小学奥数_裂项求和(一)

小学奥数_裂项求和(一)
小学奥数_裂项求和(一)

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求1(1) n n +型分数求和 分析:因为111n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111(1)1 n n n n =-++ (二) 用裂项法求 1()n n k +型分数求和 分析:1() n n k +型。(n,k 均为自然数) 因为11111()[]()()() n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111()()n n k k n n k =-++ (三) 用裂项法求() k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=() k n n k + 所以 () k n n k +=11n n k -+

(四) 用裂项法求2()(2) k n n k n k ++型分数求和 分析: 2()(2) k n n k n k ++(n,k 均为自然数) 211()(2)()()(2)k n n k n k n n k n k n k =-+++++ (五) 用裂项法求1()(2)(3) n n k n k n k +++型分数求和 分析:1()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ (六) 用裂项法求 3()(2)(3)k n n k n k n k +++型分数求和 分析:3()(2)(3) k n n k n k n k +++(n,k 均为自然数) 311()(2)(3)()(2)()(2)(3) k n n k n k n k n n k n k n k n k n k =-++++++++ 记忆方法: 1.看分数分子是否为1; 2.是1时,裂项之后需要整体×首尾之差分之一; 3.不是1时不用再乘; 4.裂项时首尾各领一队分之一相减。

小学奥数教程之裂项综合

学习奥数的优点 1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。 2、训练学生良好的数学思维习惯和思维品质。要使经过奥数训练的学生,思 维更敏捷,考虑问题比别人更深层次。 3、锻炼学生优良的意志品质。可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。可以养成坚韧不拔的毅力 4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。 学科培优数学 “裂项综合” 学生姓名授课日期 教师姓名授课时长 知识定位 本讲知识点属于计算大板块内内容,其实分数裂项很大程度上是发现规律、 利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式 不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明 了。 知识梳理 一、“裂差”型运算

将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。 (1)对于分母可以写作两个因数乘积的分数,即 1 a b ?形式的,这里我们把较小的数写在前面,即a b <,那么有1111 ()a b b a a b =-?- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2)n n n ?+?+,1 (1)(2)(3)n n n n ?+?+?+形式的,我们有: 1111 [](1)(2)2(1)(1)(2) n n n n n n n =-?+?+?+++ 1111 [](1)(2)(3)3(1)(2)(1)(2)(3) n n n n n n n n n n =-?+?+?+?+?++?+?+ 裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 二、“裂和”型运算: 常见的裂和型运算主要有以下两种形式: (1) 11 a b a b a b a b a b b a +=+=+??? (2) 2222a b a b a b a b a b a b b a +=+=+??? 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。 三、整数裂项

小学奥数裂项公式汇总

小学奥数裂项公式汇总文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即 b a ?1形式的,这里我们把较小的数写在前面,即 a < b ,那么有: (2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有: 二、分数“裂和”型运算 常见的裂和型运算主要有以下两种形式: (1) a b b a b b a a b a b a 11+=?+?=?+ (2)a b b a b a b b a a b a b a +=?+?=?+2222 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或 凑整 三、整数裂项基本公式 (1))1()1(3 1)1(......433221+-=?-++?+?+?n n n n n (2) )1()1)(2(4 1)1()2(......543432321+--=?-?-++??+??+??n n n n n n n (3) )1()1(3 1)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(4 1)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=? 裂项求和部分基本公式 1.求和: 1 )1(1......541431321211+=+++?+?+?+?=n n n n S n 证:1 111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n 2.求和:1 2)12)(12(1971751531311+=+-++?+?+?+?=n n n n S n

整数裂项,小学奥数整数裂项公式方法 讲解

整数裂项,小学奥数整数裂项公式方法讲解 在小学奥数中有一些非常长的整数算式,仅仅用一般的运算法 则满足不了计算要求,这时候我们要找式子中各乘式之间的规律, 把各乘式裂项,前后抵消,从而简化计算。规律和之前G老师讲过的分数裂项法十分类似。 先看一道整数裂项的经典例题: 【例1】1x2+2x3+3x4+4x5+……98x99+99x100 分析:题中计算式共有99个乘法式子相加,如果一个一个计算下来,恐怕一个下午就过去了,G老师告诉同学们,遇见这种复杂的计算式,一定是有规律的,数学重点考查的是思维。 能不能想办法把乘法式子换成两个数的差,再让其中一些项抵 消掉,就像分数裂项的形式,最后只剩下头和尾呢? 1x2=(1x2x3-0x1x2)÷3; 2x3=(2x3x4-1x2x3)÷3; 3x4=(3x4x5-2x3x4)÷3; ……

