值为 22π θθφ++=s r ,θr 为再现光束与系统光轴夹角 (参见图7-9). 当 δ = 0 时,有 2422cos n K K a r s r πλθπθθ=??? ??-++ 即: Λ=Λ=??? ??-2422sin 0 λππλθθn s r

光学原理及应用

光学的基本原理及应用 人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所著的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学著作。 现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。 按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。 一、光学现象原理 光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。 光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为

c=299 792 458 m/s 在通常的计算中可取 c=3.00×108m/s 玻璃、水、空气等各种物质中的光速都比真空中的光速小. (一)直线传播 光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的. 由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。物理学中常常用光线表示光的传播方向。有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太线也可以看做平行光线.

望远镜系统结构设计

光学课程设计 望远镜结构系统设计 姓名:曾茂桃 班级:光通信082 学号:2008031126 指导老师:张翔

摘要 该报告运用应用光学知识,了解望远镜的历史,在工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW 法基本原理。并应用光学设计软件对系统误差、成像质量进行理论分析。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析等都有了一个明确的简要的介绍。 关键字:望远镜物镜目镜放大率分辨率内调焦望远镜 PW法光栅

目录 一概述…………………………………………………………页二望远镜尺寸设计与分析…………………………………页2.1 望远镜的简述…………………………………………………………页2.2 望远镜的主要特性分析………………………………………………页三分物镜组与目镜组的选………………………………………………页 3.1望远镜物镜需要消除的像差类型及主要结构形式…………………页3.2双胶物镜和双分离物镜………………………………………………页 3.3内调焦望远镜…………………………………………………………页 四.目镜组的主要种类及其结构:………………………….. 页 4.1惠更斯目镜……………………………………………………………页4.2冉斯登目镜……………………………………………………………页 4.3Porro、Roof棱镜结构及其特点…………………………………页 五.望远镜像差设计PW法………………………………….. 页 5.2物体在有限距离时的P,W的规化……………………………………页5.5用C ,表示的初级像差系数………………………………………页 P, W 六.光学系统中的光栅分析……………………………………页

光电鼠标常见故障的排除_徐军

I SS N1672-4305CN12-1352/N 实 验 室 科 学LABORAT ORY SC I ENCE 第3期 2009年6月No .3 Jun .2009 仪器、设备、技术 光电鼠标常见故障的排除 徐 军,王春燕,刘瑞斌,李怡文,杨敏霞 (大连理工大学基础化学实验中心,辽宁大连 116023) 摘 要:根据多年的经验,主要对光电鼠标在使用中出现的常见问题及解决方法进行详细介绍,供高校教师和相关科技工作者参考。 关键词:光电鼠标;光敏元件;灵敏度 中图分类号:TP334.2 文献标识码:B 文章编号:1672-4305(2009)03-0155-03 Repairing co mmon malfuncti ons of the optical mouse XU Jun,WANG Chun -yan,L I U Rui -bin,L I Yi -wen,Y ANG M in -xia (Funda mental Che m ical Experi m ental Center,Dalian University of Technol ogy,Dalian 116023,China )Abstract:I n order t o offer a reference f or the university teachers and researchers,the common tr ou 2bles and res oluti ons in the use of op tical mouse are intr oduced in detail based on the authors ’experi 2ences . Key words:op tical mouse;op tical components;sensitivity 自从1999年微软与安捷伦公司合作,推出了第一款光学成像鼠标(I ntelli m ouse Exp l orer )。光电鼠标就因为有着极高的适应能力和无需清洁等优点,在短短的时间里将统治了计算机桌面几十年之久的机械滚轮鼠标赶下台。图1是光电鼠标的内部构造,图2是光电鼠标电路图。因为光电鼠标是使用发光管等光敏元件来定位,所以很容易出现如灵敏度下降、指针飘移等小故障 。 图1 光电鼠标的内部构造 1 光电鼠标的工作原理 光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。光电鼠标的工作原理 [1] 是:在光电 鼠标内部有一个发光二极管,通过该发光二极管发 出的光线,照亮光电鼠标底部表面( 这就是为什么 图2 光电鼠标的电路图 鼠标底部总会发光的原因)。然后将光电鼠标底部 表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专 用图像分析芯片(DSP,即数字微处理器),对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、控制芯片、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或US B 接口、外壳等。

