分数计算题之裂项求和

分数计算题之裂项求和
分数计算题之裂项求和

六奥第三讲 分数计算题之裂项求和

教学课题:分数计算技巧(2)

教学课时:两课时

教学目标:在分数运算中,要提高分数运算的速度和正确率,除了掌握这些常规的运算法则外,我们还应该掌握一些特殊的运算技能和技巧,常用的分数运算技巧和方法,主要有凑整法、裂项法、约分法等,这堂课主要学习裂项法,会用裂项法解决简单的实际问题。

教学重难点:经历裂项的探究过程,观察裂项的规律。

教具准备:

本周通知:

教学过程:

一、故事导入

一天,旅店服务员碰上了一个难题:一下子来了11位旅客,每个人都要一个单人房间,可当时旅店里只有10间空房。来客都很坚决,非单人房不可。当时只好设法把这11位客人安排在10个客房中。而每个房间只许一人,这是无论如何也做不到的。可是,那位服务员想出了一个办法,他能解决这个伤脑筋的难题。

他的主意是,把第一位客人安排在1号房间,请他同意让第十一位客人暂时(5分钟左右)也在他房间里呆一下。这两位客人安排好后,他把其他客人逐一分配到其他各号房间去;把第三位客人分配到2号房;把第四位客人分配到3号房;把第五位客人分配到4号房;把第六位客人分配到5号房;把第7位客人分配到6号房,把第八位客人分配到7号房;把第九位客人分配到8号房;把第十位客人分配到9号房。这时第10号房间还空着,他就把暂时呆在1号房的第十一位客人请了过来,满足了全体旅客的要求。 这里问题何在呢?

二、新课学习

师:例1:4

31321211?+?+?怎么求? 师:谁来展示一下你的做法?根据学生摆的情况,师板书各种情况。(逐一相加)

师:还有不同的做法吗?

生:没有了。 师:211?=1- 21,321?= 21- 3

1,你能发现什么? 生:一个分数可以拆成两个分数的差,中间的都可以抵消掉。

师:很好,这里我们发现,拆项后,前一个分数的第二项和后一个分数的第一项是可以抵消的。

11111144771010131316

++++?????,你能发现它和上一题有什么区别吗? (教师要关注拆分的时候,两个分数分母的关系,到底是差几。在学生自主探索的基础上,教师注意引导学生:拆分之后,分数的大小会发生什么变化)

师:那我们就来看一下裂项公式。

)11(-b

a a

b k b a k -?=?)(

例2:11212313419899199100

?+?+?++?+?…

生:直接拆成1-

21+21- 31+…+991- 100

1,中间都可以抵消掉。 师:很好,这样最后剩下1-1001,就比较好算了。

这是我们比较简单的裂项,同学们理解一下,接下来我们来看一下稍微复杂的裂项。

例3:+++++3012011216121142

师:这种题目我们该怎么做呢?

生:(各抒己见)

师:有同学已经想到了,这一题是例题一的变型。

师:大家可以思考一下,怎么样运用刚才的方法解决呢?

生:……

师:很好,看来同学们都会基本的裂项方法。接下来,同学们自己做下例题三。

例4:11111123420261220420+++++

【思路点拨】可以把分数拆成两部分,整数部分和分数部分分别计算。

例5:99

971751531311×…×××++++ 师:同学们,拿到这道题你们该如何思考呢? 生:裂项变成1-

111335+-+…+197-199

,然后中间抵消掉。 师:那同学们观察一下,1-13与113?是不是相等的呢? 生:不相等。

师:为什么呢?(再次利用公式,引导孩子们,裂项时需要注意哪些问题)

这里我们观察到相乘的两个分母差是2,所以要怎么样?

生:乘以12

。 师:很好,接下来例题五,同学们先自己做做,看跟例题四有什么区别?

例6:3245671255771111161622222929

++++++?????? 【思路点拨】裂项时,分子刚好是两个相乘分母的差,可以直接裂项。

例7:57911131561220304256-+-+-

师:那么,同学们一起来看一看,这种有减法的题目,该怎样裂项呢?(找学生上台板书,然后让其

他学生提出自己的看法和意见)

师:很好,**同学的做法很好,接下来大家做下面的两个例题。

例8:1111...12123123 (10)

+++++++++++ 【思路点拨】将每一项的分母单独加起来后,刚好变成做过的形式。

例9、在自然数1~100中找出10个不同的数,使这10个数的倒数的和等于1。 师:我们做过这道题:+++++30

12011216121…190+110=1,那么这10个数究竟是哪10个数? 生:2,6,12,20,…90,10

三、课堂小结

看起来很复杂的分数计算题,如果用常规的方法去做,肯定是非常麻烦的,而且也难免做错。当我们通过观察,掌握了算式的特点,运用一些特殊的方法和技巧,就能使计算既巧妙又正确,化难为易,化繁为简。当然,这里介绍的方法是很有限的,希望大家能灵活运用,同时发现和找到更多的解题方法,从而提高自己分析问题,解决问题的能力。

四、作业

课堂作业:

家庭作业

五、板书设计

分数裂项求和

例题一: 例题二: 裂项公式:

六、课后反思

参考答案:

【课后习题】

1.