99x100=(99x100x101-98x99x100)÷3; 规律是不是找着了? 原式=(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5- 2x3x4+……+99x100x101-98x99x100)÷3 =99x100x101÷3 =333300 整数裂项法就是将整数乘积化成两个乘积差的形式,这个差也 不是随便乘一个数,而是要根据题目中各项数字公差来确定的。 比如在例1中,1x2和2x3这两项,1与2,2与3的的差都是1,我们就在1x2这一项乘以(2+1),再减去(1-1)x1x2;2x3这一项,也化成[2x3x(3+1)-(2-1)x2x3]……这样就刚好可以前后项互相抵消,然后再除以后延与前伸的差[(3+1)-(2-1)]。 整数裂项法应用: 式中各项数字成等差数列,将各项后延一位,减去前伸一位, 再除以后延与前伸的差。 【例2】1x3+3x5+5x7+……+95x97+97x99

奥数裂项法(含答案)

奥数裂项法 同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。 (一)阅读思考 例如1 3 1 4 1 12 -=,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积,把 这个例题推广到一般情况,就有一个很有用的等式: 11 1 1 11 1 1 1 1 n n n n n n n n n n n n n n - += + + - + = +- + = + ()() ()() 即11 1 1 1 n n n n - + = + () 或 1 1 11 1 n n n n () + =- + 下面利用这个等式,巧妙地计算一些分数求和的问题。【典型例题】 例1. 计算: 1 19851986 1 19861987 1 19871988 1 19941995? + ? + ? ++ ? …… + ?+ ? + 1 19951996 1 19961997 1 1997 分析与解答: 1 19851986 1 1985 1 1986 1 19861987 1 1986 1 1987 1 19871988 1 1987 1 1988 1 19941995 1 1994 1 1995 ? =-? =-? =- ?=- …… 1 19951996 1 1995 1 1996 1 19961997 1 1996 1 1997 ? =- ? =- 上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。

1 198519861 198619871 198719881 199519961 19961997 11997?+ ?+ ?++ ?+ ?+ … =-+-+-++-+-+=119851198611986119871198711988119951199611996 119971199711985 …… 像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分 数可以相互抵消,从而使计算简化的方法,我们称为裂项法。 例2. 计算:1111211231 123100 +++++++ ++++…… 公式的变式 1122 1+++= ?-…n n n () 当n 分别取1,2,3,……,100时,就有 112121122 23 11232 34 112342 45 1121002 100101 = ?+=?++=?+++= ?+++= ?… 1111211231 12100212 223234299100 21001012112 1231341991001100101211212131314 199 1 100 1100 1101 211101 + ++ +++++++=?+?+?++?+ ?=??+?+?++?+ ?=?-+-+ -++ - + - =?- ……………()() ()

分数裂项求和方法总结

分数裂项求和方法总结 (一) 用裂项法求 1 (1) n n +型分数求和 分析:因为 111n n -+=11 (1)(1)(1) n n n n n n n n +-= +++(n 为自然数) 所以有裂项公式: 111 (1)1 n n n n =- ++ 【例1】 求 111 ......101111125960+++???的和。 111111111 ()()......()101111125960106012 =-+-++-= -= (二) 用裂项法求 1 () n n k +型分数求和 分析: 1 () n n k +型。(n,k 均为自然数) 因为 11111()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 。所以1111()()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ????? 111111*********()()()()()25727929112111321315= -+-+-+-+- 111111********* [()()()()()][]2577991111131315251515 =-+-+-+-+-=-= (三) 用裂项法求 () k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=()k n n k + 所以()k n n k +=11n n k -+ 【例3】 求 2222 (1335579799) ++++????的和 1111111198 (1)()()......( )13355797999999 =-+-+-++-=-= (四) 用裂项法求 2()(2) k n n k n k ++型分数求和 分析: 2()(2)k n n k n k ++(n,k 均为自然数) 则 211 ()(2) ()()(2) k n n k n k n n k n k n k = - +++++ 【例4】 计算: 4444 (135357939597959799) ++++???????? 11111111()()......()()133535579395959795979799 1132001397999603 =-+-++-+-????????=-= ?? (五) 用裂项法求 1 ()(2)(3) n n k n k n k +++型分数求和 分析: 1 ()(2)(3) n n k n k n k +++(n,k 均为自然数) 1111 ()()(2)(3)3()(2)()(2)(3) n n k n k n k k n n k n k n k n k n k =-++++++++ 【例5】 计算:111 ......1234234517181920+++ ????????? 1111111 [()()......()] 3123234 2343451718191819201111139[]312318192020520 =-+-++-????????????=--=???? (六) 用裂项法求 3()(2)(3) k n n k n k n k +++型分数求和 分析: 3()(2)(3) k n n k n k n k +++(n,k 均为自然数)