望远镜光路设计

至今没有一个光学系统是完美的。为了平坦且清晰的成像,往往必须把光学系统设计的十分复杂。如此一来,不但透光度变差,还得付出很高的制造成本。因此简单的镜片组而且能保有高品质成像的光学系统是光学设计的努力目标。 一个好的光学系统都出自设计者的巧思。它能在最简单的镜片组合下产生最佳的成像品质。不过在许多设计中,往往会遇到球面像差与彗形像差难以取舍的窘境(天文望远镜光学与机械)。当你能同时处理这些像差的时候,系统却又发生严重的色差。最后好不容易解决了所有的色像差,却又发生成像的变形。因此光学系统的设计在在考验设计者的经验与智力。希望透过以下的天文望远镜的演进,让你了解前人的成果。 折射式望远镜系统 由于白光经过透镜会有色散的现象(Dipersion),因此使得光学系统除了球面像差与彗形像差之外又多了影像不清晰的光源。由上图可知,蓝光的折射率较大,其次为绿光,最后为红光,因此不同颜色的入射光产生,却有不同的聚焦点。好的光学系统除了成像品质之外,还必须考虑消色差的效果。 基本上,我们在处理可见光的光路分析时,是用蓝色的F line(486.13nm)、红色的C line(656.27nm)与绿色的e line(546.07nm) 作为分析的主要光源。要查看镜片的色差情形,可以用色散数值V( Dispersion Number or Abbe number)。V越大表示镜片的色散的情况越小。 V=(ne-1) / ( nF-nC) 对於一个D= 5公分,f=20公分的两片镜片组合,我们可以由下图的光路分析了解他们各自聚焦的一致性。其实这就是球面像差的检测工作! D=5公分f=20公分 第一片镜片R1=18公分R2=-19公分中心厚度=0.84公分 间隙0.1公分 第二片镜片R3=-19公分R4=-22公分中心厚度=0.98公分

光电鼠标电路剖析及简单维修

光电鼠标电路剖析及简单维修 发布者:1770309616发布时间:2012-3-114:18 关键词:光电鼠标,电路剖析,维修 光电鼠标的电路一般都比较简单,大多由二块集成电路组成。一块稍大的是COMS感光IC,另一块一般为鼠标专用IC。感光CMOS芯片通过鼠标移动产生的光线变化而得到位置信号,送到鼠标IC的X、Y输入端。而鼠标IC再收集左、右,滚轮键及滚轮前滚、后滚等信息随着CL K时钟信号一起送到 PS2或USB口中去。 一、USB光电鼠标。图1为使用GL603-USB鼠标IC芯片及安捷伦的H2000(400CPI、 每秒1500次扫描)为光电感应芯片的电路图。 二、PS2接口鼠标 图2为使用PAN101-208(第三代光电IC产品,800CPI光学分辨率,2000次扫描/秒)为光电感应芯片,84510系列芯片为鼠标IC的PS2接口光电鼠标电路。光电鼠标IC一般来说都比较可靠。坏的多是按键开关或是鼠标线。鼠标线四根芯中,如果VCC或GND断线时,会出现光电鼠底面感光处无红光发出,鼠标无法使用的故障。当CL K或DATA断线时,出现鼠标虽然有红光发出,但光标不动及所有按键无反应的故障。如果出现某个按键失灵时,基本是这个按键开关坏了。更换线及开关时,可以从旧的机械鼠上拆下来代用。如果光电鼠标出现某个方向移动时光标变得很慢,很可能是反射的凸镜脏了,清洗即可。

高性能光电鼠标原理及电路图 高精度光学引擎新贵自由豹210关键字:光学引擎无线鼠标

新贵的自由豹210无线鼠标应用了“九九互联,九九过界”技术,在定位和连接方面都有着出色的表现。 新贵自由豹210无线鼠标线条硬朗,设计十分现代,并有亚黑和酒红两种配色可供选择,满足不同用户的需求。这款鼠标内置高精度光学引擎,具有良好的兼容能力,可在木桌、玻璃等多种表面上正常工作,最高分辨率达到了1600dpi,并支持800/1200/1600dpi三档调节,适合不同尺寸的显示器。在安装驱动后,还能对按键功能、移动灵敏度等进行自由设定。 新贵自由豹210无线鼠标采用2.4G无线连接,具有75组频道,支持自动跳频防干扰,有效使用距离可达10米,配备的Mini接收器小巧便携,还能同时连接多个相兼容的无线键鼠,节省了宝贵的USB接口。