111111223344556++++=?????56

2. 111......=10111112

5960+++???112

3.

2222 109985443 ++++=????

7

15

4.

1111 133********

++++=

????

50

101

5.

3245671 255771111161622222929 ++++++=??????

1

2

6.11111111 612203042567290

+++++++=2

5

7.

5791113151719

1= 612203042567290

-+-+-+-+3

5

分数裂项求和

重点:清楚掌握几种简单的裂项求和的方法及其解答过程。 难点:能判断所处题目的特点,并用其对应的方法进行解答。

一、 作业检查:

平时成绩中上,卓师的小升初模拟试题测试结果,数学为46分

二、课前热身:

与学生探讨小升初的意义,互动中令学生明白考试的应对方式。

三、内容讲解:

先做几个题目:

(1) +?+?+?7

52532312……+1192?,

(2)求

2222 (1335579799)

++++????的和 这种题目就是分数裂项求和的运用。

分数裂项求和,分成减法裂项和加法裂项:

减法裂项就是:分母化成两个数的积,分子化成这两个数的差; 加法裂项就是:分母化成两个数的积,分子化成这两个数的和。

(1)+?+?+?752532312……+11

92?, 解:原式=

+?+?+?755-7533-5311-3……+1199-11?

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求1(1) n n +型分数求和 分析:因为111n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111(1)1 n n n n =-++ (二) 用裂项法求 1()n n k +型分数求和 分析:1() n n k +型。(n,k 均为自然数) 因为11111()[]()()() n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111()()n n k k n n k =-++ (三) 用裂项法求() k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=() k n n k + 所以 () k n n k +=11n n k -+

(四) 用裂项法求2()(2) k n n k n k ++型分数求和 分析: 2()(2) k n n k n k ++(n,k 均为自然数) 211()(2)()()(2)k n n k n k n n k n k n k =-+++++ (五) 用裂项法求1()(2)(3) n n k n k n k +++型分数求和 分析:1()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ (六) 用裂项法求 3()(2)(3)k n n k n k n k +++型分数求和 分析:3()(2)(3) k n n k n k n k +++(n,k 均为自然数) 311()(2)(3)()(2)()(2)(3) k n n k n k n k n n k n k n k n k n k =-++++++++ 记忆方法: 1.看分数分子是否为1; 2.是1时,裂项之后需要整体×首尾之差分之一; 3.不是1时不用再乘; 4.裂项时首尾各领一队分之一相减。

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求 1 (1) n n +型分数求和 分析:因为 111n n -+=11 (1)(1)(1) n n n n n n n n +-= +++(n 为自然数) 所以有裂项公式: 111 (1)1 n n n n =- ++ 【例1】 求 111 ......101111125960+++???的和。 111111111 ()()......()101111125960106012 =-+-++-= -= (二) 用裂项法求 1 () n n k +型分数求和 分析: 1 () n n k +型。(n,k 均为自然数) 因为 11111()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 。所以1111()()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ????? 111111*********()()()()()25727929112111321315= -+-+-+-+- 111111********* [()()()()()][]2577991111131315251515 =-+-+-+-+-=-= (三) 用裂项法求 () k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=()k n n k + 所以()k n n k +=11n n k -+ 【例3】 求 2222 (1335579799) ++++????的和 1111111198 (1)()()......( )13355797999999 =-+-+-++-=-= (四) 用裂项法求 2()(2) k n n k n k ++型分数求和 分析: 2()(2)k n n k n k ++(n,k 均为自然数) 则 211 ()(2) ()()(2) k n n k n k n n k n k n k = - +++++ 【例4】 计算: 4444 (135357939597959799) ++++???????? 11111111()()......()()133535579395959795979799 1132001397999603 =-+-++-+-????????=-= ?? (五) 用裂项法求 1 ()(2)(3) n n k n k n k +++型分数求和 分析: 1 ()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111 ()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ 【例5】 计算:111 ......1234234517181920+++ ????????? 1111111 [()()......()] 3123234 2343451718191819201111139[]312318192020520 =-+-++-????????????=--=???? (六) 用裂项法求 3()(2)(3) k n n k n k n k +++型分数求和 分析: 3()(2)(3) k n n k n k n k +++(n,k 均为自然数)

