测量电压驻波比(VSWR)量化传输线的阻抗失配

测量电压驻波比(VSWR)量化传输线的阻抗失配
测量电压驻波比(VSWR)量化传输线的阻抗失配

关键词: radio, rf, swr, vswr, standing wave ratio, reflected energy,

rf reflections, transmission line, antenna load, standing waves

相关型号

设计指南5432

测量电压驻波比(VSWR)量化传输线的阻抗失配

Wilson Tang, 技术员工

Tom Au-Yeung, 客户应用总监

? Aug 26, 2013, Maxim Integrated Products, Inc.

摘要:RF传输线的阻抗失配会引起功率损耗和反射,电压驻波比(VSWR)是用于衡量传输线缺陷的一项指标。本文表述了VSWR定义,说明如对其进行计算,并在最后给出了一个天线VSWR的检测系统。

类似文章发表在2012年10月出版的电源系统设计杂志。

定义和背景

在RF传输系统中,驻波比(SWR)用来衡量RF信号从功率发射源通过传输线,最终送入负载的传输效率。例如,功率放大器通过一段传输线连接到天线。SWR反映了入射波与反射波的比率,SWR越高表明传输线效率越低、反射能量越大,可能导致发射机损坏,降低发射效率。由于SWR通常用电压比表示,也称为电压驻波比(VSWR)。

VSWR和系统效率

一个理想系统是从功率源100%地将能量传送到负载,这需要信号源阻抗、传输

线及其它连接器的特征阻抗与负载阻抗精确匹配。由于理想的传输过程不存在干扰,信号交流电压在传输线两端保持相同。

而在实际系统中,阻抗失配将会导致部分功率反射到信号源(如同一个回波)。反射引起叠加和相消干扰,从而在不同时间、不同距离在传输线上产生电压波峰、

波谷。VSWR用于度量这些电压的变化,它是传输线上任何位置的最高电压与最低电压之比。

由于理想系统中电压保持不变,其VSWR为1.0,通常表示为1:1。产生反射时,电压发生变化,VSWR会增大,例如,使VSWR达到1.2或1.2:1。

反射能量

当入射波到达边界,例如,通过无损传输线到达负载时(图1),一部分能量传送到负载,而另一部分能量则会反射回去。反射系数表示入射波与反射波的比:Γ = V-/V+(式1)

式中,V-是反射波,V+是入射波。VSWR与电压反射系数(Γ)的关系为:

VSWR = (1 + |Γ|)/(1 – |Γ|)(式2)

图1. 传输线电路说明了传输线与负载之间的阻抗失配,在边界产生的反射为Γ,入射波为V+、反射波是V-。

可以直接利用SWR计测量VSWR,矢量网络分析仪(VNA)等RF测试仪器可以用来测量输入端口(S11)和输出端口(S22)的反射系数。S11和S22等同于输入口、输出口的反射系数Γ,VNAs数学模型也可以直接用来计算、表征VSWR。

输入和输出端口的回波损耗可以通过反射系数S11或S22计算:

RL IN = 20log10|S11| dB(式3)

RL OUT = 20log10|S22| dB(式4)

可以通过传输线的特性阻抗和负载阻抗计算反射系数,公式如下:

Γ = (Z L - Z O)/(Z L + Z O)(式5)

式中,Z L是负载阻抗,Z O是传输线的特性阻抗(图1)。

VSWR也可以用Z L和Z O表示。把式5代入式2,可以得到:

VSWR = [1 + |(Z L - Z O)/(Z L + Z O)|]/[1 - |(Z L - Z O)/(Z L + Z O)|] = (Z L + Z O + |Z L - Z O|)/(Z L + Z O - |Z L - Z O|)

如果Z L > Z O, |Z L - Z O| = Z L - Z O

则:

VSWR = (Z L + Z O + Z L - Z O)/(Z L + Z O - Z L + Z O) = Z L/Z O.(式6)

如果Z L < Z O, |Z L - Z O| = Z O - Z L

则:

VSWR = (Z L + Z O + Z O - Z L)/(Z L + Z O - Z O + Z L) = Z O/Z L.(式7)

我们注意到上面所提到的VSWR是相对于1的比值,例如VSWR为1.5:1。VSWR 有两种特殊情况∞:1和1:1。负载开路时,VSWR为∞:1,当负载与传输线特性阻抗完全匹配时,VSWR为1:1。

VSWR的定义是来自于传输线自身产生的驻波:

VSWR = |V MAX|/|V MIN|(式8)

其中,V MAX是传输线上驻波电压的最大值,V MIN是传输线上驻波电压的最小值。最大值由入射波和反射波同向叠加产生。因此:

V MAX = V+ + V-(式9)

最小值由入射波和反射波反向叠加产生:

V MIN = V+ - V-(式10)

把式9和式10代入式8,可得:

VSWR = |V MAX|/|V MIN| = (V+ + V-)/(V+ - V-)(式11)

把式1代入式11,得到:

VSWR = V+(1 + |Γ|)/(V+(1 - |Γ|) = (1 + |Γ|)/(1 – |Γ|)(式12)