光电鼠标原理与电路图

传统光学鼠标的工作原理 传统光学鼠标工作原理示意图 光学跟踪引擎部分横界面示意图 光学鼠标主要由四部分的核心组件构成,分别是发光二极管、透镜组件、光学引擎(Optical Engine)以及控制芯片组成。 光学鼠标通过底部的LED灯,灯光以30度角射向桌面,照射出粗糙的表面所产生的阴影,然后再通过平面的折射透过另外一块透镜反馈到传感器上。 当鼠标移动的时候,成像传感器录得连续的图案,然后通过“数字信号处理器”(DSP)对每张图片的前后对比分析处理,以判断鼠标移动的方向以及位移,从而得出鼠标x, y方向的移动数值。再通过SPI传给鼠标的微型控制单元(Micro Controller Unit)。鼠标的处理器对这些数值处理之后,传给电脑主机。传统的光电鼠标采样频率约为3000 Frames/sec(帧/秒),也就是说它在一秒钟内只能采集和处理3000张图像。 根据上面所讲述的光学鼠标工作原理,我们可以了解到,影响鼠标性能的主要因素有哪些。 第一,成像传感器。成像的质量高低,直接影响下面的数据的进一步加工处理。 第二,DSP处理器。DSP处理器输出的x,y轴数据流,影响鼠标的移动和定位性能。

第三,SPI于MCU之间的配合。数据的传输具有一定的时间周期性(称为数据回报率),而且它们之间的周期也有所不同,SPI主要有四种工作模式,另外鼠标采用不同的MCU,与电脑之间的传输频率也会有所不同,例如125MHZ、8毫秒;500MHz,2毫秒,我们可以简单的认为MCU可以每8毫秒向电脑发送一次数据,目前已经有三家厂商(罗技、Razer、Laview)使用了2毫秒的MCU,全速USB设计,因此数据从SPI传送到MCU,以及从MCU传输到主机电脑,传输时间上的配合尤为重要。 光电鼠标电路图

光学原理及应用优选稿

光学原理及应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

光学的基本原理及应用 人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所着的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学着作。 现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。 按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。 一、光学现象原理 光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。 光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为 c=299 792 458 m/s 在通常的计算中可取

c=3.00×108m/s 玻璃、水、空气等各种物质中的光速都比真空中的光速小. (一)直线传播 光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的.由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。物理学中常常用光线表示光的传播方向。有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太阳光线也可以看做平行光线. (二)反射与折射 阳光能够照亮水中的鱼和水草,同时我们也能通过水面看到烈日的倒影;这说明光从空气射到水面时,一部分光射进水中,另一部分光被反射,回到空气中.一般说来,光从一种介质射到它和另一种介质的分界面时,一部分光又回到这种介质中的现象叫做光的反射;而斜着射向界面的光进入第二种介质的现象,叫做光的折射。 光的反射定律实验表明,光的反射遵循以下规律(图18-8):

鼠标的工作原理

鼠标那点事——鼠标工作原理分析 前言 经历了数年的飞速发展,如今的电脑配件以及周边的外设已经越来越好,我们最常用的鼠标从滚轮到光电,从有线到无线,有着惊人的改变。不过在鼠标的工作原理方面,依然延续着昔日的经典,没有太多的改变,只是如今的鼠标在性能上有着不小的突破。 尽管鼠标产品现在已经成为我们每天工作娱乐的必需品,但是对于鼠标的工作原理,相信了解的朋友并不多,毕竟技术这种东西比较枯燥,人们没有太多的兴趣。不过今天小编在这里还是要给大家来温习一下鼠标的工作原理,感兴趣的朋友不妨关注一下哦。

机械鼠标的工作原理 机械鼠标是通过移动鼠标,带动胶球,胶球滚动又磨擦鼠标内分管水平和垂直两个方向的栅轮滚轴,驱动栅轮转动。栅轮轮沿为格栅状。紧靠栅轮格栅两侧,一侧是一红外发光管,另一侧是红外接收组件。红外接收组件为一三端器件,其中包含甲乙两个红外接收管。在水平和垂直栅轮夹角正对方向有一压紧轮,它使胶球无论向何方向滚动都始终压紧在两个栅轮轴上。