最新分数裂项法解分数计算

分数裂项计算 本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。 本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。 分数裂项 一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 (1)对于分母可以写作两个因数乘积的分数,即 1a b ?形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-?- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2)n n n ?+?+,1(1)(2)(3) n n n n ?+?+?+形式的,我们有: 1111[](1)(2)2(1)(1)(2) n n n n n n n =-?+?+?+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3) n n n n n n n n n n =-?+?+?+?+?++?+?+ 裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 二、“裂和”型运算: 常见的裂和型运算主要有以下两种形式: (1)11a b a b a b a b a b b a +=+=+??? (2)2222a b a b a b a b a b a b b a +=+=+??? 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。 【例 1】 111111223344556 ++++=????? 。

分数裂项求和

学生曹一诺学校年级六年级科目数学 教师陈作谦日期16年4月24日时段15:00-17:00 次数第一次课题 分数裂项求和 教学重点难点重点:清楚掌握几种简单的裂项求和的方法及其解答过程。难点:能判断所处题目的特点,并用其对应的方法进行解答。 教学步骤及教学内容一、作业检查: 平时成绩中上,卓师的小升初模拟试题测试结果,数学为46分二、课前热身: 与学生探讨小升初的意义,互动中令学生明白考试的应对方式。 三、内容讲解: 先做几个题目: (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? , (2)求 2222 ...... 1335579799 ++++ ???? 的和 这种题目就是分数裂项求和的运用。 分数裂项求和,分成减法裂项和加法裂项: 减法裂项就是:分母化成两个数的积,分子化成这两个数的差;加法裂项就是:分母化成两个数的积,分子化成这两个数的和。 (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? ,

解:原式= +?+?+?7 55 -7533-5311-3……+11 99-11? =( + ??+??+??)7 55-757()533-535()311-313 ……+( 11911 ?-11 99?) )11 191()7151()5131()3111(-+??+-+-+-= 11 191715151313111-+??+-+-+-= 11 111-= 11 10= (2)求 2222 (1335579799) ++++????的和 解:原式=+?+?+?7 55-75 33-53 11-3……+99 9797-99? 1111111 (1)()()......() 3355797991 1999899 =-+-+-++-=-= 再看一道例题: 例1:计算:72 17561542133011209127651-+-+-+ - 解:原式=98988787767665655454434332321?+-?++?+-?++?+-?++?+- )()()()()()()(9 1818171716161515141413131211+-+++-+++-+++-= 9 18 18 17 17 16 16 15 15 14 14 13 13 12 11--++--++--++--= 9 11-=

分数乘法与分数裂项法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 分数乘法与分数裂项法 分数乘法与分数裂项法【专题解析】我们知道,分数乘法的运算是这样的:分数乘分数,应该分子乘分子,分母乘分母(当然能约分的最好先约分在计算)。 分数乘法中有许多十分有趣的现象与技巧,它主要通过些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。 1、运用运算定律:这里主要指乘法分配律的应用。 对于乘法算式中有因数可以凑整时,一定要仔细分析另一个因数的特点,尽量进行变换拆分,从而使用乘法分配律进行简便计算。 2、充分约分:除了把公因数约简外,对于分子、分母中含有的公因式,也可直接约简为 1。 进行分数的乘法运算时,要认真审题,仔细观察运算符号和数字特点,合理进行简算。 需要注意的是参加运算的数必须变形而不变质,当变成符合运算定律的形式时,才能使计算既对又快。 【典型例题】——乘法分配律的妙用 44 例 1.计算:(1)×37 4567 2003 44 44 44 分析与解:观察这两道题的数字特点,第(1)题中的与 1 只相差 1 个分数单位,如果把写成(1-) 45 45 45 67 的差与 37 相乘,再运用乘法分配律可以使计算简便。 同样,第(2)题中可以把整数 2004 写成(2003+1)的和与 2003(2)2004× 相乘,再运用乘法分配律计算比较简便。 1/ 10

【举一反三】43 56 56 ×37 (2)×37 (3)×56 44 57 57 17 1 4 1 例 2.计算:(1)72 × (2)73 × 17 24 15 8 4 4 1 分析与解:(1)72 把改写成(72 + ),再运用乘法分配律计算比常规方法计算要简便得多。 (2)73 把 17 17 15 16 改写成(72 + ),再运用乘法分配律计算比常规方法计算要简便得多。 15计算:(1)【举一反三】4 7 计算:(1)20 × 7 10(2)166 13 × 13 32(3)573 1 × 13 8(4)641 1 × 17 9【小试牛刀】