式12与本文式2相等。

VSWR检测系统

MAX2016为双通道对数检测器/控制器,它与环行器和衰减器配套使用,用于监测天线的VSWR/回波损耗。MAX2016可输出两路功率检测器的差。

MAX2016与MAX5402数字电位器和MAX1116/MAX1117 ADC组成一个完整的VSWR监测系统(图2)。数字电位器用作MAX2016输出参考电压的分压器,内部电压基准可提供2mA典型电流,该电压用于设置内部比较器的门限电压(CSETL)。当输出电压高于或低于门限电压(COUTL)时,产生报警输出。MAX1116 ADC的工作电压为2.7V至3.6V,MAX1117 ADC的工作电压为4.5V 至5.5V。ADC也可以利用MAX2016提供电压基准,ADC与微控制器共同监测天线的VSWR。

图2. 配套ADC用于构建VSWR实时监测系统,用外部数字电位器配置比较器

输出(COUTL)报警门限。

总结

本指南了SWR或VSWR是衡量传输线路缺陷和效率的一种方式。VSWR与反射系

数相关。比值越高说明失配越严重,而1:1是完全匹配的。匹配或失配取决于驻

波的最大和最小幅度。SWR是传输能量与反射能量的比值。MAX2016是用来举

例说明如何创建一个系统来监测天线的VSWR。

相关型号

MAX1116

单电源、低功耗、串行8位ADC

MAX1117

单电源、低功耗、2通道、串行8位ADC

MAX2016

LF至2.5GHz、双路对数检测器/控制器,用于功率、增益和VSWR

MAX5402

256抽头、μPoT?、低漂移数字电位器

SI9000各阻抗计算说明

阻抗培训 1.外层单端:Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) Cer:绿油的介电常数(我司按3.3MIL) Zo:由上面的参数计算出来的理论阻值

2.外层差分:Edge-Coupled Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:阻抗线间距(客户原稿) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) C3:基材上面的绿油厚度(0.50MIL) Cer:绿油的介电常数(我司按3.3MIL)

3.内层单端:Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

4.内层差分:Edge-Couled Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:客户要求的线距 T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

传输线反射以及终端电阻

传输线反射以及终端电阻 传输线反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 按照传输线理论,当负载与输出不匹配时,信号的传输为非理想行波状态(驻波或反射),会出现波形失真或衰减。阻抗匹配则传输功率大,对于一个电源来讲,当它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器 ,输出阻抗50 Q,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即电缆长度可以忽略的话,就无须考惠阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了;反之则在传输中有能量损失。在高速的设计中,阻抗的匹配与否关系到信号质量的优劣。阻抗匹配的技术可以说丰富多样,但是在具体的系统中怎样才能比较合理地应用,需要衡量多个方面的因素。例如,在系统设计中,很多采用的都是源端的串联匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式,以下逐一分析。例如,差分的匹配多数采用串联终端的匹配;时钟采用并联终端匹配。1)串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻 R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。串联终端匹配后的信号传输具有以下特点:(1)由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播。(2)信号在负载端的反射系数接近十1,因此反射信号的幅度接近原始信号幅度的50%。(3)反射信号与源端传播的信号叠加,使负载端接收到的信号与原始信号的幅度近似相同。(4)负载端反射信号向源端传播,到达源端后被匹配电阻吸收。(5)反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5 V的CMOS驱动器,在低电平时典型的输出阻抗为37 Q,在高电平时典型的输出阻抗为45 Q;TTL驵动器和CMOS驱动器一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。2)并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。并联终端匹配后的信

驻波测量线的调整与电压驻波比测量

实验一驻波测量线的调整 一、实验目的 1、熟悉测量线的使用及探针的调谐。 2、了解波到波导波长的测量方法。 二、实验原理 1、微波测量系统的组成 微波测量一般都必须在一个测试系统上进行。测试系统包括微波信号源,若干波导元件和指示仪表三部分。图1是小功率微波测试系统组成的典型例子。 图1 小功率波导测试系统示意图 进行微波测量,首先必须正确连接与调整微波测试系统。信号源通常位于左侧,待测元件接在右侧,以便于操作。连接系统平稳,各元件接头对准,晶体检波器输出引线应远离电源和输入线路,以免干扰。如果连接不当,将会影响测量精度,产生误差。 微波信号源的工作状态有连续波、方波调制和锯齿波调制三种信号通过同轴—波导转换接头进入波导系统(以后测试图中都省略画出同轴—波导转换接头)。隔离器起去耦作用,即防止反射波返回信号源影响其输出功率和频率的稳定。可变衰减器用来控制进入测试系统的功率电平。频率计用来测量信号源的频率。驻波测量线用来测量波导中驻波的分布。波导的输出功率是通过检波器进行检波送往指示器。