通过ps/2 口或串口与主机相连。接口使用四根线,分别为电源,地,时钟和数据。正常工作时,鼠标的移动转换为水平和垂直栅轮不同方向和转速的转动。栅轮转动时,栅轮的轮齿周期性遮挡红外发光管发出的红外线照射到接收组件中的甲管和乙管,从而甲和乙输出端输出电脉冲至鼠标内控制芯片。由于红外接收组件中甲乙两管垂直排列,栅轮轮齿夹在红外发射与接收中间的部分的移动方向为上下方向,而甲乙接收管与红外发射管的夹角不为零,于是甲乙管输出的电脉冲有一个相位差。鼠标内控制芯片通过此脉冲相位差判知水平或垂直栅轮的转动方向,通过此脉冲的频率判知栅轮的转动速度,并不断通过数据线向主机传送鼠标移动信息,主机通过处理使屏幕上的光标同鼠标同步移动。

《光学原理与应用》之双折射原理及应用

双折射原理及应用 双折射(birefringence )是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。它们为振动方向互相垂直的线偏振光。当光射入各向异性晶体(如方解石晶体)后,可以观察到有两束折射光,这种现象称为光的双折射现象。两束折射线中的一束始终遵守折射定律这一束折射光称为寻常光,通常用o表示,简称o光;另一束折射光不遵守普通的折射定律这束光通常称为非常光,用e表示,简称e光。晶体内存在着一个特殊方向,光沿这个方向传播时不产生双折射,即o光和e光重合,在该方向o光和e光的折射率相等,光的传播速度相等。这个特殊的方向称为晶体的光轴。光轴”不是指一条直线,而是强调其“方向”。晶体中某条光线与晶体的光轴所组成的平面称为该光线的主平面。o光的主平面,e光的光振动在e光的主平面内。 如何解释双折射呢?惠更斯有这样的解释。1寻常光(o光) 和非常光(e光)一束光线进入方解石晶体(碳酸钙的天然晶体)后,分裂成两束光能,它们沿不同方向折射,这现象称为双折射,这是由晶体的各向异性造成的。除立方系晶体(例如岩盐)外,光线进入一般晶体时,都将产生双折射现象。显然,晶体愈厚,射出的光束分得愈开。当改变入射角i时,o光恒遵守通常的折射定律,e光不符合折射定律。2.光轴及主平面。改变入射光的方向时,我们将发现,在方解石这类晶体内部有一确定的方向,光沿这个方向传播时,寻常光和非常光不再分开,不产生双折现象,这一方向称为晶体的光轴。 天然的方解石晶体,是六面棱体,有八个顶点,其中有两个特殊的顶点A和D,相交于A D两点的棱边之间的夹角,各为102°的钝角.它的光轴方向可以这样来

应用光学课程设计-15倍双目望远镜

应用光学课程设计报告 ———15倍双目望远镜 姓名: 班级学号: 指导教师: 光电工程学院 2016年01月04日

一、望远镜系统的原理 (3) 二、课程设计的内容及要求 (3) 三、光学元件尺寸计算及数据处理总结 (4) (一)、目镜的计算 (4) (二)、物镜的结构形式及外形尺寸计算 (7) (三)、计算分划板 (7) (四)、计算棱镜 (8) (五)、像差计算 (9) (六)、建立数据文件 (15)

一、望远镜系统的原理 亥普勒望远镜的原理示意如下图1所示: 图 1 图中可见亥普勒望远镜是由正光焦度的物镜与正光焦度的目镜构成,与显微镜不同的是望远镜的光学间隔为0,平行光入射平行光射出。其系统的视觉放大倍率为: '//D D f f e o -=''-=Γ 式中,0f '为物镜的焦距;e f '为目镜的焦距;D 为入瞳直径;'D 为出瞳直径。在此成像过程中,有一个实像面位于分划面上,可以实现相应的瞄准或测量。 由于亥普勒望远镜成倒像不利于观察,故而需在系统中加入一个由透镜或棱镜构成的转像系统。军用望远镜的转像系统多是用两个互相垂直放置的 180-II D 棱镜(即保罗棱镜)组成。 伽利略望远镜是由正光焦度的物镜和负光焦度的目镜组成,其视觉放大率大于1,形成的是正立的像,无需加转像系统,也无法安装分划板,应用较少。 二、课程设计的内容及要求 1、根据已知的一些技术要求,进行外型尺寸计算; 1)目镜的选取及计算; 2)物镜的结构型式及外型尺寸计算; 3)分划板的外型尺寸计算; 4)棱镜的类型选取及外型尺寸计算; 2、像差计算 1)求取棱镜的初级像差; 2)求取物镜的初级像差; 3)根据物镜的像差求出双胶合物镜的结构参数。