小学奥数裂项公式汇总

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即b a ?1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11 b a a b b a --=? (2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有: ???? ?? +?+-+?=+?+?)2()1(1)1(1 21)2()1(1 n n n n n n n ???? ?? +?+?+-+?+?=+?+?+?)3()2()1(1 )2()1(1 31)3()2()1(1n n n n n n n n n n 二、分数“裂和”型运算 常见的裂和型运算主要有以下两种形式: (1) a b b a b b a a b a b a 1 1+=?+?=?+ (2)a b b a b a b b a a b a b a +=?+?=?+2 2 22 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或 凑整 三、整数裂项基本公式 (1))1()1(31 )1(......433221+-=?-++?+?+?n n n n n

(2) )1()1)(2(4 1)1()2(......543432321+--= ?-?-++??+??+??n n n n n n n (3) )1()1(3 1)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1( (4) )2)(1()1(4 1)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=? 裂项求和部分基本公式 1.求和: 1 )1(1......541431321211+=+++?+?+?+?=n n n n S n 证:1 111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n 2.求和:12)12)(12(1971751531311+=+-++?+?+?+?= n n n n S n 证:1 2)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-= n n n n n S n 3.求和:13)13)(23(11071741411+=+-++?+?+?= n n n n S n 证:)1 31231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n

(完整word版)小学奥数之裂项

这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如: (1)1/n(n+1)=1/n-1/(n+1) (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)] (3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)] (4)1/(√a+√b)=[1/(a-b)](√a-√b) (5)n·n!=(n+1)!-n! 公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构) 1、分组法求数列的和:如an=2n+3n 2、错位相减法求和:如an=n·2^n 3、裂项法求和:如an=1/n(n+1) 4、倒序相加法求和:如an=n 5、求数列的最大、最小项的方法: ①an+1-an=……如an=-2n2+29n-3 ②(an>0)如an= ③an=f(n)研究函数f(n)的增减性如an=an^2+bn+c(a≠0) 6、在等差数列中,有关Sn的最值问题——常用邻项变号法求解: (1)当a1>0,d<0时,满足{an}的项数m使得Sm取最大值. (2)当a1<0,d>0时,满足{an}的项数m使得Sm取最小值. 在解含绝对值的数列最值问题时,注意转化思想的应用。 对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。而裂项法就是一种行之有效的巧算和简算方法。通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。

小学奥数裂项公式汇总

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即b a ?1形式的,这里我们把较小的数写在前面,即 a < b ,那么有: (2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有: 二、分数“裂和”型运算 常见的裂和型运算主要有以下两种形式: (1) a b b a b b a a b a b a 1 1 +=?+?=?+ (2)a b b a b a b b a a b a b a +=?+?=?+2 2 2 2 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或 凑整 三、整数裂项基本公式 (1))1()1(31 )1(......433221+-=?-++?+?+?n n n n n (2) )1()1)(2(41 )1()2(......543432321+--=?-?-++??+??+??n n n n n n n (3) )1()1(31 )2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41 )3)(2)(1(41 )2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=? 裂项求和部分基本公式 1.求和: 1)1(1 (541) 431 321 211+=+++?+?+?+?=n n n n S n 证:111 1)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n