分数裂项求和标准个性化教案

分数裂项求和标准个性 化教案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

变形裂项:先变形为直接裂项。 【典型例题】 例1 计算: 观察:直接裂项2 11121121-=?= 31 2132161-=?= 41 31431121-=?= ............. = 201 ( )()=?1( )-( ) ( )()=?= 1 301( )-( ) 解:原式 = 651 541431321211?+ ?+?+?+? = 1-61 5151414131312121-+-+-+-+ = 1-61 = 65 例2 计算:7217 561542133011209127651-+-+-+- 观察:直接裂项3121323265+=?+= 41 314343127+=?+= 920= =?+545451 41+ ............... ()() 115630+==?( )+( ) ()( ) 136742+==?( )+( ) 解:原式) ()()()()()()(9 18 18 17 17 16 16 15 151414131312 11+-+++-+++-+++-= 例3.+?+?+?7 52532312……+ 1192 ? 变形裂项: .............. 解:原式)11 1 91()7 15 1()5 13 13 1 11-++-+-+-= ()( 例4 1111111 248163264128 +++ +++ 观察前一个数是后一个数的2倍,“补一退一”

解:原式128 1 12811281641321161814121 - +++++++=)( 例5 1 101 1811611411212 2222-+-+-+-+- 由)()(2 2 b a b a b a +?-=-知,可以将原式变形为: 解:原式11 91 971751531311?+ ?+?+?+?= 牛刀小试: 【我能行】 1. +?+?+?1999 19981199819971199719961……+ 200220011 ?+20021 2.521?+851?+1181?+……+29 261? 分数裂项求和方法总结 (一) 用裂项法求 1 (1)n n +型分数求和 分析:因为11 1n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111 (1)1 n n n n =-++ 【例1】 求111 (101111125960) +++ ???的和。 (二) 用裂项法求1 () n n k +型分数求和 分析:1 ()n n k +型。(n,k 均为自然数) 因为11111 ()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111 () ()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ????? (三) 用裂项法求 () k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11 n n k -+=()()n k n n n k n n k +-++=()k n n k +

六年级分数-裂项法

知识要点和基本方法 1.2分数计算(裂项法) 分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。 分数计算同整数计算一样既有知识要求又有能力要求。法则、定律、性质是进行计算的依据,要使计算快 速、准确,关键是掌握运算技巧。对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运 算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力, 都有很大的帮助。 公式: (1)平方差公式:a2 b2(a b) (a b) (2)等差数列求和公式: a i a2 a3 a n 1 a n 1 a1 2 a n n (3)分数的拆分公式: n(n 1) 1 n(n d) 裂项 法: 例1. 计算: 例2. 计算: 10X 11 1 2 3 _1 +11X 12 1 ..... +—— 3 4 99 1 +……+59X 60 1 100 例7. 例8. 例3. 1111 计算:2 + 6 + / + 20 1 1 + — + — +30 +42 例9. 例4. 计算: —1——+ -—— 10X 11 11X 12 1 +……+19X 20 例10. 例5. 1 1 计算2X 3 + 3X4 + 1 1 +6X7 +7X8 例11. 1 1 1 1 1 1 1 6 + ' —+— +— + 12 + 20 + 30 + 矗+56 + 72 1 1 1 1 1 1 + —+ + —- + —+ 3 15 35 63 99 143 1 1 1 1 1 4 4 7 7 10 10 13 13 2 2 2 2 2 3 15 35 63 99 1 丄丄丄 1 1 8 24 48 80 120 168 计算: 1 计算: 计算: 计算: 计算: 16 例6. 计算: 例12. 计算: 例13. 计算: 112 11 +丄+土+丄+丄+ 1 2 2 1 + — + 1 2 2 3 1 ----------- F 1 2 3 2 3 2 1 + Y +仝+丄 3 3 3 3 1 例14. 计算: 2X( 1 —丄)X 2丿 20052-------------- +……+ 12 3 4 「-亠) 20042 100 +……+ + 100 100 1 旦+……+ 100 1 100 X( 1 2 3 2005 1 1 1 —2) X ......... X( 1 ---------- ) 2003222