若信号为连续波,指示器用光点检流计或直流微安表。若信号输出是调制波,检波得到的低频信号可通过高灵敏度的选频放大器或测量放大器进行放大,或由示波器数字电压表、功率计等来指示。后一种测量方法的测量精度较高,姑经常采用调制波作被测信号,测试系统的组成应当根据波测对象作灵活变动。 系统调整主要指信号源和测量线的调整,以及晶体检波器的校准。信号源的调整包括振谐频率、功率电平及调谐方式等。本实验讨论驻波测量线的调整和晶体检波器的校准。 2、测量线的调整及波长测量 (1)驻波测量线的调整 驻波测量线是微波系统的一个常用测量仪器,它在微波测量中用处很广,如测驻波、阻抗、相位、波长等。 测量线通常由一端开槽传输线,探头(耦合探针,探针的调谐腔体和输出指示)、传动装置三部分组成,由于耦合探针深入传输线而引起不均匀性,其作用相当于在线上并联一个导纳,从而影响系统的工作状态(详见第二部分二)。为了减小影响,测试前必须仔细调整测量线。 实验中测量线的调整一般包括选择合适的探针穿深度,调谐探头和晶体检波特性。 探针电路的调谐方法:先使探针的穿深度适当,通常取~,然后测量线终端接匹配负载,移动探针至测量线中间部分,调节探头活塞,直至输出指示最大。 (2)波长测量 测量波长常见的方法有谐振法和驻波分析法。前者用谐振式波长计(为使用方便,直接以频率刻度,故也称直读式频率计)测量。后者是用驻波测量线测量,当测量线终端短路时,传输线上形成纯驻线,移动测量线探针,测出两个相临驻波最小点之间的距离,即可求得波导波长。 在传输电磁波的同轴系统中,按上述方法测出的波导波长就是工作波长,即λg=λ;而在波导系统中,测量线册出的波长是波导波长λg,根据波导波长和工作波长的关系式:

CB阻抗计算

阻抗线计算 一.传输线类型 1 最通用的传输线类型为微带线(microstrip)和带状线(stripline) 微带线(microstrip):指在 PCB外层的线和只有一个参考平面的线,有非嵌入/嵌入两种 如图所示:(图1) 非嵌入(我们目前常用) (图2) 嵌入(我们目前几乎没有用过) 带状线:在绝缘层的中间,有两个参考平面。如下图: (图3) 2 阻抗线 2.1差动阻抗(图4)

差动阻抗,如上所示,阻抗值一般为90,100,110,120 2.2特性阻抗(图5) 特性阻抗: 如上如所示,.阻抗值一般为50 ohm,60ohm 二. PCB叠层结构 1板层、PCB材质选择 PCB是一种层叠结构。主要是由铜箔与绝缘材料叠压而成。附图为我们常用的1+6+1结构的,8层PCB叠层结构。(图6) 首先第一层为阻焊层(俗称绿油)。它的主要作用是在PCB表面形成一层保护膜,防止导

体上不该上锡的区域沾锡。同时还能起到防止导体之间因潮气、化学品等引起的短路、生产和装配中不良操作造成的断路、防止线路与其他金属部件短路、绝缘及抵抗各种恶劣环境,保证PCB工作稳定可靠。

防焊的种类有传统环氧树脂IR烘烤型,UV硬化型, 液态感光型(LPISM-Liquid Photo Imagable Solder Mask)等型油墨, 以及干膜防焊型(Dry Film, Solder Mask),其中液态感光型为目前制程大宗,常用的有Normal LPI, Lead-free LPI,Prob 77. 防焊对阻抗的影响是使得阻抗变小2~3ohm左右 阻焊层下面为第一层铜箔。它主要起到电路连通及焊接器件的作用。硬板中使用的铜箔一般以电解铜为主(FPC中主要使用压延铜)。常用厚度为0.5OZ及1OZ.(OZ为重量单位在PCB行业中做为一种铜箔厚度的计量方式。1OZ表示将重量为1OZ的铜碾压成1平方英尺后铜箔的厚度。1OZ=0.035mm). 铜箔下面为绝缘层..我们常用的为FR4半固化片.半固化片是以无碱玻璃布为增强材料,浸以环氧树脂.通过120-170℃的温度下,将半固化片树脂中的溶剂及低分子挥发物烘除.同时,树脂也进行一定程度的反应,呈半固化状态(B阶段).在PCB制作过程中通过层压机的高温压合.半固化中的树脂完全反应,冷却后完全固化形成我们所需的绝缘层. 半固化片中所用树脂主要为热塑性树脂, 树脂有三种阶段: A阶段:在室温下能够完全流动的液态树脂,这是玻钎布浸胶时状态 B阶段:环氧树脂部分交联处于半固化状态,在加热条件下,又能恢复到液体状态 C阶段:树脂全部交联为C阶段,在加热加压下会软化,但不能再成为液态,这是多层板压制后半固化片转成的最终状态. 常用半固化片的类型(表一) 由于半固化片在板层压合过程中,厚度会变小,因而半固化片的原始材料厚度和压合后的厚度不一样,因而必须分清厚度是原始材料厚度还是完成厚度。另外,半固化片的厚度不是固定不变的,根据板厚、板层和板厂不同,而有所不同。上述只是一例。 同时该叠层中用了两块芯板,即core(FR-4).芯板是厂家已压合好的带有双面铜的基材,