分数裂项求和

学生曹一诺学校年级六年级科目数学 教师陈作谦日期16年4月24日时段15:00-17:00 次数第一次课题 分数裂项求和 教学重点难点重点:清楚掌握几种简单的裂项求和的方法及其解答过程。难点:能判断所处题目的特点,并用其对应的方法进行解答。 教学步骤及教学内容一、作业检查: 平时成绩中上,卓师的小升初模拟试题测试结果,数学为46分二、课前热身: 与学生探讨小升初的意义,互动中令学生明白考试的应对方式。 三、内容讲解: 先做几个题目: (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? , (2)求 2222 ...... 1335579799 ++++ ???? 的和 这种题目就是分数裂项求和的运用。 分数裂项求和,分成减法裂项和加法裂项: 减法裂项就是:分母化成两个数的积,分子化成这两个数的差;加法裂项就是:分母化成两个数的积,分子化成这两个数的和。 (1)+ ? + ? + ?7 5 2 5 3 2 3 1 2……+ 11 9 2 ? ,

解:原式= +?+?+?7 55 -7533-5311-3……+11 99-11? =( + ??+??+??)7 55-757()533-535()311-313 ……+( 11911 ?-11 99?) )11 191()7151()5131()3111(-+??+-+-+-= 11 191715151313111-+??+-+-+-= 11 111-= 11 10= (2)求 2222 (1335579799) ++++????的和 解:原式=+?+?+?7 55-75 33-53 11-3……+99 9797-99? 1111111 (1)()()......() 3355797991 1999899 =-+-+-++-=-= 再看一道例题: 例1:计算:72 17561542133011209127651-+-+-+ - 解:原式=98988787767665655454434332321?+-?++?+-?++?+-?++?+- )()()()()()()(9 1818171716161515141413131211+-+++-+++-+++-= 9 18 18 17 17 16 16 15 15 14 14 13 13 12 11--++--++--++--= 9 11-=

小学奥数裂项公式汇总

裂项运算常用公式 、分数“裂差”型运算 1 (1) 对于分母可以写作两个因数乘积的分数,即 —形式的,这里我们把较小的数写在前面, a b 即a v b ,那么有: 1 111、 ( ) a b baa b (2) 对于分母上为3个或4个连续自然数乘积形式的分数,即有: 1 1 1 1 n (n 1) (n 2) 2 n (n 1) (n 1) (n 2) 1 1 1 1 n (n 1) (n 2) (n 3) 3 n (n 1) (n 2) (n 1) (n 2) (n 3) 、分数“裂和”型运算 常见的裂和型运算主要有以下两种形式: 裂和型运算与裂差型运算的对比: (1) a b a b ] 1 abababba (2) b 2 a 2 b 2 a b a b a b b a

裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”

分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或凑整三、整数裂项基本公式 1 (n 1) n (n 1)n(n 1) 3 ⑵ 1 2 3 2 3 4 3 4 5 (n 2) (n 1) n 1 -(n 2)( n 1)n(n 1 ) 4 ⑶n(n 1) 2 n(n 1)(n 2) Bn 3 1)n(n 1) n(n 1) r 2 n ⑷n(n 1)( n 2) 1 n(n 4 1)(n 2)(n 3) ^(n 4 1)n(n 1)( n 2) ⑸n n! (n 1)! n! 裂项求和部分基本公式 1.求和:S n 1 1 1 1 1 n 1 2 2 3 3 4 4 5 n(n 1) n 1 证 :S n 1 (1 2) 1 1 1 1 1 1 (2 1)(3 2 (1 1) 1 1 1 n ( )1 ' n n 1 n 1 n 1 2.求和:S n 1 3 3 5 5 7 7 9 (2n 1)( 2 n 1) 2n 1

奥数裂项法(含答案)

— 奥数裂项法 同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。 (一)阅读思考 例如1 3 1 4 1 12 -=,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积, 把这个例题推广到一般情况,就有一个很有用的等式: 11 1 1 11 1 1 1 1 n n n n n n n n n n n n n n - += + + - + = +- + = + ()() ()() : 即11 1 1 1 n n n n - + = + () 或 1 1 11 1 n n n n () + =- + 下面利用这个等式,巧妙地计算一些分数求和的问题。【典型例题】 例1. 计算: 1 19851986 1 19861987 1 19871988 1 19941995? + ? + ? ++ ? …… + ?+ ? + 1 19951996 1 19961997 1 1997 分析与解答:" 1 19851986 1 1985 1 1986 1 19861987 1 1986 1 1987 1 19871988 1 1987 1 1988 1 19941995 1 1994 1 1995 ? =-? =-? =- ?=- …… 1 19951996 1 1995 1 1996 1 19961997 1 1996 1 1997 ? =-? =-