小学奥数分数求和专题总结

分数求和 分数求和的常用方法: 1、公式法,直接运用一些公式来计算,如等差数列求和公式等。 2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。 3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。 4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。 5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。 典型例题 一、公式法: 计算: 20081+20082+20083+20084+…+20082006+2008 2007 分析:这道题中相邻两个加数之间相差20081,成等差数列,我们可以运用等差数列求和公式:(首项+末项)×项数÷2来计算。 20081+20082+20083+20084+…+20082006+2008 2007 =(20081+2008 2007)×2007÷2 =2 11003 二、图解法: 计算:21 +41+81+161+321+64 1 分析:解法一,先画出线段图: 从图中可以看出:21 +41+81+161+321+641=1-641=64 63 解法二:观察算式,可以发现后一个加数总是前一个加数的一半。因此,只要添上一个加数641,就能凑成32 1,依次向前类推,可以求出算式之和。 21 +41+81+161+321+64 1 =21 +41+81+161+321+(641+641)-64 1 =21 +41+81+161+(321+32 1)-641

…… = 21 ×2-64 1 =6463 解法三:由于题中后一个加数总是前一个加数的一半,根据这一特点,我们可以把原式扩大2倍,然后两式相减,消去一部分。 设x= 21 +41+81+161+321+64 1 ① 那么,2x=(21 +41+81+161+321+64 1)×2 =1+21 +41+81+161+321 ② 用②-①得 2x -x=1+ 21 +41+81+161+321-(21 +41+81+161+321+64 1) x=64 63 所以,21 +41+81+161+321+641=6463 三、裂项法 1、计算:21+61+121+201+301+……+901+110 1 分析:由于每个分数的分子均为1,先分解分母去找规律:2=1×2,6=2×3,12=3×4,20=4×5,30=5×6,……110=10×11,这些分母均为两个连续自然数的乘积。 再变数型:因为 21=211?=1-21,61=321?=21-31,121=431?=31-4 1,……,1101=11101?=101-111。这样将连加运算变成加减混合运算,中间分数互相抵消,只留下头和尾两个分数,给计算带来方便。 21+61+121+201+301+……+901+110 1 =1-21+21-31+31-41+……+91-101+101-11 1 =1-11 1 =11 10 2、计算:511?+951?+13 91?+……+33291?+37331?

分数裂项法解分数计算

分数裂项计算 本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。 本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。 分数裂项 一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 (1)对于分母可以写作两个因数乘积的分数,即1a b ?形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-?- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2) n n n ?+?+,1(1)(2)(3)n n n n ?+?+?+形式的,我们有: 裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 二、“裂和”型运算:

常见的裂和型运算主要有以下两种形式: (1)11a b a b a b a b a b b a +=+=+??? (2)2222a b a b a b a b a b a b b a +=+=+??? 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。 【例 1】 111111223344556 ++++=????? 。 【巩固】 111 (101111125960) +++??? 【巩固】 2222109985443 ++++=????L 【例 2】 111111212312100 ++++++++++L L L 【例 3】 111113355799101 ++++=????L 【巩固】 计算:1111251335572325???++++= ??????? L 【巩固】 2512512512512514881212162000200420042008 +++++?????L 【巩固】 计算:3245671255771111161622222929 ++++++=?????? 【例 4】 计算:11111111()1288244880120168224288 +++++++?= 【巩固】 11111111612203042567290 +++++++=_______ 【巩固】 11111113610152128 ++++++= 【巩固】 计算:1111111112612203042567290 --------= 【巩固】 11111104088154238 ++++= 。 【例 5】 计算:1111135357579200120032005 ++++????????L 【例 6】 7 4.50.161111181315356313 3.75 3.23 ?+???+++= ??? -?& 【例 7】 计算:11111123420261220420 +++++L 【巩固】 计算:11111200820092010201120121854108180270 ++++= 。 【巩固】 计算:1122426153577 ++++= ____。 【巩固】 计算:1111111315356399143195 ++++++ 【巩固】 计算:15111929970198992612203097029900+++++++=L .

分数裂项求和标准个性化教案

分数裂项求和标准个性化 教案 This manuscript was revised on November 28, 2020

两数之差。 直接裂项 加法裂项:分母分成两数之积,分子为两数之和。 变形裂项:先变形为直接裂项。 【典型例题】 例1 计算: 观察:直接裂项2 11121121-=?= 312132161-=?= 4131431121-=?= ............. =201()()=?1 ( )-( ) ( )()=?= 1 301( )-( ) 解:原式 = 651 541431321211?+ ?+?+?+? = 1-61 5151414131312121-+-+-+-+ = 1-61 = 6 5 例2 计算:72 17561542133011209127651-+-+-+- 观察:直接裂项3121323265+=?+= 4 1314343127+=?+= 920==?+54545141+ ............... ()() 1156 30+==?( )+( ) ( )( ) 1367 42 += =?( )+( ) 解:原式)()()()()()()(9 18 18 17 17 16 16 15 15 14 14 13 13 12 11+-+++-+++-+++-= 例3. +?+?+?7 52532312 (1192) 变形裂项: ..............