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

微波实验二传输线上的波的测量与阻抗匹配教材

微波技术与天线实验报

(1)负载开路,负载短路,与负载匹配 负载开路与短路即为令终端负载L Z 为∞或0,而对于功率输出,当负载匹配时会得到最大的功率输出;对于电源电压输出,指电源内阻越小在内阻上的压降越小,会得到最大的电压输出,就是说电源的效率最大,当内阻r=0,电源的效率等于1(100%)。 (1)传输线的工作状态 传输线的工作状态取决于传输线终端所接的负载,有三种状态。其中负载开路与短路即为令终端负载L Z 为∞或0导致传输线工作于驻波状态,Z L =Z 0时传输线工作于行波状态。 行波状态:传输线上无反射波出现,只有入射波的工作状态。 当传输线终端负载阻抗等于传输线的特性阻抗,即Z L =Z 0时,线上只有入射波(反射系数为零)。此时 z z e U e Z I U z U '' =+= 'γγ20222 )( z z e I e Z Z I U z I ' +'=+= 'γγ20 0222)( 对于无损耗线=γj β,则

本实验用微带传输线模块模拟测量线。利用驻波测量技术测量传输线上的波,可以粗略地观察波腹、波节和波长,进而测量反射系数|Γ|和驻波比ρ。若条件允许可以使用反射测量电桥以较精确地测量反射损耗。 (1)实验仪器 RZ9908综合实验箱频率合成信号发生器电场探头频谱分析仪反射测量电桥终端负载(2)实验思路 用驻波分布法测量微带传输线上电磁波的波长。观测微带传输线上驻波分布,测量驻波的波腹、波节、反射系数和驻波比。 (3)实验过程 实验装置大致如下,应用实验箱固定模块可简化操作。 原理如下: 实验连接图如下:

微带传输线模块测量端开路(不接负载)。 把频率合成信号发生器设置成为:CENTER FREQUENCY=1000MHz,SPAN=1MHz,参考电平-30dBm,在保证信号不超出屏幕顶端的情况下,参考电平越小越好,尽量使信号谱线的峰值显示在屏幕的第一格和第二格之间。 频率合成信号发生器设置为输出频率1000MHz和最小衰减量。 如图1连接,逐次移动探头。记录探头位置刻度读数和频谱分析仪读数,必要时可调节信号发生器的输出功率或频谱分析仪的参考电平。 改变频率合成信号发生器的输出频率为800MHz,再重复进行驻波分布测试。 用反射测量电桥来测量驻波损耗,按图2连接好实验装置

电压驻波比

电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1, 如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表? VSWR及标称阻抗 发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。 如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就可以了。 VSWR不是1时,比较VSWR的值没有意义 正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。 VSWR都=1不等于都是好天线 影响天线效果的最重要因素:谐振 让我们用弦乐器的弦来加以说明。无论是提琴还是古筝,它的每一根弦在特定的长度和张力下,都会有自己的固有频率。当弦以固有频率振动时,两端被固定不能移动,但振动方向的张力最大。中间摆动最大,但振动张力最松弛。这相当于自由谐振的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。 我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。具体表现就是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。我们在实际中不难发现,拉弓或者拨弦位置错误会影响弦的发声强度,但稍有不当还不至于影响太多,而要发出与琴弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱,即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.360docs.net/doc/8211375266.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

实验五天线的输入阻抗与驻波比测量

实验五天线的输入阻抗与驻波比测量 一、实验目的 1.了解单极子的阻抗特性,知道单极子阻抗的测量方法。 2.了解半波振子的阻抗特性,知道半波振子阻抗与驻波比的测量方法。 3.了解全波振子的阻抗特性,知道全波振子阻抗与驻波比的测量方法。 4.了解偶极子的阻抗特性,知道偶极子阻抗与驻波比的测量方法。 二、实验器材 PNA3621及其全套附件,作地用的铝板一块,待测单极子3个,分别为Φ1,Φ3,Φ9,长度相同。短路器一只,待测半波振子天线一个,待测全波振子天线一个,待测偶极子天线一个。 三、实验步骤 1.仪器按测回损连接,按【执行】键校开路; 2.接上短路器,按【执行】键校短路; 3.拔下短路器,插上待测振子即可测出输入阻抗轨迹。 4.拔下短路器,接上待测半波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.184m,再将光标上移到【矢量】处,按【执行】键。 5.拔下短路器,接上待测全波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.133m,再将光标上移到【矢量】处,按【执行】键。 6.拔下短路器,接上待测偶极子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.074m,再将光标上移到【矢量】处,按【执行】键。 四、实验记录