光学课程设计 ——望远镜系统

望远镜系统结构设计 指导教师: 张 翔 专 业:光信息科学与技术 班 级:光信息08级1班 姓 名: 学 号: 20080320 光学课程设计

目录 第一部分设计背景 (1) 第二部分设计目的及意义 (1) 第三部分望远镜介绍 (1) 3.1望远镜定义 (1) 3.2望远镜分类及相应工作原理 (2) 第四部分望远镜系统设计 (3) 4.1开普勒望远镜 (3) 4.2望远镜系统常用参数 (4) 4.3外形尺寸计算 (6) 4.4伽利略望远镜 (8) 4.5物镜组的选取 (9) 4.6望远镜像差类型及主要结构 (10) 4.7双胶物镜与双分离物镜分析 (12) 4.8内调焦望远物镜分析 (14) 4.9目镜组的选取 (14) 4.10目镜主要像差及分析 (17) 4.11棱镜转像系统 (17) 4.12转折形式望远镜系统 (18) 4.13光学系统初始结构参数计算方法 (18) 4.14应用光学系统中的光栅 (20) 第五部分设计总结 (21) 第六部分参考文献 (21)

一.设计背景 在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等。 其中我国以高功率激光科研和激光核聚变研究为目的的光电系统——“神光二号”,颇具代表。“神光二号”对于未来的能源危机和我国的军事领域有着重要意义。 二.设计目的及意义 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜外形尺寸、 物镜组、目镜组及转像系统的简易或远离设计。了解光学设计中的PW法基本原理。 三.望远镜介绍 3.1 望远镜定义 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽吗射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 【望远镜基本工作示意图】

光学原理

光学原理 Principles of Optics 课程编号:07370460 学分: 2 学时: 30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:大学物理 适用专业:无机非金属材料工程(光电材料与器件) 教材:《光学教程》,姚启钧主编,高等教育出版社,2008年6月第4版。 开课学院:材料科学与工程学院 一、课程的性质与任务: 本课程是属于专业选修课,是研究光的本性、光的传播和光与物质相互作用的基础学科,光学的基本理论渗透在自然科学的很多领域,应用于生产技术的各个部门,是自然科学的许多领域和工程技术的基础。激光的出现和发展,使光学的研究进入了一个崭新的阶段,成为现代科学技术的前沿阵地之一。本课程要求学生掌握几何光学的基本概念、成像规律和作图方法,理解典型光学仪器的基本原理;要求学生掌握有关光的传播规律及其本性,了解干涉、衍射和偏振等基本现象、原理和规律,并了解它们在科研、生产和实践中的应用;本课程力求使学生使学生对光的传播规律和光与物质相互作用时出项的现象和光的本性有一个深刻的认识。 二、课程的基本内容及要求: 第一章绪论 1.教学内容 (1)光学的研究内容和方法 (2)光学的发展简史 2.教学要求 重点了解光学的研究内容和方法,对光学简史要有一定了解。 第二章光的干涉 1.教学内容 (1)波动的独立性、叠加性和相干性 (2)由单色波叠加所形成的干涉图样 (3)分波面双光束干涉 (4)干涉条纹的可见度 (5)菲涅尔公式 (6)分振幅薄膜干涉-等倾干涉