上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。 11985198611986198711987198811995199611996199711997 ?+?+?++?+?+… =-+-+-++-+-+=119851198611986119871198711988119951199611996119971199711985 …… 像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法。 例2. 计算:1111211231123100 + ++++++++++…… : 公式的变式 11221+++=?-…n n n () 当n 分别取1,2,3,……,100时,就有 11212 112223 1123234 11234245 1121002100101 =?+=?++=?+++=?+++=? (111121123112100) 2122232342991002100101 21121231341991001100101 211212131314199110011001101 211101++++++++++=?+?+?++?+?=??+?+?++?+?=?-+-+-++-+-=?-……………()()()

分数乘法与分数裂项法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 分数乘法与分数裂项法 分数乘法与分数裂项法【专题解析】我们知道,分数乘法的运算是这样的:分数乘分数,应该分子乘分子,分母乘分母(当然能约分的最好先约分在计算)。 分数乘法中有许多十分有趣的现象与技巧,它主要通过些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。 1、运用运算定律:这里主要指乘法分配律的应用。 对于乘法算式中有因数可以凑整时,一定要仔细分析另一个因数的特点,尽量进行变换拆分,从而使用乘法分配律进行简便计算。 2、充分约分:除了把公因数约简外,对于分子、分母中含有的公因式,也可直接约简为 1。 进行分数的乘法运算时,要认真审题,仔细观察运算符号和数字特点,合理进行简算。 需要注意的是参加运算的数必须变形而不变质,当变成符合运算定律的形式时,才能使计算既对又快。 【典型例题】——乘法分配律的妙用 44 例 1.计算:(1)×37 4567 2003 44 44 44 分析与解:观察这两道题的数字特点,第(1)题中的与 1 只相差 1 个分数单位,如果把写成(1-) 45 45 45 67 的差与 37 相乘,再运用乘法分配律可以使计算简便。 同样,第(2)题中可以把整数 2004 写成(2003+1)的和与 2003(2)2004× 相乘,再运用乘法分配律计算比较简便。 1/ 10

【举一反三】43 56 56 ×37 (2)×37 (3)×56 44 57 57 17 1 4 1 例 2.计算:(1)72 × (2)73 × 17 24 15 8 4 4 1 分析与解:(1)72 把改写成(72 + ),再运用乘法分配律计算比常规方法计算要简便得多。 (2)73 把 17 17 15 16 改写成(72 + ),再运用乘法分配律计算比常规方法计算要简便得多。 15计算:(1)【举一反三】4 7 计算:(1)20 × 7 10(2)166 13 × 13 32(3)573 1 × 13 8(4)641 1 × 17 9【小试牛刀】

分数裂项求和标准个性化教案

分数裂项求和标准个性 化教案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

变形裂项:先变形为直接裂项。 【典型例题】 例1 计算: 观察:直接裂项2 11121121-=?= 31 2132161-=?= 41 31431121-=?= ............. = 201 ( )()=?1( )-( ) ( )()=?= 1 301( )-( ) 解:原式 = 651 541431321211?+ ?+?+?+? = 1-61 5151414131312121-+-+-+-+ = 1-61 = 65 例2 计算:7217 561542133011209127651-+-+-+- 观察:直接裂项3121323265+=?+= 41 314343127+=?+= 920= =?+545451 41+ ............... ()() 115630+==?( )+( ) ()( ) 136742+==?( )+( ) 解:原式) ()()()()()()(9 18 18 17 17 16 16 15 151414131312 11+-+++-+++-+++-= 例3.+?+?+?7 52532312……+ 1192 ? 变形裂项: .............. 解:原式)11 1 91()7 15 1()5 13 13 1 11-++-+-+-= ()( 例4 1111111 248163264128 +++ +++ 观察前一个数是后一个数的2倍,“补一退一”