解:原式)11 1 91 ()715 1()5 13 13 111- ++-+-+-= ()( 例4 1111111 248163264128 +++ +++ 观察前一个数是后一个数的2倍,“补一退一” 解:原式128 1 1281128164132116181 4 12 1- +++++ ++=)( 例5 1 101 18116114112122222-+ -+-+-+- 由)()(22b a b a b a +?-=-知,可以将原式变形为: 解:原式11 91 971751531311?+ ?+?+?+?= 牛刀小试: 【我能行】 1. +?+?+?1999 19981199819971199719961……+ 200220011 ?+20021 2.521?+851?+1181?+……+29 261? 分数裂项求和方法总结 (一) 用裂项法求 1 (1)n n +型分数求和 分析:因为11 1n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111 (1)1 n n n n =-++ 【例1】 求111 (101111125960) +++ ???的和。 (二) 用裂项法求1 () n n k +型分数求和 分析:1 ()n n k +型。(n,k 均为自然数) 因为11111 ()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111 () ()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ?????

分数裂项求和方法总结

分数裂项求和方法总结(一)用裂项法求n(_i_)型分数求和 1 1 分析:因为------ ------- n n 1 n 1 n n(n 1) n(n 1) (n为自然数) n(n 1) 所以有裂项公式: 1 1 1 n(n 1) n n 1 【例 1】10 11 1 11 12 的和。 59 60 1 1 10 60 丄 12 (二)用裂项法求乔七型分数求和 分析: 型。(n,k均为自然数) n(n k) 因为 1(1 所以 【例 2】 n(n k)] n(n k) n(n k) ") 1 计算5 7 9 11 11 13 13 15 1 勺 1(1 9 2'9 1 1、,1 1 )( 丄(丄丄) 2 11 13 1 1 )( 丄(1 1) 2 5 7 111 -[( )( )( ,、 ,、 2 5 7 7 9 9 11 11 1 3 13 15

2[515] 丄 15 (三)用裂项法求—「型分数求和 n(n k) 分析: k - 型(n,k均为自然数) n(n k) 1 1 _ n k n k n n k n(n k) n(n k) n(n k) 所以 k _ 1 1 n(n k) n n k 亠2 2 2 2 【例3】求2的和 1 3 3 5 5 7 97 99 (四)用裂项法求仝型分数求和 n(n k)(n 2k) 分析:2k 均为自然数) 分析: n(n k)(n (n,k 2k) 2k 1 1 n(n k)( n 2k) n(n k) (n k)( n 2k) 【例4】计算:- 4 4 4 4 1 1 1 1 (1 3)( ) (- 3 5 5 1 1 99 98 99

小学六年级数学难题:分数计算(裂项法)

、裂项法 小学数学课本在讨论分数加减法时曾指出:两个分母不同的分数相加减, 自然数,公分母正好是它们的乘积.把这个例题推广到一般情况,就有一个很有用的等式: 下面利用这个等式,巧妙地计算一些分数求和的问题 例1 计算: 分析与解此题按常规方法先通分后再求和,显然计算起来十分繁杂 是 1 ,而分母又都是相邻两个自然数的积,符合上面等式的要求.如果按上面等式把题目中的前12 个加数也分别写成两个单位分数之差的形式,就得到下面12 个等式:

上面12 个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了 像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法. 例2 计算: 分析与解这里的每一项的分子是1,分母不是相邻两个自然数的积,但都是从 1 开始的连续若干个自然数的和,这使我们联想到计算公式:1+

当n分别取1,2,3,?,100时,就有 即题目中的每一项都变成了一个分子为2、分母为相邻两个自然数乘积的形式,略加变形就得到例 1 的形式,仿照例 1 的方法便可求出解来

分析与解猛一看,此题似乎无法下手,而且与裂项法也没关系.但小学数学课本上曾说过,减法是加法的逆运算.换句话说,任一加法算式都可以改为 这个题的答案是否只有这一个呢?如果不只一个,怎样才能找出所有答案呢?为此,我们来讨论这类问题的一般情况.设n、x、y 都是自然数,且 当t=1 时,x=7,y=42,当t=2 时,x=8,y=24,当t=3 时, x=9,y=18,当t=4 时,x=10,y=15,当t=6 时,x=12,y=12, 当t=9 时,x=15,y=10,