(7)分振幅薄膜干涉-等厚干涉 (8)迈克尔逊干涉仪 (9) 法布里珀罗干涉仪 2.教学要求 掌握光的相干条件和光程的概念;掌握光的干涉相长和干涉相消的条件;学会分析光的干涉图样;掌握等倾干涉和等厚干涉的基本概念及其应用;介绍迈克耳逊干涉仪和法布里---珀罗干涉仪的原理及其应用。 第三章光的衍射 1.教学内容 (1)惠更斯-菲涅尔原理 (2)菲涅尔半波带和菲涅尔衍射 (3)夫琅禾费单缝衍射 (4)夫琅禾费圆孔衍射 (5)平面衍射光栅 2.教学要求 学会用惠更斯---菲涅耳原理解释光的衍射现象,理解菲涅耳积分式意义;掌握夫琅和费衍射,并能推导夫琅和费衍射光强公式;掌握光栅方程式导并理解其意义。 第四章几何光学的基本原理 1.教学内容 (1)几个基本概念和定律费马原理 (2)光在平面界面上的反射、折射 (3)光在球面上的反射折射 (4)光连续在几个球面界面上的折射 (5)薄透镜 (6)近轴物近轴光线成像的条件 2.教学要求 重点掌握费马原理;掌握光线、实物、虚物、实象和虚象的概念;掌握几何光学的符号法则(采用新笛卡儿符号法则);掌握薄透镜的物象公式;了解光学纤维构造及其应用。 第五章光学仪器的基本原理 1.教学内容 (1)助视仪器的放大本领 (2)显微镜的放大本领 (3)望远镜的放大本领

光学课程设计望远镜系统结构设计

光学课程设计 ——望远镜系统结构设计 姓名: 学号: 班级: 指导老师:

一、设计题目:光学课程设计 二、设计目的: 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW法基本原理。 三、设计原理: 光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。为了观察远处的物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统. 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统.其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零.在观察有限远的物体时,其光学间距是一个不为零的小数量,一般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统. 常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。常见的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像是倒立的,所以在中间还有正像系统。 物镜组(入瞳)目镜组 视场光阑出瞳 1 '1ω 2 '2'ω3 'f物—f目'l z '3 上图为开普勒式望远镜,折射式望远镜的一种。物镜组也为凸透镜形式,但目镜组是凸

透镜形式。为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在光路中增加了转像稜镜系统。此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。 伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透镜时,人就能看到一个正立缩小的虚象。伽利略望远镜的优点是结构紧凑,筒长较短,较为轻便,光能损失少,并且使物体呈正立的像,这是作为普通观察仪器所必需的。其原理图如下: 物镜组 目镜组 出瞳 '1 F F 2 f 2 d '1 f 伽利略望远镜示意图 为了更好的了解望远镜,下面介绍放大镜的各种放大率: 望远镜垂轴放大率:代表共轭面像高和物高之比。计算公式如下 1 '2 'f f -=β 望远镜角放大率:望远镜共轭面的轴上点发出的光线通过系统后,与光轴夹角的正切之比。计算公式如下: 2 '1'f f -=γ 望远镜轴向放大率:当物平面沿着光轴移动微小距离dx 时,像平面相应地移动距离dx',

光电鼠标的原理

光电鼠标的工作原理 摘要本文从结构、工作原理、性能参数以及和传统鼠标的对比等几个方面详细介绍了光电鼠标,并且简单介绍了激光鼠标的相关特性,最后对鼠标的未来发展趋势进行了简单的展望。 关键词光电鼠标光学感应器激光鼠标发展趋势 一、鼠标的概述 鼠标,全称为光电显示系统纵横位置指示器,是计算机系统的一种输入设备,因形似老鼠而得名。按其工作原理及其内部结构的不同可以分为机械式鼠标,光机式鼠标和光电式鼠标。下面将简单介绍机械式鼠标和光机式鼠标的工作原理: 1、机械式鼠标 机械鼠标主要由滚球、辊柱和光栅信号传感器组成。当拖动鼠标时,带动滚球转动,滚球又带动辊柱转动,装在辊柱端部的光栅信号传感器产生的光电脉冲信号反映出鼠标器在垂直和水平方向的位移变化,再通过电脑程序的处理和转换来控制屏幕上光标箭头的移动。这种机械鼠标的底部采用一个可四向滚动的胶质小球。这个小球在滚动时会带动一对转轴转动,分别为X转轴、Y转轴,在转轴的末端都有一个圆形的译码轮,译码轮上附有金属导电片与电刷直接接触。当转轴转动时,这些金属导电片与电刷就会依次接触,出现“接通”或“断开”两种形态,前者对应二进制数“1”、后者对应二进制数“0”。接下来,这些二进制信号被送交鼠标内部的专用芯片作解析处理并产生对应的坐标变化信号。只要鼠标在平面上移动,小球就会带动转轴转动,进而使译码轮的通断情况发生变化,产生一组组不同的坐标偏移量,反应到屏幕上,就是光标可随着鼠标的移动而移动。由于它采用纯机械结构,定位精度难如人意,加上频频接触的电刷和译码轮磨损得较为厉害,直接影响了机械鼠标的使用寿命。在流行一段时间之后,它就被成本同样低廉的“光机鼠标”所取代,后者正是现在市场上还很常见的所谓“机械鼠标”。 2、光机式鼠标 光机式鼠标,顾名思义是一种光电和机械相结合的鼠标。它在机械鼠标的基础上,将磨损最厉害的接触式电刷和译码轮改为非接触式的LED对射光路元件。当小球滚动时,