单极子?3: 单极子?2: 单极子?1: 偶极子: 半波振子: 全波振子: 五、实验仿真 以下为实验仿真及其结果: 六、实验扩展分析 单极子天线是在偶极子天线的基础上发展而来的。最初偶极子天线有两个臂,每个臂长四分之一波长,方向图类似面包圈;研究人员利用镜像原理,在单臂下面加一块金属板,变得到了单极子天线。单极子天线很容易做成超宽带。至于其他方面的电性能,基本与偶极子天线相似。 上图左边为单极子,右边为偶极子。虚线根据地面作为等势面镜像而来,单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。因此可以理解为:上半个偶极子+对称面作为接地=单极子。由于单极子接地面就是偶极子的对称面,因此单极子馈电部分输入端的缝隙宽度只有偶极子的一半,根据电压等于电场的线积分,这导致输入电压只有偶极子的一半。又因为对称性,单极子和偶极子的电流大小相同,因此单极子的输入阻抗是偶极子的一半。同理,辐射电阻或辐射功率也是偶极子的一半。 由于单极子只辐射上半空间,而偶极子辐射整个空间,因此单极子的方向性是偶极子的

特性阻抗计算公式推导过程

特性阻抗计算公式推导过程 王国海 以下内容供参考。 1.传输线模型 2 符号说明 R L G C 分布式电阻电感电导电容 3 计算过程 (1) u(△z)-u=-R*?z*i-L*△z*?i ?t i(△z)- i=-G*△z*u(△z)?c?△z??u (2) ?t (1)(2) 两边同除以△z,得到电报公式

?u ?z +Ri+L ?i ?t =0 (3) ?i ?z +Gu+C ?u ?t =0 (4) u(z,t)=U(z)e jωt (5) i(z,t)=I(z)e jωt (6) 由(5)(6) 计算得道下列公式 ?u(z,t)?z =dU(z)dz e jωt (7) ?u(z,t)?t =U(z) e jωt jω (8) ?i(z,t)?z =dI(z)dz e jωt (9) ?i(z,t)?t =I(z) e jωt jω (10) 将(7)(8) (9) (10) 代入公式(3) dU(z)dz e jωt +Ri+L I(z) e jωt jω=0,i 用公式(6)代入, dU(z)dz e jωt +R I(z)e jωt +L I(z) e jωt jω=0 化简得到: dU(z)dz =-(R+ jωL)I(z) (11) 同理7)(8) (9) (10)代入(4)可得 dI(z)dz =-(G+ jωC)U(z) (12) 由(11)(12) 得到 dU(z)dI(z)=(R+ jωL)I(z) (G+ jωC)U(z) (13) 交叉相乘, (G + jωC)U(z) dU(z)= (R + jωL)I(z)dI(z) 两边积分, ∫(G + jωC)U(z) dU(z)=∫(R + jωL)I(z)dI(z) 12(G + jωC)U(z)2=12(R + jωL)I(z)2 U(z)2I(z)2=(R+ jωL)(G+ jωC) 两边开根号 Z=U/I=√(R+ jωL)(G+ jωC) 假定R=0,G=0 (无损)得到特性阻抗近似公式 Z=√L C

驻波比的测量 微波原理

电子信息工程系实验报告课程名称:微波原理 实验项目名称:驻波比的测量实验时间:2010-5-27 班级:通信072 姓名:学号:710705229 实验目的: 掌握测量驻波比的原理和常用方法 【实验内容】 在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。 【实验框图与仪器】 网络分析仪信号源被测件频谱仪 b. c. 图1 驻波比测量系统图 【实验原理】 测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及其位置,从而得到驻波比(或反射系数)和波导波长。通过驻波测量可以测出阻抗、波长、相位和Q值等其它参量。 测量电压驻波系数:

可直接由测量线探针分别处于波腹及波节位置时的电流表读出Imax 和Imin ,求出驻波比。 若驻波腹点和节点处电表读数分别为m ax I ,m in I 则电压驻波系数ρ: min max min max I I E E == ρ (1-2) 当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可采用节点偏移法。 节点偏移法测量驻波比的测试系统如图5示。 测量方法:逐点改变短路活塞的位置(读数S ),在测量线上用交叉读数法跟踪测得某一波节点的位置(读数为D ),作出S 和(D+S )+KS 的关系曲线,其中12 1 -= λλK ,1λ是取下待测元件,固定短路活塞位置,移动测量线探针测得的测量线中的波长;2λ是固定测量探针,移动短路活塞,用交叉读数法在短路活塞上测得的波长。由所得实验曲线求得最大偏移量?,按下式求出驻波比 ) sin(1)sin( 1 1πλπρ?-?+= (1-18) 当?很小时,可近似为1 21λπρ? +≈ (1-19) 中等驻波比测量(6≤ρ),可采用直接测量沿线驻波最大点和最小点场强的直接法来测量。为了提高 精确度,可以测量多个最大点和最小点,然后按下式求得驻波比 其中m ax I 和m in I 为指示器上对应的最大值和最小值(直线律检波)或其方根值(平方律检波)。 2、等指示度法(大驻波比 5>ρ) 当被测器件的驻波系数大于5时,驻波腹点和节点的电平相差很大,如果在最小点检波晶体的输出能使仪表有足够的指示读数,则在最大点上检波晶体的特性从平方律转向直线律,因而无法在同一情况下测得最大点和最小点,按直接法求取大驻波系数会带来较大的误差,因此采用等指示度法,也就是通过测量驻波图形中波节点附近场的分布规律的间接方法,求出驻波系数,如图6。 ??? ? ?????? ??-= g g n W W k λπλπρsin cos 2/2 (1.2.4) 式中 min min I kI k 最小点读数测量点读数= n 为晶体检波律,一般n=2,' h h l l W -==2d ,g λ为测量线上的 波长即波导波长 3、 功率衰减法 方法是:改变测量电路中可变衰减器的衰减量,使探针位于驻波腹点和节点时指示电表的读数相同, 图5 节点偏移法测量驻波比的测试系统