分数裂项求和方法复习总结

分数裂项求和方法总结(一)用裂项法求1 (1) n n+ 型分数求和 分析:因为11 1 n n - + = 11 (1)(1)(1) n n n n n n n n + -= +++ (n为自然数) 所以有裂项公式: 111 (1)1 n n n n =- ++ 【例1】求 111 (101111125960) +++ ??? 的和。 111111 ()()......() 101111125960 11 1060 1 12 =-+-++- =- = (二)用裂项法求1 () n n k + 型分数求和 分析: 1 () n n k + 型。(n,k均为自然数) 因为11111 ()[] ()()() n k n k n n k k n n k n n k n n k + -=-= ++++ 所以 1111 () () n n k k n n k =- ++ 【例2】计算 11111 577991111131315 ++++ ????? 111111********* ()()()()() 25727929112111321315 =-+-+-+-+-11111111111 [()()()()()] 2577991111131315 =-+-+-+-+-

111[]2515115 =-= (三) 用裂项法求() k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=() k n n k + 所以()k n n k +=11n n k -+ 【例3】 求2222 (1335579799) ++++????的和 1111111(1)()()......()335579799 1199 9899 =-+-+-++-=-= (四) 用裂项法求2()(2) k n n k n k ++型分数求和 分析: 2()(2) k n n k n k ++(n,k 均为自然数) 211()(2)()()(2)k n n k n k n n k n k n k =-+++++ 【例4】 计算:4444 (135357939597959799) ++++????????

《并项分组求和与裂项法》教学设计.doc

一、学情分析: 学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。本节课作为一节专题探究课,将会根据已知数列的特点选择适当的方法求出数列的前n项和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。 二、教法设计: 本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。先引出相应的知识点,然后剖析需要解决的问题,在例题及变式中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。 在教学过程中采取如下方法: ①诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性; ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性; ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 三、教学设计: 1、教材的地位与作用: 对数列求和的考查是近几年高考的热点内容之一,属于高考命题中常考的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。化归与转化思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。因此,研究由递推公式求数列通项公式中的数学思想方法是很有必要的。 2、教学重点、难点: 教学重点:根据数列通项求数列的前n项,本节课重点学习并项分组求和与裂项法求和。 教学难点:解题过程中方法的正确选择。 3、教学目标: (1)知识与技能: 会根据通项公式选择求和的方法,并能运用并项分组求和与裂项法求数列的前n项。 (2)过程与方法: ①培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力; ②通过阶梯性练习和分层能力培养练习,提高学生分析问题和解决问题的能力,使不同层次的学生的能力都能得到提高。 (3)情感、态度与价值观: ①通过对数列的通项公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列通项和数列求和问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好 思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 四、教学过程:

分数计算题之裂项求和

六奥第三讲 分数计算题之裂项求和 教学课题:分数计算技巧(2) 教学课时:两课时 教学目标:在分数运算中,要提高分数运算的速度和正确率,除了掌握这些常规的运算法则外,我们还应该掌握一些特殊的运算技能和技巧,常用的分数运算技巧和方法,主要有凑整法、裂项法、约分法等,这堂课主要学习裂项法,会用裂项法解决简单的实际问题。 教学重难点:经历裂项的探究过程,观察裂项的规律。 教具准备: 本周通知: 教学过程: 一、故事导入 一天,旅店服务员碰上了一个难题:一下子来了11位旅客,每个人都要一个单人房间,可当时旅店里只有10间空房。来客都很坚决,非单人房不可。当时只好设法把这11位客人安排在10个客房中。而每个房间只许一人,这是无论如何也做不到的。可是,那位服务员想出了一个办法,他能解决这个伤脑筋的难题。 他的主意是,把第一位客人安排在1号房间,请他同意让第十一位客人暂时(5分钟左右)也在他房间里呆一下。这两位客人安排好后,他把其他客人逐一分配到其他各号房间去;把第三位客人分配到2号房;把第四位客人分配到3号房;把第五位客人分配到4号房;把第六位客人分配到5号房;把第7位客人分配到6号房,把第八位客人分配到7号房;把第九位客人分配到8号房;把第十位客人分配到9号房。这时第10号房间还空着,他就把暂时呆在1号房的第十一位客人请了过来,满足了全体旅客的要求。 这里问题何在呢? 二、新课学习 师:例1:4 31321211?+?+?怎么求? 师:谁来展示一下你的做法?根据学生摆的情况,师板书各种情况。(逐一相加) 师:还有不同的做法吗? 生:没有了。 师:211?=1- 21,321?= 21- 3 1,你能发现什么? 生:一个分数可以拆成两个分数的差,中间的都可以抵消掉。 师:很好,这里我们发现,拆项后,前一个分数的第二项和后一个分数的第一项是可以抵消的。 11111144771010131316 ++++?????,你能发现它和上一题有什么区别吗? (教师要关注拆分的时候,两个分数分母的关系,到底是差几。在学生自主探索的基础上,教师注意引导学生:拆分之后,分数的大小会发生什么变化) 师:那我们就来看一下裂项公式。 )11(-b a a b k b a k -?=?)( 例2:11212313419899199100 ?+?+?++?+?…