望远镜的光学系统分类及常见类型

望远镜的光学系统分类及常见类型 本篇来自云南北方光学网站 望远镜的光学系统,广义上基本上分为折射式,反射式,折反射式,运动望远镜几乎都是折射式,天文望远镜则各种系统都很常见。 在实际应用中,由于运动望远镜几乎都是折射式望远镜,并且为了有效降低系统长度和便于携带,大多数运动望远镜都有棱镜系统,按照国际流行的分类方法,运动望远镜的实际分类是按照棱镜系统划分,而天文望远镜,观察镜则按照广义的光学系统分类。 本站望远镜的光学系统沿用目前国际流行的分类方法,共分为六种典型结构: 折射式 普罗棱镜式 屋脊棱镜式 复合棱镜式 牛顿反射式 折反射式 以下是各种光学系统原理及特点的简单解释: 一、运动望远镜的光学系统 运动望远镜几乎都是折射式,除了某些特殊产品,为了有效降低系统长度和便于携带,大多数运动望远镜都有棱镜系统,较常见的有屋脊,普罗棱镜。 屋脊望远镜 采用屋脊棱镜,优点是体积紧凑,便于日常携带使用,缺点是棱镜形状复杂,成本较高。 屋脊望远镜优点: ●重量轻,体积紧凑,便于日常携带使用 ●外形美观

屋脊望远镜缺点 ●棱镜复杂,加工成本高,同等口径价格高 ●大口径规格体积优势不再明显 普罗望远镜 采用直角棱镜,优点是棱镜简单,较低成本即可达到较佳效果,缺点是体积相对比较大。 普罗望远镜优点: ●结构简单,成本低 ●同等价格一般光学性能较好 普罗望远镜缺点 ●同等口径产品体积重量相对屋脊大 ●体积不能做得很小 二、天文望远镜的光学系统 折射望远镜 折射望远镜采用透镜作为主镜,光线通过镜头和镜筒折射汇聚于一点,称为"焦平面"。 长期以来,折射望远镜的薄壁长管结构外观,和百年前伽利略时代无太大区别,但现代的优质光学玻璃、多层镀膜技术使您可以体会伽利略从未梦想过的精彩天空。 对于希望简便的机械设计、高可靠性、方便使用的人来说,折射式望远镜是很受欢迎的设计。 因为焦距由镜管的长度决定,通常超过4英寸口径的折射望远镜将变的非常笨重和昂贵,这在一定程度上限制了折射望远镜的经济口径,但对于更喜欢操作的易用性和通用性的初学者,折射望远镜仍然是是一个很好的选择。 因为具有宽广的视野,高对比度和良好的清晰度,折射望远镜同时也是受欢迎的热门选择。 折射望远镜优点: ●易于设置和使用 ●简单和可靠的设计 ●很少或不需要维护 ●观测月球、行星、双星表现出色,尤其是较大口径的产品 ●易于地面观景 ●不需要第二反射镜或中心遮挡,具有高对比度 ●具有较好的消色差设计,和极好的APO高消色差、萤石设计规格

光学鼠标传感器

光学鼠标传感器 光电134 苗书凡2013151415 光学鼠标传感器是生活中常见的传感器。它主要由四部分的核心组件构成,分别是发光二极管、透镜组件、光学引擎以及控制芯片组成。 一.光学传感器的组成及光学特性: 1.光学鼠标控制芯片 光学鼠标控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。 CMOS传感器是一款非接触式芯片,集成有数字信号处理器(DSP)、双通道正交输出端口。芯片底部有感光眼,对物体拍照、传输、处理,得到移动的方向和距离。DSP产生的位移值,转换成双通道正交信号,配合鼠标控制器,将它转换成单片机能够处理的PS/2数据格式。 鼠标中OMO2芯片为CMOS型传感器,因此必须配有与之适应的高强度发光二极管。按标准安装配合之后,在一定范围之内,OMO2芯片可以进行正常的数据接收检验。 2. 光学透镜组件 光学透镜组件被放在光学鼠标的底部位置,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。 圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。 透镜中的光焦度为正值称为正透镜,因为对光起到汇聚作用,在光学鼠标中两面的透镜都是正透镜。按照形状不同,正透镜又可分为双凸、平凸和月凸三种。 3.发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 LED有非可见光和可见光两个系列。非可见光系列LED用辐射度来度量起