解:原式128 1 12811281641321161814121 - +++++++=)( 例5 1 101 1811611411212 2222-+-+-+-+- 由)()(2 2 b a b a b a +?-=-知,可以将原式变形为: 解:原式11 91 971751531311?+ ?+?+?+?= 牛刀小试: 【我能行】 1. +?+?+?1999 19981199819971199719961……+ 200220011 ?+20021 2.521?+851?+1181?+……+29 261? 分数裂项求和方法总结 (一) 用裂项法求 1 (1)n n +型分数求和 分析:因为11 1n n -+=11(1)(1)(1) n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111 (1)1 n n n n =-++ 【例1】 求111 (101111125960) +++ ???的和。 (二) 用裂项法求1 () n n k +型分数求和 分析:1 ()n n k +型。(n,k 均为自然数) 因为11111 ()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111 () ()n n k k n n k =-++ 【例2】 计算11111577991111131315++++ ????? (三) 用裂项法求 () k n n k +型分数求和 分析: () k n n k +型(n,k 均为自然数) 11 n n k -+=()()n k n n n k n n k +-++=()k n n k +

小学奥数整数裂项

小学奥数--整数裂项 对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的。如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。而裂项法就是一种行之有效的巧算和简算方法。通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。 下面我们以整数裂项为例,谈谈裂项法的运用,并为整数裂项法编制一个易用易记的口诀。 后延减前伸差数除以N 例1、计算1×2+2×3+3×4+4×5+…+98×99+99×100 分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻两项分别相乘,再求所有乘积的和。算式的特点概括为:数列公差为1,因数个数为2。 1×2=(1×2×3-0×1×2)÷(1×3) 2×3=(2×3×4-1×2×3)÷(1×3) 3×4=(3×4×5-2×3×4)÷(1×3) 4×5=(4×5×6-3×4×5)÷(1×3) …… 98×99=(98×99×100-97×98×99)÷(1×3) 99×100=(99×100×101-98×99×100)÷(1×3) 将以上算式的等号左边和右边分别累加,左边即为所求的算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101-0×1×2)÷3。 解:1×2+2×3+3×4+4×5+……+98×99+99×100 =(99×100×101-0×1×2)÷3 =333300 例2、计算3×5+5×7+7×9+……+97×99+99×101 分析:这个算式实际上也可以看作是:等差数列3、5、7、9……97、99、101,先将所有的相邻两项分别相乘,再求所有乘积的和。算式的特点概括为:数列公差为2,因数个数为2。 3×5=(3×5×7-1×3×5)÷(2×3) 5×7=(5×7×9-3×5×7)÷(2×3)

小学奥数分数求和专题总结

分数求和 分数求和的常用方法: 1、公式法,直接运用一些公式来计算,如等差数列求和公式等。 2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。 3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。 4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。 5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。 典型例题 一、公式法: 计算: 20081+20082+20083+20084+…+20082006+2008 2007 分析:这道题中相邻两个加数之间相差20081,成等差数列,我们可以运用等差数列求和公式:(首项+末项)×项数÷2来计算。 20081+20082+20083+20084+…+20082006+2008 2007 =(20081+2008 2007)×2007÷2 =2 11003 二、图解法: 计算:21 +41+81+161+321+64 1 分析:解法一,先画出线段图: 从图中可以看出:21 +41+81+161+321+641=1-641=64 63 解法二:观察算式,可以发现后一个加数总是前一个加数的一半。因此,只要添上一个加数641,就能凑成32 1,依次向前类推,可以求出算式之和。 21 +41+81+161+321+64 1 =21 +41+81+161+321+(641+641)-64 1 =21 +41+81+161+(321+32 1)-641