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义

我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司)=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.

传输线的反射干扰分析

传输线的反射干扰分析 一.引言 在微机系统中,接口与其它设备之间的连接要通过一定长度的电缆来实现,在计算机内部,印制电路板之间需要通过焊接线来连接。在一些其它的脉冲数字电路中也存在这类事的问题。脉冲信号包含着很多的高频成分,即使脉冲信号本身的重复频率并不十分高,但如果前沿陡峭,在经过传输通道时,将可能发生信号的畸变,严重时将形成振荡,破坏信号的正常传输和电路的正常工作。脉冲信号的频率越高,传输线的长度越长,即便问题越严重。 二.传输线的反射干扰及其造成的危害 任何信号的传输线,对一定频率的信号来说,都存在着一定的非纯电阻性的波阻抗,其数值与集成电路的输出阻抗和输入阻抗的数值各不相同,在他们相互连接时,势必存在着一些阻抗的不连续点。当信号通过这些不连续点时便发生“反射”现象,造成波形畸变,产生反射噪声。另外,较长的传输线必然存在着较大的分布电容和杂散电感,信号传输时将有一个延迟,信号频率越高,延迟越明显,造成的反射越严重,信号波形产生的畸变也就越厉害。这就是所谓的“长线传输的反射干扰”。对于TTL器件来说,“过冲”超过6V时,对器件输入端的P-N结就有造成损坏的可能。同时从3V~-6V的大幅度下降,将会对邻近的平行信号产生严重的串扰,且台阶将造成不必要的延时,给工作电路造成不良的后果。一旦形成震荡,危害就更严重,这种振荡信号将在信号的始端和终端同时直接构成信号噪声,从而形成有效的干扰。 三.信号传输线的主要特性及阻抗匹配 1.信号传输线的特征阻抗 对于计算机及数字系统来说,经常使用的信号传输线主要有单线(含接连线和印制线等)、双绞线、带状平行电缆、同轴电缆和双绞屏蔽电缆等。传输线的特性参数很多,与传输线的反射干扰有关的参数主要有延迟时间和波阻抗。一般说来,反显得信号延迟时间最短,同轴电缆较长,双绞线居中,约为6ns/m。波阻抗为单线最高,约为数百欧,双绞线的波阻抗,双绞线的波阻抗一般在100Ω-200Ω之间,且绞花越短,波阻抗越低。从抗干扰的角度讲,同轴电缆最好,双绞线次之,而带状电缆和单线最差。 2.阻抗的匹配 当传输线终端不匹配时,信号被反射,反射波达到始端时,如始端不匹配,同样产生反射,这就发生了信号在传输线上多次往返反射的情况,产生严重的反射干扰。因此要尽可能做到始端和终端的阻抗匹配,是抑制反射干扰的有效途径。为此,确定“长线”的最佳长度是至关重要的。 在实际实践中,一般以公式的经验来决定实际电路信号传输线的最大允许不匹配长度(也即“长线”界限)。其中,为电路转换边沿的平均宽度,对于常用的中速TTL电路,取15ns,为传输线的延迟时间。可以计算出,其最大允许匹配长度分别为1m,0.6m和0.4m,否则应考虑阻抗匹配。对于高速运行的ECL器件,由于其传输时间只有4ns-5ns,故传输长度一般超过20cm时,就应考虑匹配问题。 阻抗匹配的方法可以分为始端阻抗匹配和终端阻抗匹配。 始端阻抗匹配的方法是在电路的输出端,即传输线的输入端串接一个电阻R,使电路的输出电阻(对TTL而言分别为14R和135R)与所用传输线的波阻抗(如双绞线典型波阻抗为130R)相近似,。这种方法简单易行,波形畸变也较小。但由于电流流经,使在线低压电平上升,从而降低信号低电平的噪声容限。一般规定低电平的升高要小于0.2V,为此应考虑减少负载们的个数来减小电阻R上的电压降。 无源终端匹配可以在接收端的逻辑门的输入端,即传输线的终端并联一个电阻,其阻值应近似等于传输线的波阻抗,。这种方法一般仅限于发送端采用功率驱动门的场合,如用普通