光学望远镜系统的设计

光学望远镜系统的设计 【摘要】运用光学知识,在了解望远镜工作原理的基础上,根据开普勒望远镜的主要参数,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易设计。 【关键词】望远镜设计;视放大率;凸透镜;焦距 1引言

上图中物镜框为孔径光阑,也是入射光瞳,出射光瞳目镜像方焦点外,观察者再次观察成像情况,望远镜系统的视场光阑设在物镜的像平面处。 下面介绍望远镜系统中的光学参数。 (1)望远镜系统的放大率分别为: 轴向放大率α= f2f1 2 垂轴放大率β=?f2f1 角放大率γ=?f1f2 且这三种放大率之间的关系为αγ=β,可见它们仅仅取决于望远镜系统的结构参数。 (2)望远镜系统的视放大率 对于目视光学仪器来说,更有意义的特性是它的视放大率。由于物体位于无限远。物体对人眼所成张角θ眼和对仪器的张角θ是相等的,即θ眼=θ,物体通过望远镜对人眼的张角θ眼‘ 等于仪器像方视场角θ′,即θ眼’ =θ‘。望眼镜的作用是把 视角从原来的θ放大到θ’。设视场光阑的孔径为D 0。则: tan θ=?D 02 f 1=?D 02f 1 tan θ′=?D 02 f 2=?D 02f 2 所以望远镜的视放大率为:Γ= tan θ′ tan θ=?f 1f 2 于此可见欲增大视放大率,必增大物镜的焦距或减小目镜的焦距。 (3)望远镜的极限分辨角 表示观测仪器精度的指标是极限分辨角。若以60''作为人眼的分辨极限,为使望远镜所能分辨的细节也能被人眼分辨,则望远镜的视放大率和它的极限分辨角Φ应满足 ΦΓ=60'' 所以,若要求分辨角减小,视放大率应该增大。或者说望远镜视放大率越大,它的分辨角即精度越高,人眼极限分辨角为 α=1.22λ/D (4)望远镜的结构尺寸 当光学间隔?=0时,目镜观察中间实像应是实像位于目镜的焦平面上,因此从物镜到目镜为望远镜的筒长L =f 1+f 2。 3设计内容 (1)望远镜外形尺寸设计 设计一个开普勒式望远镜,其主要要求如下:

鼠标的组成及工作原理

鼠标的组成及工作原理 1,分类 鼠标按接口类型可分为串行鼠标、PS/2鼠标、总线鼠标、USB鼠标(多为多为光电鼠标)四种 鼠标按其工作原理及其内部结构的不同可以分为机械式,光机式和光电式2,组成 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。 3,工作原理

管脚排列 管脚说明

这里主要介绍光电鼠标 光电鼠标器是通过红外线或激光检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动的一种硬件设备。光电鼠标的光电传感器取代了传统的滚球。这类传感器需要与特制的、带有条纹或点状图案的电垫板配合使用 光电鼠标器是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的光标箭头的移动。光电鼠标用光电传感器代替了滚球。这类传感器需要特制的、带有条纹或点状图案的垫板配合使用。与光机鼠标发展的同一时代,出现一种完全没有机械结构的数字化光电鼠标。设计这种光电鼠标的初衷是将鼠标的精度提高到一个全新的水平,使之可充分满足专业应用的需求。这种光电鼠标没有传统的滚球、转轴等设计,其主要部件为两个发光二极管、感光芯片、控制芯片和一个带有网格的反射板(相当于专用的鼠标垫)。工作时光电鼠标必须在反射板上移动,X发光二极管和Y 发光二极管会分别发射出光线照射在反射板上,接着光线会被反射板反射回去,经过镜头组件传递后照射在感光芯片上。感光芯片将光信号转变为对应的数字信号后将之送到定位芯片中专门处理,进而产生X-Y坐标偏移数据。

相关文档
最新文档