…… = 21 ×2-64 1 =6463 解法三:由于题中后一个加数总是前一个加数的一半,根据这一特点,我们可以把原式扩大2倍,然后两式相减,消去一部分。 设x= 21 +41+81+161+321+64 1 ① 那么,2x=(21 +41+81+161+321+64 1)×2 =1+21 +41+81+161+321 ② 用②-①得 2x -x=1+ 21 +41+81+161+321-(21 +41+81+161+321+64 1) x=64 63 所以,21 +41+81+161+321+641=6463 三、裂项法 1、计算:21+61+121+201+301+……+901+110 1 分析:由于每个分数的分子均为1,先分解分母去找规律:2=1×2,6=2×3,12=3×4,20=4×5,30=5×6,……110=10×11,这些分母均为两个连续自然数的乘积。 再变数型:因为 21=211?=1-21,61=321?=21-31,121=431?=31-4 1,……,1101=11101?=101-111。这样将连加运算变成加减混合运算,中间分数互相抵消,只留下头和尾两个分数,给计算带来方便。 21+61+121+201+301+……+901+110 1 =1-21+21-31+31-41+……+91-101+101-11 1 =1-11 1 =11 10 2、计算:511?+951?+13 91?+……+33291?+37331?

高斯小学奥数六年级上册含答案第17讲 整数型计算综合提高

第十七讲 整数型计算综合提高 一、多位数计算 1. 凑整、凑9的思想; 2. 数字和问题:与一个小于它的数相乘,积的数字和是9×n . 二、等差数列 1. 等差数列的“配对”思想; 2. 求和公式: (1) ; (2) . 3. 项数公式:. 4. 第n 项:. 三、等比数列: 等比数列“错位相减”法求和,基本步骤是: (1)设等比数列的和为S ; (2)等式两边同时乘以公比(或者公比的倒数); (3)两式对应的项相减,消去同样的项,求出结果; 四、基本公式 1. 平方差公式 . 2. 平方求和 . 3. 立方求和 . 五、整数裂项 1. ; 2. . ()()()()() 123123234345124 n n n n n n n ?+?+?+??+??+??++?+?+= L ()()() 1212233413 n n n n n ?+?+?+?+?++?+= L ()2 333312312n n ++++=+++L L ()() 22221211236 n n n n ?+?+++++= L ()()22a b a b a b -=-+ ()1n +-?首项公差 ()1÷+末项-首项公差 ?中间项项数 ()2+?÷首项末项项数 9 9999n 个L 14243

一、 整数数列基本计算 1. 公式型计算; 2. 平方差公式的应用; 3. 整数裂项: (1) 基本裂项:例如1×2、1×2×3等; (2) 高等裂项:与阶乘或其它数列相关的裂项. 二、 计算技巧 1. 换元思想; 2. 分组思想; 3. 裂项思想; 4. 数论思想在计算中的应用; 例1. (1)228888888811111111-的计算结果是多少? (2)308 303 88883333?个个L L 1424314243的计算结果的数字和是多少? 「分析」(1)还记得平方差公式吗?(2)可以用凑整的思想计算出这个算式的结果,再算数字和. 练习1、999999999999999999?的计算结果的数字和是多少? 例2. 某书的页码是连续的自然数1、2、3、…、9、10、…;小须把这些页码相加时,将其 中连续2个页码漏掉了,结果得到2013,那么这本书共有多少页?漏掉的2页是多少?「分析」首先可以估算一下这本书的大概页数是多少?确定页码总数的范围后再计算就变得简单一些了. 练习2、把从1开始的所有奇数进行分组,其中每一组的第一个数都等于这一段中所有数的个数,例如:(1),(3,5,7),(9,11,13,15,17,19,21,23,25),(27,29, L L ,79),(81,83,L L ),那么第8组中所有数的和是多少? 经典题型

小学奥数裂项公式汇总

小学奥数裂项公式汇总 It was last revised on January 2, 2021

裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即 b a ?1形式的,这里我们把较小的数写在前面,即 a < b ,那么有: (2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有: 二、分数“裂和”型运算 常见的裂和型运算主要有以下两种形式: (1) a b b a b b a a b a b a 11+=?+?=?+ (2)a b b a b a b b a a b a b a +=?+?=?+2222 裂和型运算与裂差型运算的对比: 裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。裂和:抵消,或 凑整 三、整数裂项基本公式 (1) )1()1(3 1)1(......433221+-=?-++?+?+?n n n n n (2) )1()1)(2(4 1)1()2(......543432321+--=?-?-++??+??+??n n n n n n n (3) )1()1(3 1)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(4 1)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=? 裂项求和部分基本公式 1.求和: 1 )1(1......541431321211+=+++?+?+?+?=n n n n S n 证:1 111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n

相关文档
最新文档