已交!3-1 微波系统中电压驻波比的测量第9周三 5-8节

3-1 微波系统中电压驻波比的测量 微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波不同. 从图3-1-1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者. 与无线电波相比,微波有下述几个主要特点. 图3-1-1 电磁波的分类 1.波长短(1m ~1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用. 2.频率高:微波的电磁振荡周期(10-9~10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替. 另外,微波在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替. 3.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV ,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内. 人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟、原子钟. 4.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯、宇宙通讯和射电天文学的研究和发展提供了广阔的前景. 综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同. 微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量. 微波实验是近代物理实验的重要组成部分. 国外发达国家的微波中继通信在长途通信网中所占的比例高达50%以上. 据统计美国为66%,日本为50%,法国为54%. 我国自1956年从东德引进第一套微波通信设备以来,经过仿制和自发研制过程,已经取得了很大的成就,在1976年的唐山大地震中,在京津之 λ/m 3 6 109 1012 1015 1018 10-9 10-11 10-6 10-3 100 103 106 f /Hz 广播 电视 红外 可见光 紫外 电波 无线电波 光波 X 射线 微波

传输线阻抗匹配方法

传输线阻抗匹配方法 匹配阻抗的端接有多种方式,包括并联终端匹配、串联终端匹配、戴维南终端匹配、AC终端匹配、肖特基二极管终端匹配。 1.并联终端匹配 并联终端匹配是最简单的终端匹配技术,通过一个电阻R将传输线的末端接到地或者接到V CC上。电阻R的值必须同传输线的特征阻抗Z0匹配,以消除信号的反射。终端匹配到V CC可以提高驱动器的源的驱动能力,而终端匹配到地则可以提高电流的吸收能力。 并联终端匹配技术突出的优点就是这种类型终端匹配技术的设计和应用简便易行,在这种终端匹配技术中仅需要一个额外的元器件;这种技术的缺点在于终端匹配电阻会带来直流功率消耗。另外并联终端匹配技术也会使信号的逻辑高输出电平的情况退化。将TTL输出终端匹配到地会降低V OH的电平值,从而降低了接收器输入端对噪声的免疫能力。 对长走线进行并联终端匹配后仿真,波形如下: 2.串联终端匹配 串联终端匹配技术是在驱动器输出端和信号线之间串联一个电阻,是一种源

端的终端匹配技术。驱动器输出阻抗R0以及电阻R值的和必须同信号线的特征阻抗Z0匹配。对于这种类型的终端匹配技术,由于信号会在传输线、串联匹配电阻以及驱动器的阻抗之间实现信号电压的分配,因而加在信号线上的电压实际只有一半的信号电压。 而在接收端,由于信号线阻抗和接收器阻抗的不匹配,通常情况下,接收器的输入阻抗更高,因而会导致大约同样幅度值信号的反射,称之为附加的信号波形。因而接收器会马上看到全部的信号电压(附加信号和反射信号之和),而附加的信号电压会向驱动端传递。然而不会出现进一步的信号反射,这是因为串联的匹配电阻在接收器端实现了反射信号的终端匹配。 串联终端匹配技术的优点是这种匹配技术仅仅为系统中的每一个驱动器增加一个电阻元件,而且相对于其它的电阻类型终端匹配技术来说,串联终端匹配技术中匹配电阻的功耗是最小的,而且串联终端匹配技术不会给驱动器增加任何额外的直流负载,也不会在信号线与地之间引入额外的阻抗。 由于许多的驱动器都是非线性的驱动器,驱动器的输出阻抗随着器件逻辑状态的变化而变化,从而导致串联匹配电阻的合理选择更加复杂。所以,很难应用某一个简单的设计公式为串联匹配电阻来选择一个最合适的值。 对长走线进行串联终端匹配后仿真,波形如下: 3.戴维南终端匹配

实验五--微波电压驻波比与反射系数的测量

实验五--微波电压驻波比与反射系数的测量

实验五微波电压驻波比与反射系数的测量、分析与计算 一、实验目的 (1)学会驻波比的测量、分析和计算; (2)通过驻波比及驻波波节点测量数据,学 会分析和计算反射系数。 二、实验原理 在任何的微波传输系统中,为了保证传输效率,减少传输损耗和避免大功率击穿,必须实现阻抗的匹配。描述系统匹配程度的参数有电压驻波比和反射系数。 驻波比测量是微波测量中最基本和最重要的内容之一。在传输线中若存在驻波,将使能量不能有效地传给负载,因而增加损耗。在大功率情况下由于驻波存在可能发生击穿现象。因此驻波测量是非常重要的内容。在测量时,通常是测量电压驻波比,即波导中电场(电压) 最大值与最小值之比,即: 测量驻波比的方法与仪器有多种。驻波比的各种测量方法如表5-1 所示。 表5-1 驻波比的各种测量方法 测量方法适用范围特点