初中裂项求和问题(可编辑修改版)

初中数学解题研究: 裂项求和问题(分数类) 难道者:四川崇州平生曜曜摘要:本文由浅入深介绍了初中数学中一些特殊分数串求和 的个例,由最初的非裂项归纳手段逐渐过渡到后期的裂项式高效手段,并在本文所议范围内总结了裂项求和的右脑记忆诗。文中涉及了数学解题的部分规律,如数学思想、思维策略等,还模拟了一场教学启发的理想化进程。最后笔者把数学母题比作一颗星舍,解题就好比是在房舍里整理物饰,有时我们会触碰到一些窗户,于里外窥,会洞见星野,星夜灿烂,牵引导航。文末的最后一道思考题为笔者偶开了一扇视窗,深为动情,随饮醉吟唱,为觅知音,抛砖引玉,不知几何! 关键词:单独形式,申述,归纳,转化,旧模式,新环境, 做题不能白做,过程与结论,窥望 备注:文本中没有明显标记行文脉络,请留意“问题(一)”至“问题(七)”的字眼即可! 正文 “裂项求和”这个概念所指代的是一种专门针对“某类题”的解题方法,自从此法被命名为“裂项求和”而被考生广而所知以后,他们便开始以这种高效而冰冷的手法偶逢时机地收割分数。

中、高考分数是进入名校的敲门砖,大气文凭是进入理想行业的敲门砖,足见提高考分是考生的迫切需要,是家长的迫切期待。提高考分总是主管部门难以释怀的心理情愫,更是达官草民观想教学有效性的无情准则。 面对数学考卷上百分之七十到八十的中、低档考题,考生若不能快速而准确地作答,就已经在时间的掌控上沦为弱者,要想在更短的时间内抓获难题分数,若用痴人说梦形之有过,那用力不从心形之可否? 裂项求和当属那百分之二十到三十的难题一类,考生在考场若有幸重逢,且能速速斩之,足足可叹三生有幸。但命题者岂能如此鲁莽让吾等轻易得成?如果裂项求和是初中教材上的基本技能,那么将之设成中考题的概率极高,但若不是,那么命题者偶却将之铺于考卷之上时,意欲又作何为?是想检验考生的运气吗?你看,这个考生恰好掌握了裂项求和的技能,他一下就把分数抓稳当了!这能是命题者的意图吗?真若如此,把烫手类分数全寄挂在考生的运气上,试问这样的考试何以有公平性可言?所以目前中考若选用裂项求和作为考题,那它一定不会以如下外貌形式单独出现在考生眼前: 单独形式(1):求的值.100 991431321211?++?+?+? 单独形式(2):求的值.() 11431321211+++?+?+?n n

分数拆分(裂项法)

2008年10月4日 六年级 基本公式:()111n n+1n n 1-+=; 推广形式:()111n n+d d n n d ??-??+?? 1= 例1、计算:11111122334989999100+++++?????=(1-21)+(21-31)+(31-41)+……+(991-1001)=1-1001=100 99。 例2、计算: 1111112612203042+++++=76; 例3、计算:1111111357911104088154238340+++++=20 336; 例4、计算:=?+++?++?++?+200120002001200043433232212122222222 200120004000 注意:拆分未必拆成两个分数之差,有的时候,需要拆成两个分数之和;可以利用公式: 11m+n m n mn += 例5、计算:1111(1)(1)(1)(1)2233441010 -?-?-??-???? (1120) 提示:1n n 1(n 1)(n 1)1n n n n n n ?--+- ==???。 解:原式=1324359112233441010????????????……=111210?=1120 例6、计算:60 59605859586035343602423260131211+??? ??+++??? ??++++??? ??++++??? ??++++ = 解答:因为()2 1211121-=-??=-+++n n n n n n n n ,所以 ()886 59212 112 592221160 59605859586035343602423260131211=+++?+=++++=+??? ??+++??? ??++++??? ??++++??? ??++++ 【课堂练习】 1. 计算:111116425672-+++=9 8;

相关文档
最新文档