直接法 中、小驻波比 (ρ<6) 测量方法简便,测量误差除与信号源和测量线的系统有关外,主要决定于指示器的读数误差 等指示度法 大驻波比 (ρ>6) 测量方法简单,ρ 值测量时需要确定晶体检波律。测量误差决定于等指示度宽带 w 的读数误差,探针导纳对测量精度影响较小 功率衰减法 任意驻波比(常用于测量大驻波比) 测量方法复杂,标准衰减器两端匹配良好(ρ<1.02)时可得到较高 精度 移动终端法 小驻波比 (ρ<1.1) 能分离两个混合在一起的小反射波,测量精度与直接法相同,由于已将两种反射分离开,所以准确度大大提高 S 曲线法(即 节点偏移法) 任意驻波比(常用于测量小驻波比) 测量方法复杂,测量准确度较高,但测量精度受到信号源的频率 漂移影响较大 本实验仅介绍直接法和等指示度法。 1. 直接法 直接测量沿线驻波的最大点和最小点场强,由式(5-1)直接求出电压驻波比的方法称为直接法。此方法适用于中小电压驻波比 (ρ<6) 的测量。 若驻波波腹点和波节点处电表指示读数分别为 I max 、I min ,对于小驻波比,晶体二极管为平方律(n =2)检波时,则上式驻波比为: min max min max I I E = = E ρ (5-2) 当电压驻波比在 1.05<ρ<1.5 时,驻波的最大值和最小值相差不大,且不尖锐,不易测量准。

电压驻波比

电压驻波比(Voltage Standing Wave Ratio,VSWR)是用于描述电路阻抗失配程度的参数。差的VSWR可能引起RF电路中的许多问题。VSWR引起的最坏情况是RF/微波高功率放大器(HPA)的永久性损坏,这通常被称为VSWR故障 什么是电压驻波比(VSWR)? 传输在线的电压和电流由特定的比率联系在一起,该比率关系就是通常所 说的特征阻抗(Z O )。如果信号源加在阻抗大小为特征阻抗的负载上,那么所有资用功率均施加到该负载上。传输在线的任何失配会使负载阻抗发生变化,从而引起传输在线的反射电流和电压,由此产生了驻波。入射波和反射波发生相长干 涉和相消干涉,导致了图1中示出的最大值(V max )和最小值(V min )。电压驻波 比即是描述该失配的参数,被定义为V max 和V min 的比值V max /V min 。 高VSWR的影响 理想的阻抗匹配(VSWR=1:1)可以使功率无损传输,而严重的阻抗失配(高VSWR)将导致传输到负载的功率减少。高VSWR可能引起多种系统问题,其中对VSWR最为敏感的组件是功率放大器,一般在天线之前。高VSWR可能造成无线电装置的工作范围缩小、发射信号使接收部分饱和、或者使无线电装置过热。更为严重的影响是损坏发射机并且击穿传输电介质。由于天线上反射回的信号在功率放大器处再次反射,然后重新发射出去,导致了类似多径现象,因此高VSWR可能引起电视广播系统的遮蔽衰落。 使用定向耦合器和RF对数检波器检测VSWR定向耦合器 如式(1)和图1所示,当已知反射系数时,可以计算VSWR。因此接下来的问题是如何检测反射系数。图2所示安置在电源和负载之间的定向耦合器,用于

传输线阻抗匹配的方法

传输线阻抗匹配的方法 传输线简介传输线(transmission line)输送电磁能的线状结构的设备。它是电信系统的重要组成部分,用来把载有信息的电磁波,沿着传输线规定的路由自一点输送到另一点。 以横电磁(TEM)模的方式传送电能和(或)电信号的导波结构。传输线的特点是其横向尺寸远小于工作波长。主要结构型式有平行双导线、平行多导线、同轴线、带状线,以及工作于准TEM模的微带线等,它们都可借助简单的双导线模型进行电路分析。各种传输TE模、TM模,或其混合模的波导都可认为是广义的传输线。波导中电磁场沿传播方向的分布规律与传输线上的电压、电流情形相似,可用等效传输线的观点分析。 传输线的特性传输线的均匀性 传输导体横截面的形状、使用的材料、导体间的间隔和导体周围的介质,在线路的全部长度上都保持均匀不变的,称为均匀传输线。否则便叫做不均匀传输线。均匀传输线的一次参数均匀地分布于整个传输线上,其数值不随考察点的位置而变化。 传输线在制造和建筑过程中可能出现的偏差,都规定有必要的允许范围。如果出现的不均匀性偏差不超过这些规定,都可以看作是均匀传输线。 性能参数 通常用衰减系数、相移系数、特性阻抗,或与之相对应的其它参数来描述。其数值仅与传输线的结构、几何尺寸、制造传输线使用的材料、工作波长(或工作频率)有关,见表。 传输线阻抗匹配的方法匹配阻抗的端接有多种方式,包括并联终端匹配、串联终端匹配、戴维南终端匹配、AC终端匹配、肖特基二极管终端匹配。 1、并联终端匹配 并联终端匹配是最简单的终端匹配技术,通过一个电阻R将传输线的末端接到地或者接到VCC上。电阻R的值必须同传输线的特征阻抗Z0匹配,以消除信号的反射。终端匹配到VCC可以提高驱动器的源的驱动能力,而终端匹配到地则可以提高电流的吸收能力。

相关文档
最新文档